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Abstract: We consider weighted tree automata over strong bimonoids which are,
roughly speaking, semirings without distributivity. We prove sufficient and neces-
sary conditions under which the initial algebra semantics and the run semantics of
these automata coincide. We prove closure properties of the class of recognizable
tree series, a determinization result, and a characterization of recognizable step
functions.

1 Introduction

In the past, weighted tree automata have been considered over different classes of algebras, viz.
completely distributive lattices [10, 8], fields [2], commutative semirings [1], and continuous
semirings [12, 7]. For a survey of results on recognizable tree series we refer the reader to
[12, 7, 9].

In this paper we study weighted tree automata over strong bimonoids thereby following the
line of research founded in [5] where weighted (string) automata over strong bimonoids have
been considered. A strong bimonoid (S, +, ·, 0, 1) consists of an additive monoid (S, +, 0) and a
multiplicative monoid (S, ·, 1); moreover, the 0 is absorbing with respect to ·, i.e., a·0 = 0·a = 0
for every a ∈ S. In other words, a strong bimonoid is a semiring without distributivity laws.
Each of the above mentioned algebras are particular strong bimonoids.

In the same way as for semiring-weighted tree automata [9], we define for a weighted tree
automaton A over some strong bimonoid S two types of semantics: the initial algebra semantics
and the run semantics, and we prove sufficient and necessary conditions under which these two
semantics are equivalent. More precisely, let Σ be a ranked alphabet and S a strong bimonoid;
then the following two statements are equivalent (cf. Theorem 4.1):

1. S is right distributive and, if Σ is non-monadic, then S is left distributive.

2. rrun
A = rA for every wta A over Σ and S.

We denote by Rec(Σ, S) (and bud-Rec(Σ, S)) the class of tree series over Σ and S which are
recognized by weighted tree automata (respectively, by bottom-up deterministic weighted tree
automata) over the strong bimonoid S using the initial algebra semantics. We prove that
Rec(Σ, S) and bud-Rec(Σ, S) are closed under sum (cf. Lemma 5.1) and, if S is commutative,
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then bud-Rec(Σ, S) is closed under Hadamard product (cf. Lemma 5.3). Moreover, bud-
Rec(Σ, S) is closed under right multiplication with a coefficient a of S; Rec(Σ, S) is closed
under right multiplication (respectively, left multiplication) with a, if S is right distributive
(respectively, left distributive), cf. Theorem 5.4.

We prove that a recognizable tree series can be recognized by bottom-up deterministic weighted
tree automata if the strong bimonoid is locally finite (cf. Theorem 6.4).

Finally, we prove that a tree series r is a recognizable step function if and only if r can be
recognized by some crisp and bottom-up deterministic weighted tree automaton if and only if
r has only finitely many images in S and each of the preimages is a recognizable tree language
(cf. Theorem 7.3).

In most of the cases, the proof techniques that we employ are adapted from the proofs of
corresponding results for weighted (string) automata over strong bimonoids [5] and for weighted
tree automata over semirings [9].

2 Preliminaries

2.1 Sets, matrices, and functions

Let N denote the set {0, 1, 2, . . .} of natural numbers. For a set A, we denote its set of subsets
by P(A). The empty string is denoted by ε, and the length of a string w by |w|. We denote
the cardinality of a finite set A by |A|.
Let S, I, and J be sets. An I × J−matrix over S is a mapping M : I × J → S; the set of
all I × J−matrices over S is denoted by SI×J . We write an entry M(i, j) ∈ S as Mi,j . An
I-vector v over S is defined analogously; the set of all I-vectors over S is denoted by SI and
an element v(i) ∈ S is denoted by vi. Let M ∈ SI×J , v1 ∈ SI , and v2 ∈ SJ . Then we define
the matrix-vector product v1 · M ∈ SJ and M · v2 ∈ SI as follows for every i ∈ I and j ∈ J :
(v1 ·M)j =

∑
i∈I(v1)i · Mi,j ,

(M· v2)i =
∑

j∈J Mi,j · (v2)j .
For u, v ∈ SI , we define the scalar product u · v ∈ S as u · v =

∑
i∈I ui · vi.

For two functions f : A → B and g : B → C, we denote their composition by g ◦ f where
(g ◦ f)(a) = g(f(a)) for every a ∈ A.

Let A and B be two sets such that A ⊆ B. The characteristic mapping of A is the mapping
χA : B → {0, 1} such that χA(a) = 1 if a ∈ A, and χ(a) = 0 otherwise.

2.2 Trees

A ranked alphabet is a tuple (Σ, rk) where Σ is a finite set and rk : Σ → N is a mapping called
rank mapping. For every k ≥ 0, we define Σ(k) = {σ ∈ Σ | rk(σ) = k}. Sometimes we write
σ(k) to emphasize that σ ∈ Σ(k). Σ is called trivial if Σ(0) = ∅ or Σ = Σ(0), and Σ is non-trivial
if Σ is not trivial. Thus Σ is non-trivial if Σ contains at least one nullary symbol and at least
one non-nullary symbol. Σ is called monadic if |Σ(0)| = 1, |Σ(1)| ≥ 1, and Σ = Σ(0) ∪ Σ(1). In
fact, TΣ

∼=
(
Σ(1)

)∗ for monadic Σ. Σ is non-monadic if Σ is not monadic. A monadic ranked
alphabet is non-trivial.

Let H be a set disjoint with Σ. The set of Σ-terms over H, denoted by TΣ(H), is the smallest
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set T such that (i) Σ(0) ∪ H ⊆ T and (ii) if k ≥ 1, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T , then
σ(ξ1, . . . , ξk) ∈ T . We denote TΣ(∅) by TΣ. Clearly, Σ is trivial iff TΣ is finite. Since terms can
be depicted in an illustrative way as trees, i.e., particular graphs, it has become a custom to
call Σ-terms also Σ-trees. Every subset L ⊆ TΣ is called Σ-tree language.

We define pos(ξ) ⊆ N∗, the set of positions of tree ξ ∈ TΣ as follows: (i) for every α ∈ Σ(0),
pos(α) = {ε}, (ii) for every ξ = σ(ξ1, . . . , ξk), where k ≥ 1, pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈
pos(ξi)}.
Let ξ ∈ TΣ and w ∈ pos(ξ). The subtree of ξ at w, denoted by ξ|w, is defined as follows: (i) for
every α ∈ Σ(0), α|ε = α, (ii) for every ξ = σ(ξ1, . . . , ξk) with σ ∈ Σ(k), ξ|ε = ξ, and for every
1 ≤ i ≤ k, ξ|iv = ξi|v.

In the rest of this paper, Σ will denote an arbitrary non-trivial ranked alphabet if
not specified otherwise.

2.3 Algebraic structures

A bimonoid (S, +, ·, 0, 1) is an algebra which consists of a monoid (S, +, 0), called additive
monoid of S, and a monoid (S, ·, 1), called multiplicative monoid of S. As usual, we identify the
algebra (S, +, ·, 0, 1) with its carrier set S. If the operation + is commutative and 0 is absorbing
with respect to ·, i.e., a · 0 = 0 · a = 0 for every a ∈ S, then S is called a strong bimonoid (for
short: s-bimonoid). An s-bimonoid S is commutative if the operation · is commutative. We say
that an s-bimonoid S is right distributive if it satisfies (a+b)·c = a·c+b·c for every a, b, c ∈ S. We
call S left distributive if it satisfies a·(b+c) = a·b+a·c for every a, b, c ∈ S. An s-bimonoid which
is left and right distributive is a semiring. The Boolean semiring is the semiring (B,∨,∧, 0, 1)
where B = {0, 1} and ∨ and ∧ are the usual disjunction and conjunction, respectively. As
another example, we recall from [13] the s-bimonoid (Σ∗∪{∞},∧, ·,∞, ε), where w1∧w2 is the
longest common postfix of w1, w2 ∈ Σ∗ ∪ {∞} and w1 · w2 is the concatenation of w1 and w2

(where w1 ·w2 = ∞ if w1 = ∞ or w2 = ∞). We note that this s-bimonoid is right distributive,
but not left distributive.

An s-bimonoid S is locally finite if, for every finite S′ ⊆ S, the sub-s-bimonoid of S generated
by S′, is finite.

In the rest of this paper, S will denote an arbitrary s-bimonoid (S, +, ·, 0, 1) if not
specified otherwise.

A Σ-algebra (V, θ) consists of a non-empty set V and an arity preserving interpretation θ of
symbols from Σ as operations over V , i.e., θ(σ) : V k → V for every k ≥ 0 and σ ∈ Σk. The Σ-
term algebra (TΣ,top) is the Σ-algebra such that for every k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ,
we have top(σ)(ξ1, . . . , ξk) = σ(ξ1, . . . , ξk). This Σ-algebra is initial in the class of all Σ-
algebras, i.e., for every Σ-algebra (V, θ) there is a unique Σ-algebra homomorphism from TΣ to
V , which we denote by hV .

2.4 Tree series

A tree series over Σ and S (or for short: tree series) is a mapping r : TΣ → S. For every
ξ ∈ TΣ, the element r(ξ) ∈ S is called coefficient of ξ and it is denoted by (r, ξ). The set of all
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tree series over Σ and S is denoted by S〈〈TΣ〉〉.
Let r ∈ S〈〈TΣ〉〉. The support of r is defined as the set supp(r) = {ξ ∈ TΣ | (r, ξ) 6= 0}. For
every s ∈ S we define r=s = {ξ ∈ TΣ | (r, ξ) = s}. The image of r is the set im(r) = {(r, ξ) ∈
S | ξ ∈ TΣ}.
Let L be a tree language, i.e., L ⊆ TΣ. We define the tree series 1(S,L) : TΣ → S by (1(S,L), ξ) =
χL(ξ) for every ξ ∈ TΣ. We call the tree series 1(S,L) the characteristic tree series of L with
respect to S. Obviously, supp(1(S,L)) = L.

Let r1, r2 ∈ S〈〈TΣ〉〉. The sum of r1 and r2 and the Hadamard product of r1 and r2 are the tree
series r1+r2 ∈ S〈〈TΣ〉〉 and r1¯r2 ∈ S〈〈TΣ〉〉, respectively, defined by (r1+r2, ξ) = (r1, ξ)+(r2, ξ)
and (r1 ¯ r2, ξ) = (r1, ξ) · (r2, ξ) for every ξ ∈ TΣ.

Let a ∈ S and r ∈ S〈〈TΣ〉〉. The scalar left multiplication of a and r is the tree series a · r ∈
S〈〈TΣ〉〉 defined by (a · r, ξ) = a · (r, ξ) for every ξ ∈ TΣ. The scalar right multiplication of a and
r is the tree series r · a ∈ S〈〈TΣ〉〉 defined by (r · a, ξ) = (r, ξ) · a for every ξ ∈ TΣ.

3 Weighted tree automata

Now we define weighted tree automata over S. Actually, the definition is the same as that for
semiring-weighted tree automata.

Definition 3.1. A weighted tree automaton (over Σ and S) (for short: wta) is a tuple A =
(Q,Σ, S, µ, ν) where

• Q is a finite nonempty set, the set of states,

• Σ is a ranked alphabet, the ranked input alphabet,

• µ = (µk | k ∈ N) is a family of mappings µk : Σ(k) → SQk×Q, the transition mappings,

• ν ∈ SQ is a Q-vector over S, the root weight vector.

For every transition (w, q) ∈ Qk × Q, the element µk(σ)w,q ∈ S is called the weight of (w, q).
We denote by wts(A) the set of all weights which occur in A, i.e., wts(A) = {µk(σ)w,q | k ≥
0, σ ∈ Σ(k), w ∈ Qk, q ∈ Q} ∪ {νq | q ∈ Q}. Note that wts(A)⊆ S.

Initial algebra semantics
For every wta A, we consider the Σ-algebra (SQ, µA) where, for every k ≥ 0 and σ ∈ Σ(k), the
k-ary operation µA(σ) : SQ × . . .× SQ → SQ is defined by

µA(σ)(v1, . . . , vk)q =
∑

q1,...,qk∈Q

(v1)q1 · . . . · (vk)qk
· µk(σ)q1...qk,q

for every q ∈ Q and v1, . . . , vk ∈ SQ. The tree series rA ∈ S〈〈TΣ〉〉 recognized by A is defined
by:

(rA, ξ) = hµ(ξ)· ν =
∑

q∈Q

hµ(ξ)q· νq

for every ξ ∈ TΣ, where hµ denotes the unique Σ-algebra homomorphism from TΣ to SQ. A
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tree series r ∈ S〈〈TΣ〉〉 is recognizable if there is a wta A such that r = rA. The class of all
recognizable tree series over Σ and S is denoted by Rec(Σ, S).

Run semantics
A run of A on ξ ∈ TΣ is a mapping κ : pos(ξ) → Q. The set of all runs of A on ξ is denoted
by RA(ξ). For every κ ∈ RA(ξ) and w ∈ pos(ξ), the run induced by κ at position w, denoted
by κ|w ∈ RA(ξ|w), is the mapping κ|w : pos(ξ|w) → Q defined by κ|w(w′) = κ(ww′) for every
w′ ∈ pos(ξ|w). For every ξ = σ(ξ1, . . . , ξk) ∈ TΣ, the weight wt(κ) of κ is

wt(κ) = wt(κ|1) · . . . · wt(κ|k) · µk(σ)κ(1)...κ(k),κ(ε).

The run semantics of A is the tree series rrun
A ∈ S〈〈TΣ〉〉 defined by

(rrun
A , ξ) =

∑

κ∈RA(ξ)

wt(κ) · νκ(ε)

for every ξ ∈ TΣ.

In fact, wta over monadic ranked alphabets correspond in a one-one relation to weighted finite
automata over strong bimonoids as they are defined in [5]. Also the initial algebra semantics
and run semantics pairwise correspond to each other.

Next we introduce bottom-up deterministic and crisp weighted tree automata.

Definition 3.2. Let A = (Q,Σ, S, µ, ν) be a wta over Σ and S.

• We call A bottom-up deterministic (for short: bu-deterministic) if for every k ≥ 0, σ ∈
Σ(k), and w ∈ Qk there is at most one q ∈ Q such that µk(σ)w,q 6= 0.

• We call A total if for every k ≥ 0, σ ∈ Σ(k), and w ∈ Qk there is at least one state q such
that µk(σ)w,q 6= 0.

• We call A crisp if µk(σ)w,q ∈ {0, 1} for every k ≥ 0, σ ∈ Σ(k), and (w, q) ∈ Qk ×Q.

Observation 3.3. Let A be a bu-deterministic wta over S. Then the following statements
hold:

1. For every input tree ξ ∈ TΣ, there is at most one q ∈ Q such that hµ(ξ)q 6= 0, and at most
one run κ ∈ RA(ξ) such that wt(κ) 6= 0. Moreover, there is such a state iff there is such
a run. If there exists a state q ∈ Q with hµ(ξ)q 6= 0 and if there exists a run κ ∈ RA(ξ)
with wt(κ) 6= 0, then wt(κ) = hµ(ξ)q and κ(ε) = q. In this case the operation + of S is
not used to compute rA and rrun

A .

2. If, additionally, the wta A is total and S is zero-divisor free, then for each input tree
ξ ∈ TΣ, there exists exactly one q ∈ Q and exactly one κ ∈ RA(ξ), such that hµ(ξ)q =
wt(κ) 6= 0 and κ(ε) = q.

3. If, additionaly, the wta A is crisp, then im(rA) ⊆ {vq | q ∈ Q}. Thus, in particular,
im(rA) is finite.
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4. If, additionally, the wta A is total and crisp, then for every input tree ξ ∈ TΣ, there
exists exactly one q ∈ Q and exactly one κ ∈ RA(ξ) such that hµ(ξ)q = wt(κ) = 1 and
κ(ε) = q.

The tree series r ∈ S〈〈TΣ〉〉 is bu-deterministically recognizable if there is a bu-deterministic wta
A such that r = rA. The class of bu-deterministically recognizable tree series is denoted by
bud-Rec(Σ, S). Clearly, bud-Rec(Σ, S) ⊆ Rec(Σ, S).

Lemma 3.4. For every r ∈ bud-Rec(Σ, S), there is a total bu-deterministic wta A such that
r = rA.

Proof. Let B = (QB, Σ, S, µB, νB) be a bu-deterministic wta such that r = rB. Take q0 /∈ QB
and let Q = QB ∪ {q0}. We construct the wta A = (Q,Σ, S, µ, ν) as follows. We define νq0 = 0
and νq = νBq for every q ∈ QB. For every k ≥ 0, σ ∈ Σ(k), and w ∈ Qk:

• if w ∈ Qk
B and there exists q ∈ QB such that µBk (σ)w,q 6= 0, then µk(σ)w,q = µBk (σ)w,q,

• if w ∈ Qk
B and µBk (σ)w,q = 0 for every q ∈ Q, then µk(σ)w,q0 = 1,

• if w ∈ Qk\Qk
B, then µk(σ)w,q0 = 1,

• for every other combination (v, p) ∈ Qk ×Q, we define µk(σ)v,p = 0.

Then, for every ξ ∈ TΣ and q ∈ QB, we have that hµB(ξ)q = hµ(ξ)q. Since νq0 = 0, we have
rA = r. ¤

Finally, we note that we obtain the classical concept of a finite state tree automaton as special
case of our concept as follows. A bottom-up finite state tree automaton (for short: bu-fta) is
a wta A = (Q,Σ,B, µ, ν). In this case we write A = (Q,Σ, µ, F ) with F = ν−1(1). The tree
language accepted by the bu-fta A is the set L(A) ⊆ TΣ, defined by L(A) = supp(rA). The tree
language L ⊆ TΣ is recognizable if there is a bu-fta A over Σ such that L = L(A). The class
of all recognizable tree languages over Σ is denoted by Rec(Σ). A bu-fta A = (Q,Σ, µ, F ) is
called deterministic (total) if the wta (Q,Σ,B, µ, ν) is bu-deterministic (total, respectively).

4 Initial algebra semantics versus run semantics

In the next theorem we will prove necessary and sufficient conditions under which the initial
algebra semantics and the run semantics of a wta coincide. Actually, this theorem generalizes
Lemma 6 of [5] from strings to trees, and it turns out that in the tree case the left distributivity
of S has to be required additionally. Also, the theorem generalizes the fact that the initial
algebra semantics and the run semantics of a wta over any semiring coincide (cf. p. 317 of [9])
by turning this fact into an equivalence.

Theorem 4.1. Let Σ be a ranked alphabet and S an s-bimonoid. Then the following state-
ments are equivalent:

1. S is right distibutive and, if Σ is not monadic, then S is left distributive.

2. rrun
A = rA for every wta A over Σ and S.
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Proof. 1. ⇒ 2.: Let A = (Q,Σ, S, µ, ν) be a wta. First, we will prove that the following
statement holds:

(∗) hµ(ξ)q =
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ) for every ξ ∈ TΣ and q ∈ Q.

Let ξ = σ(ξ1, . . . , ξk) for some k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ. Then
hµ(ξ)q = hµ(σ(ξ1, . . . , ξk))q = µA(σ)(h(ξ1), . . . , h(ξk))q

=
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

=
∑

q1,...,qk∈Q

( ∑

κ1∈RA(ξ1)
κ1(ε)=q1

wt(κ1)
) · . . . · (

∑

κk∈RA(ξk)
κk(ε)=qk

wt(κk)
) · µk(σ)q1...qk,q

(Statement (∗))

=
∑

q1,...,qk∈Q

∑

κ1∈RA(ξ1)
κ1(ε)=q1

wt(κ1) ·
(
. . . · (

∑

κk∈RA(ξk)
κk(ε)=qk

wt(κk) · µk(σ)q1...qk,q

)
. . .

)

(S right distributive)

=
∑

q1,...,qk∈Q

∑

κ1∈RA(ξ1)
κ1(ε)=q1

. . .
∑

κk∈RA(ξk)
κk(ε)=qk

wt(κ1) · . . . · wt(κk) · µk(σ)q1...qk,q

(Σ monadic or S left distributive)

=
∑

q1,...,qk∈Q

∑

κ∈RA(ξ)
κ(1)=q1,...,κ(k)=qk

κ(ε)=q

wt(κ|1) · . . . · wt(κ|k) · µk(σ)q1...qk,q

=
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ|1) · . . . · wt(κ|k) · µk(σ)q1...qk,q

=
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ).

Hence,
(rrun
A , ξ) =

∑

κ∈RA(ξ)

(
wt(κ) · νκ(ε)

)
=

∑

q∈Q

∑

κ∈RA(ξ)
κ(ε)=q

(
wt(κ) · νq

)

=
∑

q∈Q

( ∑

κ∈RA(ξ)
κ(ε)=q

wt(κ)
) · νq (S right distributive)

=
∑

q∈Q

hµ(ξ)q · νq = (rA, ξ).

2. ⇒ 1.: Let a, b, c ∈ S. We should prove that
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i) (a + b) · c = a · c + b · c and
ii) if Σ is non-monadic, then a · (b + c) = a · b + a · c.
To prove the first equation, assume that α ∈ Σ(0) and γ ∈ Σ(k) for some k ≥ 1. We consider
the wta A = (Q,Σ, S, µ, ν) defined as follows: Q = {p, q, 1}, νp = ν1 = 0, νq = c. Moreover, we
define the transition mappings as follows:

• µ0(α)ε,p = a , µ0(α)ε,q = b, µ0(α)ε,1 = 1,

• µk(γ)p1...1,q = µk(γ)q1...1,q = 1,

• µk(γ)w,u = 0 for every (w, u) /∈ {(p1 . . . 1, q), (q1 . . . 1, q)}
• for every other input symbol σ ∈ Σ(k) with k ≥ 0 and state behaviour (w, r) ∈ Qk × Q

we can define µk(σ)w,r arbitrarily.

Take ξ = γ(α, . . . , α︸ ︷︷ ︸
k

) ∈ TΣ. We will calculate (rA, ξ) and (rrun
A , ξ).

(rA, ξ) =
∑

u∈Q

hµ(ξ)u · νu = hµ(ξ)q · νq

=
( ∑

u1,...,uk∈Q

hµ(α)u1 · . . . · hµ(α)uk
· µk(σ)u1...uk,q

) · c

=
(
hµ(α)p · hµ(α)1 · . . . · hµ(α)1︸ ︷︷ ︸

k−1

·µk(γ)p1...1,q +

+ hµ(α)q · hµ(α)1 · . . . · hµ(α)1︸ ︷︷ ︸
k−1

·µk(γ)q1...1,q

) · c

=
(
a · 1 · . . . · 1 · 1 + b · 1 · . . . · 1 · 1) · c

= (a + b) · c.

(rrun
A , ξ) =

∑

κ∈RA(ξ)

wt(κ) · νκ(ε) =
∑

κ∈RA(ξ)
κ(ε)=q

(
wt(κ) · c)

= wt(κ1) · c + wt(κ2) · c

where κ1(ε) = q, κ1(1) = p, κ1(i) = ∗ for every i ∈ {2, . . . , k}
κ2(ε) = q, κ2(1) = q, κ2(i) = ∗ for every i ∈ {2, . . . , k}

= wt(κ1|1) · wt(κ1|2) · . . . · wt(κ1|k) · µk(γ)p∗...∗,q · c +

+ wt(κ2|1) · wt(κ2|2) · . . . · wt(κ2|k) · µk(γ)q∗...∗,q · c
= µ0(α)ε,p · µ0(α)ε,∗ · . . . · µ0(α)ε,∗ · 1 · c + µ0(α)ε,q · µ0(α)ε,∗ · . . . · µ0(α)ε,∗ · 1 · c
= a · 1 · . . . · 1 · 1 · c + b · 1 · . . . · 1 · 1 · c
= a · c + b · c.

Since rrun
A = rA, we obtain that Statement i) holds.

Now we prove Statement ii). Let Σ be non-monadic. Recall that Σ is non-trivial. Thus Σ(0) 6= ∅
and there is k ≥ 2 such that Σ(k) 6= ∅. Let α ∈ Σ(0) and σ ∈ Σ(k). Now consider the wta

8



A = (Q,Σ, S, µ, ν) with Q = {a, b, c, p, q, 1}, νq = 1, νu = 0 for every u 6= q, and the transition
mappings:

• µ0(α)ε,x = x for every x ∈ {a, b, c, 1},
• µ0(α)ε,p = µ0(α)ε,q = 0,

• µk(σ)b1...1,p = µk(σ)c1...1,p = µk(σ)a1...1p,q = 1,

• for every other combination (w, r) ∈ Qk ×Q, we let µk(σ)w,r = 0,

• for every other input symbol δ ∈ Σ(k), k ≥ 0, and state behaviour (w, r) ∈ Qk × Q we
can define µk(δ)w,r arbitrarily.

Take ξ = σ(α, . . . α︸ ︷︷ ︸
k−1

, σ(α, . . . , α︸ ︷︷ ︸
k

)) ∈ TΣ. First we calculate

hµ(σ(α, . . . , α︸ ︷︷ ︸
k

))p =
∑

u1,...,uk∈Q

hµ(α)u1 · hµ(α)u2 · . . . · hµ(α)uk−1
· hµ(α)uk

· µk(σ)u1u2...uk−1uk,p

= hµ(α)b · hµ(α)1 · . . . · hµ(α)1 · µk(σ)b1...1,p +

+ hµ(α)c · hµ(α)1 · . . . · hµ(α)1 · µk(σ)c1...1,p

= b + c.
Then,
hµ

(
σ(α, . . . α︸ ︷︷ ︸

k−1

, σ(α, . . . , α︸ ︷︷ ︸
k

))
)
q

= hµ(α)a · hµ(α)1 · . . . · hµ(α)1 · hµ(σ(α, . . . , α))p · µk(σ)a1...1p,q

= a · (b + c).
Let κb ∈ RA(ξ) be such that κb(ε) = q, κb(1) = a, κb(i) = 1 for every i ∈ {2, . . . , k − 1},
κb(k) = p, κb(k1) = b, κb(kj) = 1 for every j ∈ {2, . . . , k}, and κc ∈ RA(ξ) is the same as κb

but κc(k1) = c. Then

(rrun
A , ξ) =

∑

κ∈RA(ξ)

wt(κ) · νκ(ε) =
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ) = wt(κb) + wt(κc) = a · b + a · c.

Since rrun
A = rA, we obtain a · (b + c) = a · b + a · c. ¤

5 Closure properties

First we prove that Rec(Σ, S) and bud-Rec(Σ, S) are closed under sum. The construction is
the straightforward ”union” of the two given wta (cf., e.g., Lemma 6.4 of [4]).

Lemma 5.1. Let r1, r2 ∈ S〈〈TΣ〉〉. Then the following statements hold:

1. If r1, r2 ∈ Rec(Σ, S), then r1 + r2 ∈ Rec(Σ, S).

2. If r1, r2 ∈ bud-Rec(Σ, S), then r1 + r2 ∈ bud-Rec(Σ, S).
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Proof. Let A1 = (Q1,Σ, S, µ1, ν1) and A2 = (Q2, Σ, S, µ2, ν2) be the wta such that r1 = rA1

and r2 = rA2 . Clearly, we can choose Q1 and Q2 such that Q1 ∩ Q2 = ∅. We construct the
wta A = (Q,Σ, S, µ, ν) with Q = Q1 ∪Q2. For every k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q, we
define the mappings µ and ν as follows:

µk(σ)q1...qk,q =





µ1
k(σ)q1...qk,q, if q1, . . . qk, q ∈ Q1,

µ2
k(σ)q1...qk,q, if q1, . . . qk, q ∈ Q2,

0 otherwise,

νq =

{
ν1

q if q ∈ Q1,

ν2
q if q ∈ Q2.

Then, for every ξ ∈ TΣ, we have hµ(ξ)q = hµ1(ξ)q if q ∈ Q1, and hµ(ξ)q = hµ2(ξ)q if q ∈ Q2.
Thus, (rA, ξ) =

∑

q∈Q

hµ(ξ)q · νq =
∑

q∈Q1

hµ(ξ)q · νq +
∑

q∈Q2

hµ(ξ)q · νq

=
∑

q∈Q1

hµ1(ξ)q · ν1
q +

∑

q∈Q2

hµ2(ξ)q · ν2
q = (rA′ , ξ) + (rA′′ , ξ)

= (r1, ξ) + (r2, ξ) = (r1 + r2, ξ).
Hence, r1 + r2 is recognizable.

If the wta A1 and A2 are bu-deterministic, then the wta A is bu-deterministic, which proves
Statement 2. ¤

In the following lemma we recall that Rec(Σ, S) and bud-Rec(Σ, S) are closed under Hadamard
product if S is a commutative semiring, which has been proved in Corollary 3.9 of [3].

Lemma 5.2. (Corollary 3.9 of [3]) Let S be a commutative semiring, and r1, r2 ∈ S〈〈TΣ〉〉.
Then the following statements hold:

1. If r1, r2 ∈ Rec(Σ, S), then r1 ¯ r2 ∈ Rec(Σ, S).

2. If r1, r2 ∈ bud-Rec(Σ, S), then r1 ¯ r2 ∈ bud-Rec(Σ, S).

The next lemma generalizes Lemma 5.2(2) from commutative semirings to commutative s-
bimonoids.

Lemma 5.3. Let S be commutative and r1, r2 ∈ bud-Rec(Σ, S). Then r1¯r2 ∈ bud-Rec(Σ, S).

Proof. Let A1 = (Q1, Σ, S, µ1, ν1) and A2 = (Q2, Σ, S, µ2, ν2) be the bu-deterministic wta such
that r1 = rA1 and r2 = rA2 . We construct the wta A = (Q,Σ, S, µ, ν) with Q = Q1 ×Q2. We
define ν(q1,q2) = ν1

q1 · ν2
q2 and µk(σ)(q1

1 ,q2
1)...(q1

k,q2
k),(q1,q2) = µ1

k(σ)q1
1 ...q1

k,q1 · µ2
k(σ)q2

1 ...q2
k,q2 for every

k ≥ 0, σ ∈ Σ(k), q1
1, . . . , q

1
k, q

1 ∈ Q1, and q2
1, . . . , q

2
k, q

2 ∈ Q2.

Clearly, a wta A is bu-deterministic.

We show by structural induction that the following statement holds:

(∗∗) hµ(ξ)(q1,q2) = hµ1(σ)q1 · hµ2(σ)q2 for every ξ ∈ TΣ, q1 ∈ Q1 and q2 ∈ Q2.

Let k ≥ 0, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ and ξ = σ(ξ1, . . . , ξk). Then
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hµ(ξ)(q1,q2) =
∑

q1
1 ,...,q1

k∈Q1

q2
1 ,...,q2

k∈Q2

hµ(ξ1)(q1
1 ,q2

1) · . . . · hµ(ξk)(q1
k,q2

k) · µk(σ)(q1
1 ,q2

1)...(q1
k,q2

k),(q1,q2)

=
∑

q1
1 ,...,q1

k∈Q1

q2
1 ,...,q2

k∈Q2

(
hµ1(ξ1)q1

1
· hµ2(ξ1)q2

1

) · . . . · (hµ1(ξk)q1
k
· hµ2(ξk)q2

k

)·

·(µ1
k(σ)q1

1 ...q1
k,q1 · µ2

k(σ)q2
1 ...q2

k,q2

)

(induction hypothesis and definition of µ)
=

∑

q1
1 ,...,q1

k∈Q1

∑

q2
1 ,...,q2

k∈Q2

(
hµ1(ξ1)q1

1
· . . . · hµ1(ξk)q1

k
· µ1

k(σ)q1
1 ...q1

k,q1

)·

·(hµ2(ξ1)q2
1
· . . . · hµ2(ξk)q2

k
· µ2

k(σ)q2
1 ...q2

k,q2

)

(commutativity)
There are two possibilities:

1. there is an i with 1 ≤ i ≤ k such that hµ(ξ)q1 = 0 for every q1 ∈ Q1 or hµ(ξ)q2 = 0 for
every q2 ∈ Q2,

2. for every i with 1 ≤ i ≤ k there are exactly one p1
i ∈ Q1 and exactly one p2

i ∈ Q2 such
that hµ1(ξi)p1

i
6= 0 and hµ2(ξi)p2

i
6= 0.

Case 1. Let an i ∈ {1, . . . , k} be such that hµ(ξ)q1 = 0 for every q1 ∈ Q1 (the proof is analogous
if hµ(ξ)q2 = 0 for every q2 ∈ Q2). Then we continue as follows:

=
∑

q1
1 ,...,q1

k∈Q1

∑

q2
1 ,...,q2

k∈Q2

(
hµ1(ξ1)q1

1
· . . . · hµ1(ξi−1)q1

i−1
· 0 · . . . · hµ1(ξk)q1

k
· µ1

k(σ)q1
1 ...q1

k,q1

)·

·(hµ2(ξ1)q2
1
· . . . · hµ2(ξk)q2

k
· µ2

k(σ)q2
1 ...q2

k,q2

)

= 0 =
∑

q1
1 ,...,q1

k∈Q1

(
hµ1(ξ1)q1

1
· . . . · hµ1(ξi−1)q1

i−1
· 0 · . . . · hµ1(ξk)q1

k
· µ1

k(σ)q1
1 ...q1

k,q1

)·

·
∑

q2
1 ,...,q2

k∈Q2

(
hµ2(ξ1)q2

1
· . . . · hµ2(ξk)q2

k
· µ2

k(σ)q2
1 ...q2

k,q2

)

= hµ1(σ)q1 · hµ2(σ)q2 .
Case 2. We can continue as follows:

=
(
hµ1(ξ1)p1

1
· . . . · hµ1(ξk)p1

k
· µ1

k(σ)p1
1...p1

k,p1

)·
·(hµ2(ξ1)p2

1
· . . . · hµ2(ξk)p2

k
· µ2

k(σ)p2
1...p2

k,p2

)

=
∑

q1
1 ,...,q1

k∈Q1

(
hµ1(ξ1)q1

1
· . . . · hµ1(ξk)q1

k
· µ1

k(σ)q1
1 ...q1

k,q1

)·

·
∑

q2
1 ,...,q2

k∈Q2

(
hµ2(ξ1)q2

1
· . . . · hµ2(ξk)q2

k
· µ2

k(σ)q2
1 ...q2

k,q2

)

= hµ1(σ)q1 · hµ2(σ)q2 .
This finishes the proof of Statement (∗∗).
Now take ξ ∈ TΣ. Since A1 and A2 are bu-deterministic, it is possible that hµ1(ξ)p = 0 for
every p ∈ Q1 or hµ2(ξ)q = 0 for every q ∈ Q2, or, the second possibility is that there exists the
unique u ∈ Q1 such that hµ1(ξ)u 6= 0 and there exists the unique v ∈ Q2 such that hµ2(ξ)v 6= 0.
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In the first case, it follows from Statement (∗∗) that hµ(ξ)(q1,q2) = 0 for every q1 ∈ Q1 and
q2 ∈ Q2. Then, one can easily check that (rA, ξ) = 0 = (rA1 , ξ) · (rA2 , ξ).

In the second case let u ∈ Q1 (and v ∈ Q2) be the unique state such that hµ1(ξ)u 6= 0
(respectively, hµ2(ξ)v 6= 0). Then we have that

(rA, ξ) =
∑

q1∈Q1

q2∈Q2

hµ(ξ)(q1,q2) · ν(q1,q2) =
∑

q1∈Q1

q2∈Q2

(
hµ1(ξ)q1 · hµ2(ξ)q2

) · (νq1 · νq2

)

= hµ1(ξ)u · νu · hµ2(ξ)v · νv =
∑

q1∈Q1

hµ1(ξ)q1 · νq1 ·
∑

q2∈Q2

hµ2(ξ)q2 · νq2

= (rA1 , ξ) · (rA2 , ξ).
¤

In Lemma 6.3 of [4] it was proved that the class of recognizable tree series over semirings
is closed under left multiplication with a coefficient from the semiring. Here we deal with
multiplication from left and right.

Theorem 5.4. Let r ∈ Rec(Σ, S) and a ∈ S. Then the following statements hold:

1. If r ∈ bud-Rec(Σ, S), then r · a ∈ bud-Rec(Σ, S).

2. If S is right distributive, then r · a ∈ Rec(Σ, S).

3. If S is left distributive or r ∈ bud-Rec(Σ, S), then a · r ∈ Rec(Σ, S).

Proof. Let A = (Q,Σ, S, µ, ν) be some wta such that r = rA. We consider the wta A′ =
(Q,Σ, S, µ, ν′) with ν ′q = νq · a for every q ∈ Q.

Proof of Statement 1: We assume that A is bu-deterministic. Then, clearly, also A′ is bu-
deterministic. Let ξ ∈ TΣ. By Observation 3.3(1), there is at most one q ∈ Q such that
hµ(ξ)q 6= 0. If hµ(ξ)q = 0 for every q ∈ Q, then (rA′ , ξ) =

∑

q∈Q

hµ(ξ)q · ν ′q = 0 =
( ∑

q∈Q

hµ(ξ)q ·

νq

) · a = (rA, ξ) · a. Now, let u ∈ Q be such that hµ(ξ)u 6= 0. Then, (rA′ , ξ) = hµ(ξ)u · ν ′u =
hµ(ξ)u ·νu ·a = (rA, ξ) ·a = (rA ·a, ξ) = (r ·a, ξ). Thus, r ·a is bu-deterministically recognizable.

Proof of Statement 2: We assume that S is right distributive. Thus, for every ξ ∈ TΣ, we have
(r · a, ξ) =

(∑
q∈Q hµ(ξ)q · νq

) · a =
∑

q∈Q(hµ(ξ)q · νq · a) =
∑

q∈Q hµ(ξ)q · ν ′q = (rA′ , ξ). Hence,
r · a ∈ Rec(Σ).

Proof of Statement 3: We define the wta Ã = (Q̃,Σ, S, µ̃, ν̃) as follows:

• Q̃ = Q0 ∪Q1 where Q0 = {q0 | q ∈ Q} and Q1 = {q1 | q ∈ Q},
• for every q ∈ Q and α ∈ Σ(0), we let µ̃(α)ε,q0 = µ0(α)ε,q and µ̃(α)ε,q1 = a · µ0(α)ε,q

• for every k ≥ 1, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q, we let

µ̃k(σ)q1
1q0

2 ...q0
k,q1 = µ̃k(σ)q0

1q0
2 ...q0

k,q0 = µk(σ)q1q2...qk,q, and for every s1, . . . , sk, s ∈ {0, 1}
such that (s1, . . . , sk, s) /∈ {(0, . . . , 0, 0), (1, 0 . . . , 0, 1)}, we let µ̃k(σ)q

s1
1 ...q

sk
k ,qs = 0,

• for every q ∈ Q, we let ν̃q0 = 0 and ν̃q1 = νq.

First we prove by structural induction that the following statement holds:
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(∗∗∗) hµ̃(ξ)q0 = hµ(ξ)q for every ξ ∈ TΣ and q ∈ Q.

Let k ≥ 0, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ and ξ = σ(ξ1, . . . , ξk). Then

hµ(ξ)q0 =
∑

q̃1,...,q̃k∈Q̃

hµ̃(ξ1)q̃1 · . . . · hµ̃(ξk)q̃k
· µ̃k(σ)q̃1...q̃k,q0

=
∑

q1,...,qk∈Q
s1,...,sk∈{0,1}

hµ̃(ξ1)q
s1
1
· . . . · hµ̃(ξk)q

sk
k
· µ̃k(σ)q

s1
1 ...q

sk
k ,q0

=
∑

q1,...,qk∈Q

hµ̃(ξ1)q0
1
· . . . · hµ̃(ξk)q0

k
· µ̃k(σ)q0

1 ...q0
k,q0

(definition of µ̃ )
=

∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

(induction hypothesis and definition of µ̃k(σ))
= hµ(ξ)q.

Now we show that

(∗v) hµ̃(ξ)q1 = a · hµ(ξ)q for every ξ ∈ TΣ and q ∈ Q.

Let k ≥ 0, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ and ξ = σ(ξ1, . . . , ξk). Then,

hµ̃(ξ)q1 =
∑

q̃1,...,q̃k∈Q̃

hµ̃(ξ1)q̃1 · . . . · hµ̃(ξk)q̃k
· µ̃k(σ)q̃1...q̃k,q1

=
∑

q1,...,qk∈Q
s1,...,sk∈{0,1}

hµ̃(ξ1)q
s1
1
· . . . · hµ̃(ξk)q

sk
k
· µ̃k(σ)q

s1
1 ...q

sk
k ,q1

=
∑

q1,...,qk∈Q

hµ̃(ξ1)q1
1
· hµ̃(ξ2)q0

2
· . . . · hµ̃(ξk)q0

k
· µ̃k(σ)q1

1q0
2 ...q0

k,q1

=
∑

q1,...,qk∈Q

a · hµ(ξ1)q1 · hµ(ξ2)q2 · . . . · hµ(ξ)qk
· µk(σ)q1...qk,q

(induction hypothesis, property of h for q0
2, . . . q

0
k, and definition of µ̃k(σ)).

If S is left distributive, then we can continue with

= a ·
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= a · hµ(ξ)q,
and we have proved Statement (∗v) if S is left distributive.

Now assume that A is bu-determinisic. Then there are two possibilities:

1. there is an i with 1 ≤ i ≤ k and hµ(ξi)q = 0 for every q ∈ Q,

2. for every i with 1 ≤ i ≤ k there is exactly one qi ∈ Q with hµ(ξi) 6= 0.

Case 1. Then we can continue with
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=
∑

q1,...,qk∈Q

a · hµ(ξ1)q1 · . . . · hµ(ξi−1)qi−1 · 0 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= 0 = a ·
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξi−1)qi−1 · 0 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= a · hµ(ξ)q.
Case 2. Let p1, . . . , pk ∈ Q be the unique states such that hµ(ξi)pi 6= 0. Then we can continue
with

= a · hµ(ξ1)p1 · hµ(ξ2)p2 · . . . · hµ(ξk)pk
· µk(σ)p1...pk,q

= a ·
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= a · hµ(ξ)q

and we have proved Statement (∗v) if A is bu-deterministic. Hence Statement (∗v) holds.

Now we prove that rÃ = a · rA. For this let ξ ∈ TΣ. Then

(rÃ, ξ) =
∑

q̃∈Q̃

hµ̃(ξ)q̃ · ν̃q̃ =
∑

q∈Q

hµ̃(ξ)q1 · νq

=
∑

q∈Q

a · hµ(ξ)q · νq

If S is left distributive, then we can continue as follows:

= a ·
∑

q∈Q

hµ(ξ)q · νq = a · (rA, ξ) = (a · rA, ξ).

Now let A be bu-deterministic. Thus there are two cases:

1. hµ(ξ)q = 0 for every q ∈ Q,

2. there is the unique q ∈ Q such that hµ(ξ)q 6= 0.

Case 1. Then we can continue as follows:

= 0 = a · 0 = a · (rA, ξ) = (a · rA, ξ).

Case 2. Let p ∈ Q be such that hµ(ξ)p 6= 0. Then we can continue as follows:

= a · hµ(ξ)p · νp = a ·
∑

q∈Q

hµ(ξ)q · νq

= a · (rA, ξ) = (a · rA, ξ).
Hence, a · r is recognizable. ¤

6 Determinization

In this section we deal with the question under which conditions a recognizable tree series can
be recognized by a bu-deterministic wta. We follow the approach of Section 3.4 of [9] (also
cf. [5]). First, we prove that S is locally finite if and only if every wta over S and Σ can be
represented by a finite Σ-algebra. The only-if direction is a generalization of Sec. 4 of [3] (also
cf. Sec. 3.1 of [11] and Lemma 3.14 of [9]).
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Lemma 6.1. The following statements are equivalent.

1. S is locally finite.

2. For every ranked alphabet Σ and every wta A over Σ and S there is a finite Σ-algebra
(Q, θ) and a mapping f : Q → S such that rA = f ◦ hQ.

In particular, for every bu-fta A over Σ there is a finite Σ-algebra (Q, θ) and a subset F ⊆ Q
such that L(A) = h−1

Q (F ).

Proof. 1. ⇒ 2. Let Σ be a ranked alphabet and A = (P, Σ, S, µ, ν) be a wta over Σ and S.
Moreover, let S′ be the smallest sub-s-bimonoid containing wts(A). Then S′ is finite, because
S is locally finite. Clearly, (S′)P ⊆ SP and, by definition, µA(σ) : (SP )k → SP for every k ≥ 0
and σ ∈ Σ(k).

Now, let v1, . . . , vk ∈ (S′)P . Then µA(σ)(v1, . . . , vk) ∈ (S′)P , because S′ is closed under
addition and multiplication. Thus, we can define the operation µ′A(σ) : (S′)P × . . .× (S′)P →
(S′)P by letting µA(σ) = µ′A(σ) for every v1, . . . , vk ∈ (S′)P .

Let Q = (S′)P . Then, (Q,µ′A) is a Σ-algebra and hµ(ξ) = hQ(ξ) for every ξ ∈ TΣ. We define
the mapping f by f(v) = v · ν for v ∈ Q. Then (rA, ξ) = hµ(ξ) · ν = hQ(ξ) · ν = f(hQ(ξ)) =
(f ◦ hQ)(ξ). Thus, rA = f ◦ hQ.

2. ⇒ 1. We prove this implication by contraposition: If S is not locally finite, then there is a
ranked alphabet Σ and a wta A over Σ and S such that rA 6= f ◦ hQ for every finite Σ-algebra
(Q, θ) and every mapping f : Q → S.

Since S is not locally finite, there is a set A ⊆ S such that the set S′, the smallest sub-s-bimonoid
of S containing A, is not finite. We let Σ̃ = {a(0) | a ∈ A} ∪ {⊕(2),¯(2)}, and we define the
mapping val : TΣ̃ → S as follows: val(a(0)) = a for every a ∈ A; val(⊕(ξ1, ξ2)) = val(ξ1)+val(ξ2)
and val(¯(ξ1, ξ2)) = val(ξ1) · val(ξ2) for every ξ1, ξ2 ∈ TΣ̃.

Now we construct the wta A = (Q, Σ̃, S, µ, ν) with Q = {v, 1} as follows: νv = 1 and ν1 = 0,
µ0(a)ε,v = a and µ0(a)ε,1 = 1 for every a ∈ A. Moreover, for every p, q, r ∈ Q we let

µ2(⊕)pq,r =

{
1, if (pq, r) ∈ {(11, 1), (v1, v)}, (1v, v)};
0, otherwise

,

µ2(¯)pq,r =

{
1, if (pq, r) ∈ {(11, 1), (vv, v)};
0, otherwise

.

We show by structural induction that hµ(ξ)v = val(ξ) and hµ(ξ)1 = 1 for every ξ ∈ TΣ̃. Take
a ∈ Σ̃(0), we have hµ(a)v = µ0(a)ε,v = a = val(a) and hµ(a)1 = µ0(a)ε,1 = 1. Moreover,
hµ(⊕(ξ1, ξ2))v =

∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(⊕)pq,v

= hµ(ξ1)v · hµ(ξ2)1 · µ2(⊕)v1,v + hµ(ξ1)1 · hµ(ξ2)v · µ2(⊕)1v,v

= val(ξ1) · 1 · 1 + 1 · val(ξ2) · 1 = val(ξ1) + val(ξ2) = val(⊕(ξ1, ξ2)),

hµ(⊕(ξ1, ξ2))1 =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(⊕)pq,1

= hµ(ξ1)1 · hµ(ξ2)1 · µ2(⊕)11,1 = 1,
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hµ(¯(ξ1, ξ2))v =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(¯)pq,v

= hµ(ξ1)v · hµ(ξ2)v · µ2(¯)vv,v = val(ξ1) · val(ξ2) = val(¯(ξ1, ξ2)),

hµ(¯(ξ1, ξ2))1 =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(¯)pq,1

= hµ(ξ1)1 · hµ(ξ2)1 · µ2(¯)11,1 = 1 · 1 = 1.

Thus, (rA, ξ) = hµ(ξ)v · νv = val(ξ).

It is clear from the definition of the mapping val that for every s ∈ S′ there is some tree ξ ∈ TΣ̃

such that val(ξ) = s. (The elements of set A are the images of the elements of Σ̃(0), and for
every s1, s2 ∈ S′ we have s1 + s2 = val(⊕(ξ1, ξ2)) and s1 · s2 = val(¯(ξ1, ξ2)), where ξ1, ξ2 ∈ TΣ̃
and s1 = val(ξ1), s2 = val(ξ2).) Hence, for every s ∈ S′, there is ξ ∈ TΣ̃ such that (rA, ξ) = s.
Thus S′ ⊆ im(rA), and im(rA) is not finite.

Now take any finite Σ-algebra (Q, θ) and any mapping f : Q → S. Then the set im(f ◦ hQ)
is finite, because Q is finite. Thus, im(rA) 6= im(f ◦ hQ) for every finite Σ-algebra (Q, θ) and
mapping f : Q → S. This finishes the proof of 2. ⇒ 1.

Now let A be a bu-fta over Σ. Since B is locally finite, there is a finite Σ-algebra (Q, θ) and
a mapping f : Q → {0, 1} such that rA = f ◦ hQ. Denote f−1(1) by F . Then, clearly, F ⊆ Q
and L(A) = supp(rA) = r−1

A (1) = h−1
Q (f−1(1)) = h−1

Q (F ). ¤

The next lemma shows how to implement a finite Σ-algebra by a crisp and bu-deterministic
wta (cf. Lemma 3.10 of [9]).

Lemma 6.2. Let (Q, θ) be a finite Σ-algebra.

1. For every s-bimonoid S and mapping f : Q → S there is a crisp and bu-deterministic
wta A over Σ and S such that rA = f ◦ hQ. Thus, in particular, f ◦ hQ ∈ bud-Rec(Σ, S).

2. For every P ⊆ Q the language h−1
Q (P ) ⊆ TΣ is recognizable.

Proof. We construct the bu-deterministic wta A = (Q,Σ, S, µ, ν) by defining µk(σ)q1...qk,q = 1
if θ(σ)(q1, . . . , qk) = q, and µk(σ)q1...qk,q = 0 otherwise, and νq = f(q) for every σ ∈ Σ(k),
q1, . . . , qk, q ∈ Q. Then hµ(ξ) is a vector such that hµ(ξ)p ∈ {0, 1} for every p ∈ Q. It is easy
to check that for every ξ ∈ TΣ and q ∈ Q we have hµ(ξ)q = 1 if hQ(ξ) = q, and hµ(ξ)q = 0
otherwise. (We note that no distributivity law is needed for the proof of this statement.)

Thus, for every ξ ∈ TΣ we have

(rA, ξ) = hµ(ξ) · ν =
∑

q∈Q

hµ(ξ)q · f(q)

= hµ(ξ)hQ(ξ) · f(hQ(ξ)) = (f ◦ hQ)(ξ) = (f ◦ hQ, ξ).

Hence, f ◦ hQ ∈ bud-Rec(Σ, S).
Next we prove Statement 2. Let f = 1(B,P ). Then, by Statement 1, there is a crisp bu-
deterministic wta A = (Q,Σ,B, µ, ν) such that rA = f ◦ hQ, in particular, νq = f(q) for every
q ∈ Q. In fact, A is the bu-fta (Q,Σ, µ, P ) with P = {q ∈ Q | νq = 1} and L(A) = supp(rA) =
supp(f ◦ hQ) = supp(1(B,P ) ◦ hQ) = {ξ ∈ TΣ | 1(B,P )(hQ(ξ)) = 1} = {ξ ∈ TΣ | hQ(ξ) ∈ P} =
h−1

Q (P ). Thus, h−1
Q (P ) ⊆ TΣ is recognizable. ¤

The next two theorems generalize Theorems 3.15 and 3.17 of [9] from semirings to s-bimonoids.
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Theorem 6.3. Let S be locally finite, E ⊆ S, and r ∈ Rec(Σ, S). Then r−1(E) ∈ Rec(Σ).

Proof. By Lemma 6.1, there is a finite Σ-algebra (Q, θ) and mapping f : Q → S such that
r = f ◦ hQ. Then r−1(E) = (f ◦ hQ)−1(E) = h−1

Q (f−1(E)). Since f−1(E) ⊆ Q we obtain by
Lemma 6.2 that r−1(E) is recognizable. ¤

Theorem 6.4. Let S be locally finite, r ∈ Rec(Σ, S), and g : S → S. Then g(r) ∈ bud-
Rec(Σ, S). In particular, Rec(Σ, S) = bud-Rec(Σ, S).

Proof. By Lemma 6.1, there are a finite Σ-algebra Q and a mapping f : Q → S such that
r = f ◦ hQ. Then g(r) = g ◦ (f ◦ hQ) = (g ◦ f) ◦ hQ. Since g ◦ f : Q → S it follows, by Lemma
6.2, that g(r) ∈ bud-Rec(Σ, S).
Take for g to be the identity mapping. Then for every r ∈ Rec(Σ, S), we obtain r = g(r) ∈ bud-
Rec(Σ, S), i.e., Rec(Σ, S) ⊆ bud-Rec(Σ, S). Thus, Rec(Σ, S)bud-Rec(Σ, S). ¤

Since the Boolean semiring is locally finite, we obtain from Theorem 6.4 and Lemma 3.4 the well
known result that every recognizable tree language can be recogized by a total deterministic
bu-fta.

7 Recognizable step functions

Definition 7.1. A tree series r ∈ S〈〈TΣ〉〉 is a recognizable step function if there are n ≥ 0,
recognizable tree languages L1, . . . , Ln ⊆ TΣ, and a1, . . . , an ∈ S such that r =

∑n
i=1 ai ·1(S,Li).

It is easy to see that the characteristic tree series of L with respect to S is in bud-Rec(Σ, S)
provided that L is a recognizable tree language (cf. Lemma 3.3 of [6] and Lemma 3.11 of [9]).

Lemma 7.2. If L ⊆ TΣ is a recognizable tree language, then 1(S,L) ∈ bud-Rec(Σ, S).

Proof. Let L be a recognizable tree language. Then there is a bu-fta A = (Q,Σ, µ, F ) such
that L = L(A). Clearly, rA = 1(B,L). Recall that (Q,Σ, µ, F ) abbreviates (Q,Σ,B, µ, ν) with
ν = χF . Since the Boolean semiring is locally finite, we obtain by Lemma 6.1 that there is a
finite Σ-algebra (Q, θ) and a mapping f : Q → B such that rA = f ◦hQ. We define g : B→ S by
g(0) = 0 and g(1) = 1. Clearly, 1(S,L) = g◦1(B,L). Thus, 1(S,L) = g◦1(B,L) = g◦rA = (g◦f)◦hQ.
Then, by Lemma 6.2(1) we obtain that 1(S,L) ∈ bud-Rec(Σ, S). ¤

In the next theorem we will characterize recognizable step funtions (cf. Lemma 10 and Propo-
sition 11 of [5]).

Theorem 7.3. Let r ∈ S〈〈TΣ〉〉. Then the following three statements are equivalent:

1. r is a recognizable step function.

2. There exists a crisp and bu-deterministic wta A over Σ and S such that r = rA.

3. The set im(r) is finite and r=a is a recognizable tree language for every a ∈ S.
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In particular, if r is a recognizable step function, then r is bu-deterministically recognizable.

Proof. 1. ⇒ 2.: Let n ∈ N, L1, . . . , Ln ⊆ TΣ, and a1, . . . , an ∈ S such that L1, . . . , Ln are
recognizable and r =

∑n
i=1 ai · 1(S,Li). For every i ∈ {1, . . . , n}, let Ai = (Qi, Σ, µi, Fi) be

a total deterministic bu-fta over Σ such that L(Ai) = Li. Let Q = Q1 × · · · × Qn, then
every q ∈ Q is of the form q = (q1, . . . , qn), where qi ∈ Qi for every i ∈ {1, . . . , n}. We
define the wta A = (Q,Σ, S, µ, ν) as follows: for every k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q:

µk(σ)q1...qk,q =

{
1, if µk(σ)qi

1...qi
k,qi = 1 for every i ∈ {1, . . . , n};

0, otherwise
,

νq =
∑

i∈{1,...,n}
qi∈Fi

ai.

Clearly, A is total, bu-deterministic, and crisp.

One can easily check by structural induction that for every q ∈ Q and ξ ∈ TΣ the following
holds: hµ(ξ)q = 1 iff hµi(ξ)qi = 1 for every i ∈ {1, . . . , n}.
Now, let ξ ∈ TΣ. By Observation 3.3(4) there is a unique state, say qξ ∈ Q such that hµ(ξ)qξ

=
1. Then ξ ∈ Li iff qξ ∈ Fi for every i ∈ {1, . . . , n}. Let Iξ = {i ∈ {1, . . . , n} | ξ ∈ Li}. Then:
(r, ξ) =

∑

i∈{1,...,n}
ai ·

(
1(S,Li), ξ

)
=

∑

i∈Iξ

ai =
∑

i∈{1,...,n}
qi
ξ∈Fi

ai

= νqξ
= hµ(ξ)qξ

· νqξ
= (rA, ξ).

Thus r can be recognized by a total, bu-deterministic, and crisp wta.

2. ⇒ 3.: Let A = (Q,Σ, S, µ, ν) be a crisp and bu-deterministic wta over Σ and S such that
rA = r. It follows, by Observation 3.3(3), that im(r) is finite. Let a ∈ im(r), we show that r=a

is recognizable. Define the deterministic bu-fta Aa = (Q,Σ, µ, Fa) by Fa = {q ∈ Q | νq = a}.
Then r=a is recognizable, because r=a = L(Aa).

3. ⇒ 1.: Since r =
∑

a∈im(r)

a · 1(S,r=a), it follows by assumption that r is recognizable step

function. ¤

The next lemma generalizes Theorem 13 of [5] from strings to trees.

Lemma 7.4. Let S be locally finite, and r recognizable tree series. Then r is recognizable
step function.

Proof. Let A = (Q,Σ, S, µ, ν) be a wta such that r = rA. Let S′ be the smallest sub-s-bimonoid
containing wts(A). Since S is locally finite, S′ is finite. Then im(r) = im(rA) ⊆ S′ is finite.
By Theorem 6.3, for every a ∈ S, the tree language r=a = r−1(a) is recognizable. Hence, by
Theorem 7.3, r is recognizable step function. ¤

Acknowledgment: The author would like to thank Heiko Vogler for helpful discussions on
the subject.
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