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The key novelty of our approach is the asymmetry introduced by left-closedness, which leads to
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1. Introduction

Program transformation is a key technology in software engineering. It has applications in program
synthesis, compilation, optimization, refactoring, software renovation, and reverse engineering, and fig-
ures significantly in current trends such as intentional programming, aspect-oriented programming, and,
more generally, generative programming [8]. Automatic program transformation enables programmers
to work at a higher level of abstraction than would otherwise be possible, thus giving rise to increases
in programmer productivity. It can also lead to increases in reliability, maintainability, reusability, and
efficiency of software. For a survey of the broad area of program transformation and state-of-the-art
contributions describing its impact on (applied) software engineering see, e.g., [1] and [4].

Program transformation is, however, only useful if there is a clear relationship between the com-
putational meanings of programs to be transformed and the programs obtained by transforming them.
Programmers need to be able to reason about their programs with confidence that automatically trans-
forming them will not change their semantics in unexpected ways. One approach to formalizing the kind
of semantic statements which ensure that this is possible is based on free theorems.

Free theorems-based transformations

Ever since they were first popularized by Wadler [36], free theorems have been used to derive program
equivalences involving parametrically polymorphic functions in (nonstrict functional) programming lan-
guages based on the (nonstrict) Girard-Reynolds lambda calculus λ∀ [11, 27]. A free theorem is con-
sidered free because it can be derived solely from the type of a function, with no knowledge whatsoever
of the function’s actual definition. In essence, a free theorem records a constraint arising from the fact
that a parametrically polymorphic function must behave uniformly, i.e., must use the same algorithm to
compute its result regardless of the concrete type at which it is instantiated.

Particularly effective use of free theorems has been made for justifying program transformations
based on rank-2 polymorphic [18] combinators, i.e., on functions taking polymorphic functions as argu-
ments. Perhaps the best-known example of such a transformation is short cut fusion [10]. It uses a single
local replacement rule to eliminate intermediate lists between producers and consumers of special forms,
and thus to mitigate the tension between modularity and efficiency. Other performance-improving trans-
formations are based on similar rules for fusing consumers of algebraic data structures other than lists
with producers parametrized over substitution values [12], rules which are category-theoretic duals of
these [32, 33], and rules for eliminating data-manipulating operations other than data constructors [35].

Free theorems can fail in the presence of strict evaluation

Free theorems hold unconditionally for functions in λ∀. But for calculi that more closely resemble
modern functional languages the story is not so simple. It is well known [17, 36], for example, that adding
a fixpoint primitive to a calculus weakens its free theorems by imposing admissibility — i.e., strictness
and continuity — conditions on (some of the) functions appearing in them. Algebraic datatypes and
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pattern matching also impose strictness constraints. Moreover, to help programmers control the time and
space behavior of programs, nonstrict languages often provide primitives for introducing strict evaluation
into computations. These can compromise free theorems even further.

For example, Haskell is a nonstrict language, so that function arguments are evaluated only when
required. But evaluation can be explicitly forced using the polymorphic strict evaluation primitive seq ,
which satisfies the following specification:

seq ⊥ b = ⊥

seq a b = b , if a 6= ⊥

Here ⊥ is the undefined value corresponding to a nonterminating computation or a runtime error, such as
might be obtained as the result of a failed pattern match. The operational behavior of seq is to evaluate
its first argument to weak head normal form before returning its second argument. A simple example
using seq to improve performance is the following accumulating sum function:

accsum :: [Int] → Int → Int

accsum [] y = y

accsum (x : xs) y = seq acc (accsum xs acc) where acc = x + y

where seq makes sure that the accumulating parameter is computed immediately in every recursive step,
rather than unnecessarily building up and maintaining a complex closure representing the overall sum,
which would then be computed only in the end. See [34] for further examples of programs which use
seq . Other means of explicitly introducing strictness in Haskell programs — e.g., strict datatypes and the
strict application function $! — are all definable in terms of seq .

Haskell 98 gives seq the type a -> b -> b (the Haskell equivalent of ∀α β. α → β → β), sug-
gesting that it is a parametrically polymorphic function. By contrast, earlier versions of Haskell give
seq the qualified type Eval a => a -> b -> b, which reflects the fact that seq is indeed polymor-
phic, although not necessarily parametrically so. Although the earlier typing is more accurate than the
Haskell 98 typing, the class context was dropped from Haskell 98 because it was ultimately considered
too burdensome for the programmer: seq is typically used to tune the performance of programs after
they are written, and it was argued that this should not affect their types. The Haskell 98 report [21]
is, however, careful to warn that the provision of fully polymorphic seq has important semantic conse-
quences. The following example demonstrates that strict evaluation can break even simple free theorems
in dramatic and unexpected ways. The effect on the more complex free theorems underlying short cut
fusion and related transformations discussed in Section 8 is similar.

A free theorem given in Figure 1 of [36] states that for any function

filter :: ∀α. (α → Bool) → [α] → [α]

and all appropriately typed p, h, and l the following law holds:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

As usual, map h applies the function h to every element of a list, and ◦ is function composition. For the
definition of filter from Haskell’s standard prelude, which specifies that filter p filters in all elements of
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a list which satisfy the predicate p, law (1) thus formalizes the observation that mapping h over a list and
then filtering the resulting list by p gives the same result as mapping h over the list obtained by filtering
the original one by p ◦ h. Haskell definitions of the functions used in law (1), as well as those of other
functions and types used in this paper, appear in Figure 1 below.

data Bool = False | True

data Maybe α = Nothing | Just α

map :: ∀α β. (α → β) → [α] → [β]

map h = f where f [] = []

f (x : xs) = h x : f xs

filter :: ∀α. (α → Bool) → [α] → [α]

filter p = f where f [] = []

f (x : xs) = case p x of

True → x : f xs

False → f xs

(◦) :: ∀α β γ. (β → γ) → (α → β) → α → γ

f1 ◦ f2 = (λx → f1 (f2 x))

fix :: ∀α. (α → α) → α

fix g = g (fix g)

id :: ∀α. α → α

id x = x

(++) :: ∀α. [α] → [α] → [α]

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

Figure 1. Some Haskell definitions.

Because they embody properties that all terms of a given polymorphic type must satisfy, free theo-
rems are quite general. But this generality is also their potential downfall in the presence of seq . If, for
example, we implement a “sequentialized” function with filter ’s type in the fragment of Haskell corre-
sponding to λ∀ with (nonstrict) algebraic datatypes, a fixpoint operator fix (defined as in Figure 1), and
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seq by

filter p = p ‘seq ‘ (fix g)

where g f ys = case ys of

[] → []

x : xs → x ‘seq ‘ case p x of

True → (xs ‘seq ‘ x) : f xs

False → f xs

then the following four instantiations break law (1), each for a different reason to be discussed below:

p = ⊥ h = id l = [] (<)

p = (λx → True) h = ⊥ l = [0] (<)

p = id h = (λx → True) l = [⊥] (=)

p = id h = (λx → True) l = 0 : ⊥ (<)

In each case, law (1) fails because one of its two sides is less defined than the other. The direction in
which the equation becomes a strict inequation with respect to the semantic approximation order v is
indicated for each instantiation. A file containing all instantiations used as counterexamples in this paper,
as well as short scripts of their execution in the Haskell interpreter Hugs, is available online [2].

Although one might suspect that the use of fixpoint recursion or pattern matching is responsible for
the breakdown of law (1) for the sequentialized filter function above, careful analysis shows that it is the
use of seq which is actually to blame. Launchbury and Paterson [17] introduced a type system that makes
explicit which types contain ⊥ — the so-called pointed types — and therefore support the definition
of values by recursion. This type system allows fine control over where admissibility conditions are
required in free theorems for functions involving fixpoints and pattern matching. For example, the case-
expressions in the sequentialized definition of filter — which produce ⊥ on selectors that are themselves
undefined — have the return type [α], which the type system of Launchbury and Paterson recognizes is
pointed without any condition on α. Similarly, the use of fix rather than a directly recursive definition
makes it clear that the recursion takes place at type [α] → [α], which Launchbury and Paterson’s type
system again recognizes is pointed without any condition on α since [α] is. These observations can be
used to show that law (1) holds without any conditions on p, h, or l, provided all invocations of seq are
dropped — in which case we get precisely the filter function from Figure 1. (By contrast, if recursion
were performed at a type whose support for it relied on pointedness of α, then even in the absence of
seq we could conclude filter ’s free theorem only for strict h. A similar remark holds for uses of pattern
matching with return types whose pointedness relied on pointedness of α.) This shows that it is not the
use of recursion or pattern matching in our sequentialized definition of filter that is responsible for the
breakdown of law (1). The evil really does reside in seq .

It is also worth noting that different ways of using seq are responsible for the failure of law (1) for
the four instantiations given above. For the first instantiation, the use of seq to observe termination at
function type makes the left-hand side ⊥ since p = ⊥, while there is no such impact on the right-hand
side because p ◦ h = ⊥ ◦ id = (λx → ⊥) 6= ⊥. For the second instantiation, the use of seq to observe
termination at the type over which filter is polymorphic finds h 0 = ⊥ 0 = ⊥ in the left-hand side (since
the inner map applies h to every list element beforehand), while in the right-hand side the corresponding
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application is on the list element 0 6= ⊥ itself (to which h is applied only afterwards by the outer map ,
returning an undefined list element but not a completely undefined result list). So here the problem lies
with h returning ⊥ for a non-⊥ argument, which makes an essential difference for seq . Conversely, an
h returning a non-⊥ value for the argument ⊥ lets the law (1) fail the other way around for the third
instantiation. Finally, for the fourth instantiation, the use of seq on an undefined list tail as first argument
introduces a ⊥ of the type over which filter is polymorphic. So although our sequentialized definition
of filter does not use recursion or pattern matching in a way that requires α to be pointed, the associated
strictness condition on h creeps in through the back door via seq here.

Recovering free theorems by asymmetry

The failure of free theorems in the presence of seq has been noted before (see, e.g., Section 6.2 of [21],
Section 5.3 of [23], Appendix B of [35], and discussions on the Haskell mailing list [3]), but the extent
to which it compromises Haskell’s parametricity properties has not been studied thoroughly. A folk
theorem — expressed, e.g., in [23] — has for nearly a decade had it that a free theorem remains valid in
the presence of seq if all of the functions appearing in it (where one is free to make a choice) are strict
and total. This implies, for example, that law (1) should hold for every strict and total h. But the first
instantiation of (1) above shows that this claim does not hold.

This paper does more, however, than just demonstrate that the folkloric approach to free theorems
in Haskell with seq is incorrect. It also provides valid criteria for determining when free theorems
hold in the presence of seq and applies them to study the impact of seq on the correctness of program
transformations based on these theorems. To recover free theorems when seq is present, an asymmetry is
introduced into the standard symmetric approach to deriving them. This allows the derivation, for each
standard equational free theorem which holds in the absence of seq , of two related “inequational” free
theorems that hold even when seq is present. For example, this asymmetric approach is used in Section 7
to prove that, for every function of filter ’s type and all appropriately typed p, h, and l, the following
inequational versions of law (1) hold even in the presence of seq .

Theorem 1.1. For every function

filter :: ∀α. (α → Bool) → [α] → [α]

and appropriately typed p, h, and l the following hold:

if h is strict, then:

filter p (map h l) v map h (filter (p ◦ h) l) (2)

if p 6= ⊥ and h is strict and total, then:

filter p (map h l) w map h (filter (p ◦ h) l) (3)

If p 6= ⊥ and h is strict and total, then laws (2) and (3) together guarantee that law (1) holds even when
seq is present. That is, even in the presence of seq :
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if p 6= ⊥ and h is strict and total, then:

filter p (map h l) = map h (filter (p ◦ h) l) (4)

Inequational free theorems like those for filter can be derived for other functions as well. Such
theorems can be used to prove, for example, that the (unrestricted) foldr /build rule used in short cut
fusion is partially correct in the presence of seq , which is a genuinely new result. They can also be used
to derive conditions under which the converse semantic inequality — and, therefore, total correctness of
the foldr /build rule — is guaranteed. (See Section 8.2 for details.) While partial correctness results may
be primarily of theoretical interest, the other direction in which the equational free theorem underlying
a program transformation can turn into an inequation is interesting from both theoretical and practical
points of view. Indeed, it is customary to require program transformations to be semantics-preserving,
but in applications it is often enough to know that programs obtained by applying transformations are
semantically approximated by those from which they are derived, in the sense that the former are always
at least as defined as the latter. The use of transformations potentially improving the termination behavior
of programs in an optimizing compiler could easily be controlled via a command line switch. They
would not necessarily be employed during program development and testing so as not to hide algorithmic
mistakes from detection, but could nevertheless fire during final “production runs”.

The move from the equational to the inequational setting might appear at first glance to be an un-
desirable weakening of parametricity results, but it actually adds important strength: we obtain more
free theorems than would be available through a less radical revision of the folkloric approach, and in-
equational free theorems — like (2) and (3) — can often be combined to provide criteria — such as the
preconditions of (4) — under which even their equational versions hold in the presence of seq . That
there is no way to discard the inequational approach altogether without losing information is witnessed
by the analysis of the law for vanish++ from [35] carried out in Section 8.3. That analysis shows that it is
impossible to preserve an equational form of the law for vanish++ in the presence of seq while also pre-
serving its nature as a free theorem, i.e., while maintaining its dependence on just the polymorphic type
of the argument to vanish++. Thus, while the asymmetric approach can still derive a useful inequational
law, any approach insisting that all laws be equational would be doomed to complete failure.

This paper

This paper differs substantially from the conference version on which it is based [15]. Several proofs
which were omitted from the conference version due to space limitations have been included, and
laws (13) and (16) have been generalized slightly. Moreover, the specific application of free theorems to
program transformations is now discussed in detail. Examples are used to show that none of the addi-
tional preconditions generated in derivations of results that hold in the presence of seq can be dropped,
and the severity of these preconditions from a practical, program transformation-oriented, point of view
is considered. Finally, the potential impact of our results on the largely unexplored topic of free theorems
in purely strict languages is discussed.

The remainder of this paper is organized as follows. Section 2 briefly considers the functional lan-
guage we use, and Section 3 introduces auxiliary notions and definitions. Section 4 recalls how free
theorems are obtained in the absence of seq , while Sections 5 and 6 motivate and develop our approach
to parametricity — and thus free theorems — in its presence. Section 7 shows how this approach can
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be used to derive the inequational free theorems (2) and (3). The focus of the paper is Section 8, which
considers in depth how short cut fusion and related free theorems-based program transformations can
be compromised by seq , and shows how our approach to free theorems provides a formal basis for such
transformations when seq is present. The results obtained are evaluated from a pragmatic point of view.
Section 9 concludes and proposes directions for future research.

2. Functional language

We use a subset of the pure nonstrict functional programming language Haskell [21] that corresponds to
λ∀ with fixpoints, algebraic datatypes, and seq . Definitions of Haskell types and functions that are used
throughout the paper are given in Figure 1. As shown there, parametric polymorphism is made explicit
with a ∀-type constructor quantifying over types. Type instantiation, on the other hand, is most often left
implicit. When instantiation of a parametrically polymorphic term t to a closed type (one without free
variables) τ is made explicit, it is denoted by tτ . The kind of ad hoc polymorphism provided by Haskell
type classes [37] is not considered here, but Section 3.4 of [36] briefly discusses how it can be taken into
account when deriving free theorems.

This paper does not aim to provide a model for full Haskell. This goal would be out of reach because
there does not yet exist a formal semantics for Haskell, independent of any concrete implementation,
against which to validate a model. Nevertheless, it is common practice to use a denotational style [29]
for reasoning about Haskell programs. Indeed, although it is rarely explicitly acknowledged, most papers
containing results about Haskell programs are based on a “naive” model such as might be obtained by
extending the denotational semantics of [36]. In investigations of free theorems-based transformations
for Haskell, it is further assumed — without proof and, again, typically without explicit mention —
that this naive model is parametric. This paper follows in the same tradition: it investigates, under the
widely held assumption that a parametric extension of the model in [36] exists for Haskell without seq ,
exactly how much of the power of free theorems can be retained when seq is thrown in. The assumption
that a parametric model for Haskell exists is not unreasonable. It is justified in part by Pitts’ recent
operational semantics-based construction of a parametric model for PolyFix, a nonstrict polymorphic
lambda calculus with fixpoints and “lazy” algebraic datatypes [25]. The subset of Haskell to which we
restrict attention in this paper corresponds to PolyFix with seq ; formalizing the intuitions developed here
by extending Pitts’ construction for PolyFix to incorporate seq is ongoing work.

The naive semantics for Haskell requires the semantic approximation relation v — interpreted as
“less than or equally as defined as” — between values of the same type, and the value ⊥ — interpreted
as “undefined” — at every type. Types are taken to be pointed complete partial orders, i.e., sets equipped
with the partial order v, the least element ⊥, and limits of all chains. As in Haskell, algebraic datatypes
and function spaces are lifted; in particular, λ-abstractions — and, therefore, partial applications of
functions — are always distinct from ⊥. Programs are taken to be monotonic and continuous functions
between pointed complete partial orders. The notions of monotonicity and continuity are given in the
next section, together with other preliminaries.
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3. Preliminaries

For closed types τ1 and τ2 the set of all binary relations between their value sets is denoted by Rel(τ1, τ2).
Functions are special cases of relations, so that a function h :: τ1 → τ2 is interpreted as its graph
{(x, y) | h x = y} ∈ Rel(τ1, τ2).

For every closed type τ the relations vτ ,<τ∈ Rel(τ, τ) and the value ⊥τ :: τ are the semantic
approximation (partial) order, the strict order induced by it, and the least element, respectively, for the
interpretation of τ . The subscripts will often be omitted. Nevertheless, the value ⊥ :: τ at a particular
closed type should not be confused with the polymorphic value ⊥ :: ∀α. α.

Let τ1 be a type with at most one free variable, say α. For every closed type τ , τ1[τ/α] denotes the
result of substituting τ for all free occurrences of α in τ1. For every value u :: ∀α. τ1 we have:

(∀τ. uτ = ⊥τ1[τ/α]) ⇒ u = ⊥∀α. τ1 (5)

This observation will be used in Section 6 below.
To reduce the need for parentheses when writing down logical formulas, we use the conventions that

the bodies of ∀- and ∃-quantifications extend as far as possible to the right and that conjunction (∧) takes
precedence over implication (⇒).

A relation is strict if it contains the pair (⊥,⊥). A relation is total if, for every pair (x, y) contained
in it, y = ⊥ implies x = ⊥. A relation is bottom-reflecting if, for every pair (x, y) contained in it, y = ⊥
iff x = ⊥. A relation is continuous if the limits of two chains of pairwise related elements are again
related. A relation is admissible if it is strict and continuous. A function h is monotonic if x v y implies
h x v h y. These properties of relations are used in deriving our new parametricity results.

The composition of two relations R ∈ Rel(τ1, τ2) and S ∈ Rel(τ2, τ3) is defined as:

R ;S = {(x, z) | ∃y. (x, y) ∈ R ∧ (y, z) ∈ S} ∈ Rel(τ1, τ3).

A relation R is left-closed if v ;R = R. The inverse of a relation R ∈ Rel(τ1, τ2) is defined as:

R−1 = {(y, x) | (x, y) ∈ R} ∈ Rel(τ2, τ1).

We denote v−1 and <
−1 by w and =, respectively.

The lifting of a relation R ∈ Rel(τ1, τ2) to Maybe types, liftMaybe(R) ∈ Rel(Maybe τ1,Maybe τ2),
is defined as:

{(⊥,⊥), (Nothing,Nothing)} ∪ {(Just x, Just y) | (x, y) ∈ R}.

If R is continuous, then so is liftMaybe(R). If R is left-closed in addition, then v ; liftMaybe(R) is also
continuous (cf. Appendix A.1).

The lifting of R ∈ Rel(τ1, τ2) and S ∈ Rel(τ ′
1, τ

′
2) to pairs, lift (,)(R,S) ∈ Rel((τ1, τ

′
1), (τ2, τ

′
2)),

is defined as:
{(⊥,⊥)} ∪ {((x, x′), (y, y′)) | (x, y) ∈ R ∧ (x′, y′) ∈ S}.

If R and S are continuous, then so is lift (,)(R,S). If R and S are left-closed in addition, then v
; lift (,)(R,S) is also continuous (cf. Appendix A.2).

The lifting of a relation R ∈ Rel(τ1, τ2) to lists, lift [](R) ∈ Rel([τ1], [τ2]), is defined as the largest
S ∈ Rel([τ1], [τ2]) such that:

S = {(⊥,⊥), ([], [])} ∪ {(x : xs, y : ys) | (x, y) ∈ R ∧ (xs, ys) ∈ S}.
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We take lift [](R) to be the largest, rather than the smallest, such relation in order to account for infinite
lists. According to this definition, two lists are related by lift [](R) if (i) either both are finite or partial
lists of same length, or both are infinite lists, and (ii) elements at corresponding positions are related
by R. If R is continuous, then so is lift [](R). If R is left-closed in addition, then v ; lift [](R) is also
continuous (cf. Appendix A.3). Note that in the special case that R is the graph of a Haskell function h,
the relation lift [](R) coincides with the graph of the function map h as defined in Figure 1.

The following results are immediate from the definitions of the preceding paragraphs. Since v is
reflexive, for all appropriately typed functions h and lists l:

(map h l, l) ∈ v ; lift [](v ;h−1) (6)

(l,map h l) ∈ v ; lift [](h ;v) (7)

Moreover, for all functions h and all appropriately typed lists l1 and l2 we can conclude from transitivity
of v and the obvious inclusion of lift [](v ;h−1) in v ; (map h)−1 that:

(l1, l2) ∈ v ; lift [](v ;h−1) ⇒ l1 v map h l2 (8)

If h is monotonic, then from monotonicity of map h and the inclusion of lift [](h ;v) in (map h) ;v
we similarly obtain:

(l2, l1) ∈ v ; lift [](h ;v) ⇒ map h l2 v l1 (9)

These observations are used to derive the inequational free theorems (2) and (3) in Section 7.

4. Free theorems in the absence of seq

The key to deriving free theorems from types is to interpret types as relations (as opposed to sets). Each
type variable is thus interpreted as a relation, and associated with every n-ary type constructor is a map
which produces a new relational interpretation from n given ones. Such a map is called a relational
action. It is standard to interpret the base types in a language as identity relations, and to obtain the
interpretations for non-base types via relational actions which propagate relations up the type hierarchy
in a straightforward “extensional” manner. Using relational actions to propagate the relations interpreting
type variables and constants up the type hierarchy builds a (type-indexed) logical relation [9, 26, 31], for
which a parametricity theorem can be proved. A parametricity theorem asserts that every closed term
satisfies the parametricity property derived from its type, i.e., is related to itself by the interpretation of
its type.

The standard logical relation for λ∀ forms the theoretical basis of the usual equational free theorems.
Its relational actions for its type constructors are given as follows. The relational action corresponding
to the function type constructor maps relations R ∈ Rel(τ1, τ2) and S ∈ Rel(τ ′

1, τ
′
2) to the following

relation in Rel(τ1 → τ ′
1, τ2 → τ ′

2):

R → S = {(f, g) | ∀(x, y) ∈ R. (f x, g y) ∈ S}.

In other words, two functions are related if they map related arguments to related results.
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To specify the standard relational action for the ∀-type constructor, let τ1 and τ2 be types with at most
one free variable, say α, and let F be a function that, for all closed types τ ′

1 and τ ′
2 and every relation

R ∈ Rel(τ ′
1, τ

′
2), gives a relation F(R) ∈ Rel(τ1[τ

′
1/α], τ2[τ

′
2/α]). The relational action maps F to the

following relation in Rel(∀α. τ1,∀α. τ2):

∀R ∈ Rel. F(R) = {(u, v) | ∀τ ′
1, τ

′
2,R ∈ Rel(τ ′

1, τ
′
2). (uτ ′

1
, vτ ′

2
) ∈ F(R)}.

According to this definition, two polymorphic values are related if all their instances respect the operation
of F on relations between the types at which instantiation occurs.

The relational actions introduced above can be used to define a logical relation by induction on
the structure of types. Since we will need to keep track of the interpretations of quantified types, we
use relation environments to map type variables to relations between closed types. The empty relation
environment is denoted by ∅ and the update, or extension, of a relation environment η by mapping α to
R is denoted by η[R/α].

Let τ be a type and η be a relation environment such that η(α) ∈ Rel(τ1α, τ2α) for each free variable
α of τ . We write τ←−η and τ−→η for the closed types obtained by replacing every free occurrence of each
variable α in τ with τ1α and τ2α, respectively. A relation ∆τ,η ∈ Rel(τ←−η , τ−→η ) is defined as in Figure 2.

∆α,η = η(α)

∆τ→τ ′,η = ∆τ,η → ∆τ ′,η

∆∀α. τ,η = ∀R ∈ Rel. ∆τ,η[R/α]

Figure 2. Definition of the standard logical relation.

If τ is a closed type, we obtain a relation ∆τ,∅ ∈ Rel(τ, τ). The abstraction or parametricity theorem
for ∆ [28, 36], from which the standard free theorems are derived, then states that:

if τ is a closed type and t :: τ is a closed term, then:

(t, t) ∈ ∆τ,∅ (10)

This is also called the fundamental property of the logical relation. For each closed term t of closed
type τ we call the assertion that (t, t) ∈ ∆τ,∅ the parametricity property for t.

Proofs of parametricity theorems proceed by induction on the syntactic structure of terms, driven by
type assignment rules, with the constants occurring in a language forming the base cases. As outlined so
far, the standard logical relation is only defined, and its associated parametricity theorem only holds, for
the pure polymorphic lambda calculus. To more closely approximate modern functional languages, we
must also take general recursive definitions and suitable datatypes into account. Of course, these features
should be added without breaking the fundamental property.

4.1. Adding fixpoints and datatypes

Because fixpoints are interpreted as limits of chains based on ⊥, the provision of general fixpoint recur-
sion — as is captured by the function fix from Figure 1 — requires all relations used in the definition
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of the logical relation to be admissible. In particular, in the inductive case for the ∀-type constructor
the quantification of R must be over admissible relations only. The essential observations are then that
admissibility is preserved by the given relational actions, and that it ensures the adherence of fix to the
parametricity property derived from its type.

When adding base types such as Int, or algebraic datatypes such as Bool, Maybe, pairs, and standard
Haskell lists, we must define for each new type constructor a corresponding relational action. The usual
approach is to interpret nonparametrized datatypes as identity relations and parametrized datatypes by
structural liftings of relations. Illustrating examples are given in Figure 3. Further, we must verify
that each new constant used to construct or handle values of the new types satisfies the parametricity
property derived from its type. For example, we must check that (i, i) ∈ ∆Int,∅ for every integer literal
i, (+,+) ∈ ∆Int→Int→Int,∅, ([], []) ∈ ∆∀α. [α],∅, and (Just, Just) ∈ ∆∀α. α→Maybe α,∅ hold. This is indeed
the case, and similarly for other constants.

∆Int,η = id Int

∆Bool,η = idBool

∆Maybe τ,η = liftMaybe(∆τ,η)

∆(τ,τ ′),η = lift (,)(∆τ,η,∆τ ′,η)

∆[τ ],η = lift [](∆τ,η)

Figure 3. Standard relational interpretations for datatypes.

For each algebraic datatype we need a means of destructing its values via pattern matching. One way
to do this is to introduce, as a new term-forming operation, a case-construct that can be used at every
algebraic datatype; other uses of pattern matching in Haskell programs — e.g., on left-hand sides of
function equations — can all be translated into case-expressions. Proving that the fundamental property
of the logical relation remains intact amounts to checking that the relational interpretation of every return
type of a case-expression is strict. That strictness is all that is required can be argued as follows.

By analogy with Reynolds’ abstraction theorem we must show that two denotations of a case-
expression in related environments are related by the interpretation of its type whenever it is constructed
from subterms whose denotations are similarly related. To this end, we first note that the relational in-
terpretation of an algebraic datatype respects its structure. Thus, if two denotations of the selector of a
case-expression are related by the interpretation of the selector’s (algebraic) datatype, then the structural
nature of this interpretation ensures that pattern matching against either denotation will select the same
branch, if any, of the case-expression. There are two cases to consider. If pattern matching against one
— and hence both — selector denotations succeeds, then, by hypothesis, the resulting denotations of the
case-expression are values that are related by the interpretation of its return type. If, on the other hand,
pattern matching fails on one of the selector denotations (either because the value is ⊥ or because the
pattern match is not exhaustive), then it also fails on the other one. What we need to establish then is that
the interpretation determined by the logical relation for the return type of the case-expression relates the
two resulting ⊥s. It clearly does if it is known to be strict. This strictness requirement is also reflected in
the pointedness constraint on the result type of the prototypical case-constant given in Section 3 of [17].

Like the relational actions for the function and ∀-type constructors, the relational actions for alge-
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braic datatypes as used in Figure 3 preserve admissibility. In particular, all relational actions preserve
strictness, as is required for case-expressions to satisfy their parametricity properties. The restricted
quantification over admissible relations in the ∀-case thus ensures that the resulting free theorems are
valid for programs potentially using both general recursion and the richer type structure. In the next
section we turn to the question of what happens when seq is added to the language as well.

5. Free theorems fail in the presence of seq

When adding the constant seq to the language, we must ensure that it satisfies the parametricity property
derived from its type. This parametricity property is obtained as follows:

(seq , seq) ∈ ∆∀α β.α→β→β,∅

⇔ (seq , seq) ∈ (∀R∈Rel.∆∀β.α→β→β,[R/α])

⇔ (seq , seq) ∈ (∀R∈Rel.∀S∈Rel.∆α→β→β,[R/α,S/β])

⇔ (seq , seq) ∈ (∀R∈Rel.∀S∈Rel.R → (S → S))

⇔ ∀R∈Rel(τ1, τ2). (seqτ1 , seq τ2) ∈ (∀S∈Rel.R → (S → S))

⇔ ∀R∈Rel(τ1, τ2),S ∈Rel(τ ′
1, τ

′
2). (seq τ1 τ ′

1

, seqτ2 τ ′
2

) ∈ R → (S → S)

⇔ ∀R∈Rel(τ1, τ2),S ∈Rel(τ ′
1, τ

′
2), (a1, a2)∈R. (seqτ1 τ ′

1

a1, seq τ2 τ ′
2

a2) ∈ S → S

⇔ ∀R∈Rel(τ1, τ2),S ∈Rel(τ ′
1, τ

′
2), (a1, a2)∈R, (b1, b2)∈S. (seqτ1 τ ′

1

a1 b1, seq τ2 τ ′
2

a2 b2) ∈ S.

But even if we restrict ourselves to admissible relations, the resulting statement is not true. As a coun-
terexample, consider the following instantiation:

R = ⊥Bool→Bool ∈ Rel(Bool,Bool)

S = idBool ∈ Rel(Bool,Bool)

(a1, a2) = (False,⊥Bool) ∈ R

(b1, b2) = (False,False) ∈ S.

Although R and S are admissible, (seq False False, seq ⊥Bool False) ∈ S does not hold.
Similar situations arise for each instantiation of law (1) given in Section 1. In the first instantiation,

for example, we have that p = ⊥ :: τ → Bool and h = id :: τ → τ for some closed type τ .
Since ⊥ (id x) = ⊥ x for every x :: τ , the sequentialized filter function’s local definition of fix g for
filter (p ◦ h) is the same as the one for filter p. Thus, if

R = ∆α→Bool,[h/α] = {(p1, p2) | ∀x :: τ. p1 x = p2 x} ∈ Rel(τ → Bool, τ → Bool)

S = ∆[α]→[α],[h/α] = {(f1, f2) | ∀l :: [τ ]. f1 l = f2 l} ∈ Rel([τ ] → [τ ], [τ ] → [τ ]) ,

then R and S are both admissible relations and (p ◦ h, p) ∈ R and (fix g,fix g) ∈ S . Nevertheless,
((p ◦ h) ‘seq ‘ (fix g), p ‘seq ‘ (fix g)) ∈ S — i.e., (filter (p ◦ h),filter p) ∈ S — does not hold. The
crucial observation is that R is not the identity relation on type τ → Bool. Indeed, it contains the pair
((λx → ⊥),⊥), whose two components are different in the presence of seq .

Since seq violates the parametricity property dictated by its type, other terms that are built using
seq might do so as well. In fact, this is precisely what causes law (1) to fail for the sequentialized
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filter function from the introduction. The problem lies with relations, such as the instantiations of
R in this section, that relate ⊥ and non-⊥ values. It has therefore been proposed (e.g., in [17]) that
quantified relations should be restricted from admissible ones to bottom-reflecting admissible ones. But
the first counterexample in the introduction shows that this is not enough to recover valid free theorems
in the presence of seq . (The requirement that relations be admissible and bottom-reflecting becomes a
strictness and totality requirement on Haskell functions which instantiate those relations.) The catch is
that we must not only impose appropriate restrictions on the quantified relations, but must also ensure
that these restrictions are preserved by all relational actions. This is crucial because during the proof of
the parametricity theorem, in the inductive case for type instantiation, a universally quantified relation
that is subject to the imposed restrictions is instantiated with the relational interpretation of an arbitrary
type to establish the induction conclusion. If that interpretation is not guaranteed to fulfill the necessary
restrictions, then this use of the induction hypothesis is impossible, and the entire proof breaks. The proof
of the parametricity theorem fails in precisely this way if one subjects quantified relations to bottom-
reflectingness but sticks to the standard relational action for the function type constructor. To see why,
note that for every relation R and every strict relation S , the relation R → S contains the pair (⊥, (λx →
⊥)) and consequently — since (λx → ⊥) is different from ⊥ in the presence of seq — is not bottom-
reflecting as would be required.

In the next section we solve this problem by modifying the action of → on relations to account for
the difference between an undefined function and a defined function that always returns an undefined
value. This is done by explicitly adding a condition on the definedness of related functions similar to that
in the lazy logical relation (in the absence of polymorphism and algebraic datatypes) of [7]. But rather
than requiring bottom-reflectingness, we add totality and left-closedness to the admissibility restriction
on relational interpretations. Thus, instead of just recovering the usual equational free theorems under
quite severe preconditions, we are able to derive inequational versions of them under weaker ones.

6. Recovering free theorems in the presence of seq

As demonstrated in the previous section, the presence of seq is problematic if relational interpretations
of types are allowed to relate ⊥ and non-⊥ values. One way to accommodate seq would thus be to
require all encountered relations (those used to interpret bound type variables and those obtained via the
relational actions) to be bottom-reflecting in addition to being admissible. This is a drastic restriction,
however, because it entails that the statements that are finally obtained as free theorems will only capture
situations in which either both of the sides of a law are undefined or neither is. But as we have seen
in the introduction, seq has the potential to make one of the two sides of a free theorem provable in its
absence less defined than it would otherwise be (indeed potentially ⊥), even while the other side remains
unchanged. To derive interesting statements for these situations, we should therefore be more liberal.

To this end, we modify the standard logical relation in such a way that one of the two argument
positions of a relational interpretation is “favored” with respect to definedness. An asymmetry is in-
troduced into relational interpretations by allowing relations R surfacing in the new logical relation to
contain pairs (⊥, y) with y 6= ⊥, but forbidding pairs (x,⊥) with x 6= ⊥. Thus, instead of requiring
totality of both R and R−1 — which amounts to bottom-reflectingness — we require only totality of
R. One set of restrictions that encompasses this asymmetry idea and ensures the adherence of seq to
the parametricity property derived from its type was proposed in Appendix B of [35]. However, like
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bottom-reflectingness, those restrictions are not preserved by all relational actions. Moreover, their ad
hoc nature makes it uncertain whether they would provide a good starting point for putting things right
by adjusting the relational actions.

To account for the fact that one of the two terms related by a free theorem can become strictly
less defined than the other in the presence of seq , we turn our attention to relations which are left-
closed in addition to being admissible and total. More specifically, we interpret base types as semantic
approximation relations rather than as identity relations, noting that semantic approximation relations
satisfy all three of the imposed restrictions. In addition, we modify the relational interpretations of non-
base types by adopting a propagation technique which is more complex than the standard one, but which
preserves all three restrictions. Of course, preserving admissibility, totality, and left-closedness is not
the only concern when adjusting the definitions of the relational actions: the new relational actions must
also lend themselves to proving a parametricity theorem for the new logical relation, and must therefore
have an “extensional flavor” which ties them to the semantics of the language. (In the absence of this
consideration, every relational action could simply return the trivial relation {(⊥,⊥)}, but this clearly is
not what we want.) Extensionality here is with respect to semantic approximation. For example, the new
relational action for the function type constructor applied to relations vτ and vτ ′ will capture exactly
the conditions under which a function f :: τ → τ ′ approximates a function g :: τ → τ ′ in the presence
of seq .

In the remainder of this paper the set of all admissible, total, and left-closed relations between values
of closed types τ1 and τ2 is denoted by Relseq(τ1, τ2). The relational action corresponding to the function
type constructor is adapted to map relations R ∈ Relseq(τ1, τ2) and S ∈ Relseq(τ ′

1, τ
′
2) to the following

relation in Relseq(τ1 → τ ′
1, τ2 → τ ′

2):

R →seq S = {(f, g) | (f 6= ⊥ ⇒ g 6= ⊥) ∧ ∀(x, y) ∈ R. (f x, g y) ∈ S} ,

i.e., we explicitly add the totality restriction. That the resulting relation is admissible follows from
monotonicity and continuity of function application in Haskell and from admissibility of S . To show
that it is also left-closed, we need to establish that from f ′ v f and (f, g) ∈ R →seq S it follows that
(f ′, g) ∈ R →seq S , i.e.,

(f ′ 6= ⊥ ⇒ g 6= ⊥) ∧ ∀(x, y) ∈ R. (f ′ x, g y) ∈ S.

The first conjunct follows from f ′ v f and f 6= ⊥ ⇒ g 6= ⊥. The second conjunct follows by left-
closedness of S from the facts that, for every (x, y) ∈ R, we have f ′ x v f x by monotonicity of
function application in Haskell, as well as (f x, g y) ∈ S .

The relational action corresponding to the ∀-type constructor is adapted by quantifying only over
admissible, total, and left-closed relations as follows. Let τ1 and τ2 be types with at most one free
variable, say α. In addition, let F be a function that, for all closed types τ ′

1 and τ ′
2 and every relation

R ∈ Relseq(τ ′
1, τ

′
2), gives a relation F(R) ∈ Relseq(τ1[τ

′
1/α], τ2[τ

′
2/α]). The new relational action

corresponding to the ∀-type constructor maps F to the following relation in Relseq(∀α. τ1,∀α. τ2):

∀R ∈ Relseq . F(R) = {(u, v) | ∀τ ′
1, τ

′
2,R ∈ Relseq(τ ′

1, τ
′
2). (uτ ′

1
, vτ ′

2
) ∈ F(R)}.

That the resulting relation is admissible follows from monotonicity and continuity of type instantiation in
Haskell and from admissibility of all the F(R). Totality can be shown by indirect reasoning as follows.
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Assume (u,⊥∀α. τ2) ∈ (∀R ∈ Relseq . F(R)) for some u 6= ⊥∀α. τ1 . Since vτ ∈ Relseq(τ, τ) for every
closed type τ , we have that, for each such τ , (uτ , (⊥∀α. τ2)τ ) ∈ F(vτ ), i.e., (uτ ,⊥τ2[τ/α]) ∈ F(vτ ). By
totality of F(vτ ) we have uτ = ⊥τ1[τ/α] for every such τ , and so by law (5) we derive the contradiction
that u = ⊥∀α. τ1 . To show left-closedness of ∀R ∈ Relseq . F(R), we need to establish that from u′ v u
and (u, v) ∈ (∀R ∈ Relseq . F(R)) it follows that (u′, v) ∈ (∀R ∈ Relseq . F(R)), i.e.,

∀τ ′
1, τ

′
2,R ∈ Relseq(τ ′

1, τ
′
2). (u′

τ ′
1

, vτ ′
2
) ∈ F(R).

This follows by left-closedness of all the F(R) from the observations that, for every τ ′
1, τ ′

2, and R ∈
Relseq(τ ′

1, τ
′
2), we have u′

τ ′
1

v uτ ′
1

by monotonicity of type instantiation in Haskell, and (uτ ′
1
, vτ ′

2
) ∈

F(R).
The relational interpretations of datatypes are left-composed with v. It is not hard to see (from

the facts that v ;R is always strict, total, and left-closed for a strict and total R and that the standard
relational interpretations for datatypes are strict and total by construction) that this gives strict, total,
and left-closed relations only. Further, v is a continuous relation, and for continuous and left-closed
relations R and S the relations v ; liftMaybe(R), v ; lift (,)(R,S), and v ; lift [](R) are also continuous
(cf. Appendix A).

Hence, all relations that turn up in the definition of the new logical relation given in Figure 4 will in
fact be admissible, total, and left-closed. In particular, ∆seq

τ,∅ ∈ Relseq(τ, τ) for every closed type τ .

∆seq

α,η = η(α)

∆seq

τ→τ ′,η = ∆seq

τ,η →seq ∆seq

τ ′,η

∆seq

∀α. τ,η = ∀R ∈ Relseq . ∆seq

τ,η[R/α]

∆seq

Int,η = vInt

∆seq

Bool,η = vBool

∆seq

Maybe τ,η = v ; liftMaybe(∆
seq

τ,η )

∆seq

(τ,τ ′),η = v ; lift (,)(∆
seq

τ,η ,∆seq

τ ′,η)

∆seq

[τ ],η = v ; lift [](∆
seq

τ,η )

Figure 4. Definition of the logical relation in the presence of seq .

We now verify that our modified logical relation still has the following fundamental property, from
which the new free theorems will be derived.

Theorem 6.1. Let ∆seq be defined as in Figure 4. Then:

if τ is a closed type and t :: τ is a closed term, then:

(t, t) ∈ ∆seq

τ,∅ (11)
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Proof Sketch:
We first check that this law holds for seq . The parametricity property of seq according to the new logical
relation is derived as follows:

(seq , seq) ∈ ∆seq

∀α β. α→β→β,∅

⇔ (seq , seq) ∈ (∀R∈Relseq .∆seq

∀β. α→β→β,[R/α])

⇔ (seq , seq) ∈ (∀R∈Relseq .∀S∈Relseq .∆seq

α→β→β,[R/α,S/β])

⇔ (seq , seq) ∈ (∀R∈Relseq .∀S∈Relseq .R →seq (S →seq S))

⇔ ∀R∈Relseq(τ1, τ2). (seqτ1 , seq τ2) ∈ (∀S∈Relseq . R →seq (S →seq S))

⇔ ∀R∈Relseq(τ1, τ2),S ∈Relseq(τ ′
1, τ

′
2). (seq τ1 τ ′

1

, seq τ2 τ ′
2

) ∈ R →seq (S →seq S)

⇔ ∀R∈Relseq(τ1, τ2),S ∈Relseq(τ ′
1, τ

′
2).

(seqτ1 τ ′
1

6= ⊥ ⇒ seqτ2 τ ′
2

6= ⊥) ∧ ∀(a1, a2)∈R. (seqτ1 τ ′
1

a1, seq τ2 τ ′
2

a2) ∈ S →seq S

⇔ ∀R∈Relseq(τ1, τ2),S ∈Relseq(τ ′
1, τ

′
2).

(seqτ1 τ ′
1

6= ⊥ ⇒ seqτ2 τ ′
2

6= ⊥) ∧ ∀(a1, a2)∈R. (seqτ1 τ ′
1

a1 6= ⊥ ⇒ seq τ2 τ ′
2

a2 6= ⊥)

∧ ∀(b1, b2)∈S. (seq τ1 τ ′
1

a1 b1, seq τ2 τ ′
2

a2 b2) ∈ S.

The two implications seq τ1 τ ′
1

6= ⊥ ⇒ seqτ2 τ ′
2

6= ⊥ and seqτ1 τ ′
1

a1 6= ⊥ ⇒ seqτ2 τ ′
2

a2 6= ⊥ arising
from totality can be discharged because both seq τ2 τ ′

2

and seq τ2 τ ′
2

a2 are only partially applied and hence
are different from ⊥. The statement (seq a1 b1, seq a2 b2) ∈ S under the assumptions (a1, a2) ∈ R and
(b1, b2) ∈ S is verified by case distinction on a1 and a2:

a1 6= ⊥ ∧ a2 6= ⊥ ⇒ (seq a1 b1, seq a2 b2) = (b1, b2)

a1 = ⊥ ∧ a2 6= ⊥ ⇒ (seq a1 b1, seq a2 b2) = (⊥, b2)

a1 = ⊥ ∧ a2 = ⊥ ⇒ (seq a1 b1, seq a2 b2) = (⊥,⊥)

The case a1 6= ⊥ and a2 = ⊥ cannot occur due to totality of R. In the other cases, (seq a1 b1, seq a2 b2) ∈
S follows from (b1, b2) ∈ S and left-closedness and strictness of S .

We also need to establish that each constant associated with a datatype fulfills the parametricity
property derived from its type. For a nonparametrized datatype such as Int this means we must confirm
that for every literal i :: Int, (i, i) ∈ ∆seq

Int,∅ = vInt holds. This is trivially true, and so are the parametricity

properties derived for integer operations such as +. For lists, we must confirm that ([], []) ∈ ∆seq

∀α. [α],∅

and ((:), (:)) ∈ ∆seq

∀α. α→[α]→[α],∅. The latter requires us to establish that certain definedness conditions
which arise on partial applications of (:) are satisfied and that for every admissible, total, and left-closed
relation R it follows from (x, y) ∈ R and (xs, ys) ∈ v ; lift [](R) that (x : xs, y : ys) ∈ v ; lift [](R).
The former is obvious; to prove the latter is an easy exercise using the monotonicity of (:). Similar
arguments hold for the other data constructors.

What remains to be done is to mirror Wadler’s sketched proof [36] that the term-forming operations
of the polymorphic lambda calculus — λ-abstraction, function application, type abstraction, and type
instantiation — as well as the case-construct behave according to the (new) logical relation. As usual,
this proof requires a generalization from the statement about closed types τ and closed terms t :: τ
to types and terms potentially containing free variables. It proceeds by induction over the structure of
typing derivations.
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For the new logical relation, we changed the standard relational action corresponding to the ∀-type
constructor by imposing admissibility, totality, and left-closedness on the relations over which quantifi-
cation takes place. Thus, in comparison with the standard proof, the hypothesis in the induction step
for the typing rule in whose premise a ∀-type appears — i.e., the induction hypothesis for the rule for
type instantiation — now provides a weaker statement concerning restricted relations only. But since the
new relational actions are constructed precisely so that the relational interpretations of all types satisfy
the required restrictions, this is enough to prove the induction conclusion. For the other induction step
involving a ∀-type — i.e., the one corresponding to type abstraction — no additional argument is needed.

The only change to the relational action corresponding to the function type constructor is a strength-
ening due to the added totality restriction. Thus, of the two type inference rules involving a function
type, only the induction step for the rule in whose conclusion the function type appears differs from that
for the standard logical relation. For an abstraction of the form (λx → t) appearing in the conclusion of
that rule we must show in addition that (λx → [[t]]%1

) 6= ⊥ implies (λx → [[t]]%2
) 6= ⊥ for every pair of

type-respecting environments %1 and %2 mapping the free type variables of t to types and the free object
variables of t other than x to values. Here [[t]]%1

and [[t]]%2
denote the values of t in the environments

%1 and %2, respectively, where the value of a term in an environment is defined in the usual way. The
implication in question obviously holds because λ-abstractions are distinct from ⊥.

The induction step for case-expressions amounts to considering the different ways in which the
denotation, in one environment, of the selector of such an expression can be related to its denotation in
a related environment. We must show that for each such possibility the denotations of the whole case-
expression in the two environments are correspondingly related by the interpretation of its return type.
The argument proceeds along the same lines as the corresponding one for the standard logical relation
in Section 4.1. Since each new interpretation of an algebraic datatype is the composition of the semantic
approximation ordering and its standard structural interpretation, the argument also uses the fact that the
relational interpretations of all types are left-closed.

Finally, since admissibility is included among the restrictions we impose on all relations, the argu-
ments from Section 7 of [36] ensure that ⊥ and fix also fulfill their parametricity properties with respect
to the new logical relation. Putting everything together, we conclude that (11) holds in the presence of
seq , algebraic datatypes, and general fixpoint recursion.

6.1. Manufacturing permissible relations

A strategy often employed when deriving free theorems is to specialize quantified relations to functions.
Since the only functions that are strict and left-closed are constant functions mapping to ⊥, and since
such a function is total only when its domain consists solely of ⊥, this is not very useful in the presence
of seq and its attendant restrictions on relations. There are, however, two canonical ways to manufacture
admissible, total, and left-closed relations out of a function. These are considered now and put to good
use in the next two sections.

On the one hand, for every monotonic and admissible function h the relation

v ;h−1 = {(x, y) | x v h y}

is admissible, total, and left-closed. On the other, for every monotonic, admissible, and total function h
the relation

h ;v = {(x, y) | h x v y}
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is admissible, total, and left-closed. Note that the monotonicity and admissibility requirements on h
above are essential. But since we will only consider functions definable in Haskell below, and these are
always assumed to be monotonic and continuous, we will only explicitly record the strictness precondi-
tion (and, of course, the totality precondition where required) in the following.

7. Two free theorems about filter

In this section we show how the fundamental property of our modified logical relation can be used to
derive the two inequational free theorems (2) and (3) in Theorem 1.1 even when seq is present.

Proof of Theorem 1.1:
The parametricity property derived from filter ’s type is the following instance of law (11):

(filter , filter) ∈ ∆seq

∀α. (α→Bool)→[α]→[α],∅.

Expanding this statement according to the definition from Figure 4 yields that for every choice of closed
types τ1 and τ2, an admissible, total, and left-closed relation R ∈ Relseq(τ1, τ2), functions p1 :: τ1 →
Bool and p2 :: τ2 → Bool, and lists l1 :: [τ1] and l2 :: [τ2] the following holds:

(filterτ1 6= ⊥ ⇒ filterτ2 6= ⊥)

∧ ((p1 6= ⊥ ⇒ p2 6= ⊥) ∧ (∀(x1, x2) ∈ R. p1 x1 v p2 x2)

⇒ (filterτ1 p1 6= ⊥ ⇒ filterτ2 p2 6= ⊥)

∧ ((l1, l2) ∈ v ; lift [](R) ⇒ (filterτ1 p1 l1, filterτ2 p2 l2) ∈ v ; lift [](R))).

Using properties of ∧ and ⇒ to drop the two conjuncts filterτ1 6= ⊥ ⇒ filterτ2 6= ⊥ and filterτ1 p1 6=
⊥ ⇒ filterτ2 p2 6= ⊥ from the above, and also replacing the precondition p1 6= ⊥ ⇒ p2 6= ⊥ with the
stronger precondition p2 6= ⊥, we obtain the following weaker statement:

p2 6= ⊥ ∧ (∀(x1, x2) ∈ R. p1 x1 v p2 x2)

⇒ ((l1, l2) ∈ v ; lift [](R) ⇒ (filterτ1 p1 l1, filterτ2 p2 l2) ∈ v ; lift [](R)).

We consider two instantiations of this, guided by the structure of laws (2) and (3) and our techniques
from Section 6.1 for manufacturing admissible, total, and left-closed relations. First, we instantiate

R = v ;h−1, p1 = p, p2 = p ◦ h, l1 = map h l, l2 = l

for a strict function h :: τ2 → τ1, giving:

p ◦ h 6= ⊥ ∧ (∀x1 :: τ1, x2 :: τ2. x1 v h x2 ⇒ p x1 v p (h x2))

⇒ ((map h l, l) ∈ v ; lift [](v ;h−1) ⇒ (filterτ1 p (map h l), filterτ2 (p ◦ h) l) ∈ v ; lift [](v ;h−1)).

Since p ◦ h is equivalent to a λ-abstraction and hence is not ⊥, and since the second conjunct of the
precondition follows from monotonicity of p, applications of laws (6) and (8) yield (2).

Second, we instantiate

R = h ;v, p1 = p ◦ h, p2 = p, l1 = l, l2 = map h l
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for a strict and total function h :: τ1 → τ2, giving:

p 6= ⊥ ∧ (∀x1 :: τ1, x2 :: τ2. h x1 v x2 ⇒ p (h x1) v p x2)

⇒ ((l,map h l) ∈ v ; lift [](h ;v) ⇒ (filterτ1 (p ◦ h) l, filterτ2 p (map h l)) ∈ v ; lift [](h ;v)).

Since the second conjunct of the precondition follows from monotonicity of p, applications of laws (7)
and (9) yield (3). ut

To illustrate the roles of the restrictions on p and h required in Theorem 1.1, we consider the instanti-
ations for p, h, and l that were used in the introduction — together with the particular function definition
for the sequentialized filter presented there — as counterexamples for the unrestricted equational law (1)
when seq is present. The third instantiation shows that a proof of law (2) without the strictness precon-
dition on h cannot exist (although the fourth instantiation shows that the conclusion of law (2) might
happen to hold for nonstrict h). The fourth instantiation shows that strictness of h cannot be dropped
from law (3). Moreover, both the third and fourth instantiations show that strictness of h cannot be
dropped from law (4) either, because in both cases p is different from ⊥ and h is total, but the equation in
the conclusion of law (4) does not hold. Interestingly, p and h do not differ between these instantiations,
but the small variation of l is enough for the third instantiation to make map h (filter (p ◦ h) l) less
defined than filter p (map h l), even while the fourth instantiation makes it more defined. Finally, the
first two instantiations show that neither the restriction that p 6= ⊥ nor totality of h can be omitted when
recovering equality.

Another illustrative take on laws (2) and (3) is to argue on an intuitive level why they hold for the
sequentialized definition of filter from the introduction. We consider only the impact of seq , as opposed
to why law (1) would hold in the first place, i.e., assuming all invocations of seq were dropped. First,
for law (2), we need to establish that rhs = map h (filter (p ◦ h) l) is always at least as defined as
lhs = filter p (map h l) for strict h. To do so, we consider all uses of seq in the definition of filter . The
one on filter ’s first argument turns lhs into ⊥ if p = ⊥, but never has an impact on rhs because p ◦ h is
always different from ⊥. If the application of seq on some list element x of l finds a ⊥ in rhs , then by
strictness of h the corresponding element in map h l is also ⊥, and hence the corresponding application
of seq in lhs has the same outcome. A similar observation holds for the application of seq on some tail
xs of l because map h ⊥ = ⊥. Turning to law (3), we must argue that under the additional restrictions
p 6= ⊥ and totality of h, lhs is at least as defined as rhs . This argument breaks naturally into three parts.
First note that the new condition on p guarantees that the application of seq on p does not result in lhs

being ⊥. Second, totality of h guarantees that the application of seq to some list element of map h l in
lhs only encounters ⊥ if the corresponding list element of l in rhs is itself ⊥. Strictness of map h thus
ensures that rhs is never any more defined than lhs as a result of an application of seq to an element
of map h l. Finally, the application of seq on xs leads to no difference between lhs and rhs because
map h is total in addition to being strict, and because applying the strict function h to all list elements
necessarily preserves any resulting undefined list element.

Note that Theorem 1.1 is really much more general than described in the above discussions because
it holds for every function filter of appropriate type and does not require any knowledge of the concrete
function definition. The proof of the inequational free theorem (2) was made possible by the asymmetry
built into the new logical relation. If we were to instead replace the totality and left-closedness require-
ments on relational interpretations with bottom-reflectingness, and properly construct a logical relation
that preserves these restrictions (which can be done), then we would only be able to obtain law (4).
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8. Program transformations

Free theorems have found an important application as justifications for various kinds of program trans-
formations for nonstrict functional languages [6, 10, 12, 32, 35]. But the presence of seq threatens the
intended semantics-preserving character of such transformations. Fortunately, one often needs to know
only that a program resulting from a transformation is at least as defined as the program from which it
was obtained. In such situations, the inequational free theorems derived from our new asymmetric log-
ical relation and its associated parametricity theorem come to the rescue. In this section we apply them
to evaluate the effect of seq on program transformations based on the polymorphic types of arguments to
the rank-2 polymorphic functions destroy , build , and vanish++ given in Figure 5. Although we consider
only list-manipulating combinators in this paper, our techniques yield similar results for analogues of
them — such as those considered in [12] — which manipulate non-list data structures.

unfoldr :: ∀α β. (β → Maybe (α, β)) → β → [α]

unfoldr psi e = case psi e of Nothing → []

Just (a, e′) → a : unfoldr psi e′

destroy :: ∀α γ. (∀β. (β → Maybe (α, β)) → β → γ) → [α] → γ

destroy g = g listpsi where listpsi [] = Nothing

listpsi (a : as) = Just (a, as)

foldr :: ∀α β. (α → β → β) → β → [α] → β

foldr c n [] = n

foldr c n (a : as) = c a (foldr c n as)

build :: ∀α. (∀β. (α → β → β) → β → β) → [α]

build g = g (:) []

vanish++ :: ∀α. (∀β. β → (α → β → β) → (β → β → β) → β) → [α]

vanish++ g = g id (λx h ys → x : h ys) (◦) []

Figure 5. Functions for program transformations.

8.1. The dual of short cut fusion

Svenningsson [32] considered the destroy /unfoldr rule as a dual to the foldr /build rule used in short
cut fusion [10] (considered in the next subsection). It can be used to eliminate intermediate lists from
compositions of list producers written in terms of unfoldr and list consumers written in terms of destroy .
As shown in Sections 4 and 5 of [32], the destroy /unfoldr rule overcomes some of the shortcomings
short cut fusion has in eliminating intermediate lists consumed by zip-like functions, which traverse more
than one data structure simultaneously, as well as by functions defined using accumulating parameters.
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The function unfoldr takes as input a seed value e and a step function psi which uses this seed to
determine whether or not to continue unfolding the computation. If unfolding is to continue with the
current seed, then the next element of unfoldr ’s output list is returned together with a new seed; other-
wise computation stops and the empty list is returned. The function destroy applies a type-independent
unfolding function g to the specific step function listpsi , which is specially tailored to uniformly con-
sume the lists uniformly constructed by unfoldr . When the destroy /unfoldr rule is applied, the resulting
program avoids constructing intermediate lists produced by unfoldr psi e and immediately consumed
by destroy g. This is accomplished by applying the unfolding function g to psi and e directly.

Svenningsson describes the destroy /unfoldr rule as an oriented replacement transformation, but
makes no precise statement about its impact on program semantics. He only suggests that correctness of
the transformation might be provable using a free theorem. In order for the rule to be safely applicable
— i.e., to produce a program that is at least as defined as the original one — we must at least have the
following for appropriately typed g, psi , and e:

destroy g (unfoldr psi e) v g psi e (12)

Letting g = (λx y → case x y of Just z → 0), psi = (λx → if x == 0 then Just ⊥ else Nothing),
and e = 0 demonstrates that (even in the absence of seq) the equational variant of (12) does not hold in
general, but Svenningsson’s paper does not mention this.

While [32] proposes the destroy /unfoldr rule for the language Haskell and even contains an example
involving seq , the possible impact of seq on the correctness of the transformation is not taken into
account. But the following two instantiations using seq break conjecture (12), making the right-hand
side less defined than the left-hand side:

g = (λx y → seq x 0) psi = ⊥ e = 0

g = (λx y → seq y 0) psi = (λx → Nothing) e = ⊥

Thus, in the presence of seq the transformation is unsafe.
Intuitively, there are two different reasons for such decrease of definedness of g psi e as compared

with destroy g (unfoldr psi e) = g listpsi (unfoldr psi e). First, if g applies seq on its first argument, it
potentially finds psi = ⊥ in the former but always listpsi 6= ⊥ in the latter. Second, if g applies seq on
its second argument (or another “seed” obtained from its second argument via applying its first argument
repeatedly), it may find ⊥ in the former, but a potentially non-⊥ value unfoldr psi ⊥ in the latter. This
depends on whether psi ⊥ matches successfully against Nothing or Just (a, e ′).

To find conditions under which (12) holds and (potentially different) conditions under which the
converse inequation holds — which together would give conditions for semantic equivalence — we
derive the parametricity property for terms of g’s type in the definition of destroy and instantiate it in
such a way that the result relates the two sides of the destroy /unfoldr rule. While doing so, we keep track
of conditions to impose so that the chosen instantiation is permissible (cf. Section 6.1). This process does
not immediately yield the inequations we seek, but instead gives free theorems relating the two sides of
the destroy /unfoldr rule by the interpretation of g’s return type according to our logical relation. The
inequations are then obtained from these theorems under a certain (reasonable) assumption about the
interpretations of closed types according to the logical relation, to be discussed below.
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Theorem 8.1. For all closed types τ and τ ′, every function

g :: ∀β. (β → Maybe (τ ′, β)) → β → τ ,

and appropriately typed psi and e the following hold:

if psi 6= ⊥ and psi ⊥ ∈ {⊥, Just ⊥}, then:

(destroy g (unfoldr psi e), g psi e) ∈ ∆seq

τ,∅ (13)

if psi is strict and total and never returns Just ⊥, then:

(destroy g (unfoldr psi e), g psi e) ∈ (∆seq

τ,∅ )
−1 (14)

Proof:
The parametricity property associated with g’s type is the following instance of law (11):

(g, g) ∈ ∆seq

∀β. (β→Maybe (τ ′,β))→β→τ,∅.

Expanding this statement according to Figure 4 yields that for every choice of closed types τ1 and τ2, an
admissible, total, and left-closed relation R ∈ Relseq(τ1, τ2), functions psi 1 :: τ1 → Maybe (τ ′, τ1) and
psi2 :: τ2 → Maybe (τ ′, τ2), and values e1 :: τ1 and e2 :: τ2 the following holds:

(gτ1 6= ⊥ ⇒ gτ2 6= ⊥)

∧ ( (psi 1 6= ⊥ ⇒ psi 2 6= ⊥)

∧ (∀b1 :: τ1, b2 :: τ2. (b1, b2) ∈ R ⇒ (psi 1 b1, psi2 b2) ∈ v ; liftMaybe(v ; lift (,)(∆
seq

τ ′,[R/β],R)))

⇒ (gτ1 psi1 6= ⊥ ⇒ gτ2 psi2 6= ⊥)

∧ ((e1, e2) ∈ R ⇒ (gτ1 psi1 e1, gτ2 psi2 e2) ∈ ∆seq

τ,[R/β])).

Using the fact that for the closed types τ and τ ′ we have ∆seq

τ,[R/β] = ∆seq

τ,∅ and ∆seq

τ ′,[R/β] = ∆seq

τ ′,∅,
dropping the conjuncts gτ1 6= ⊥ ⇒ gτ2 6= ⊥ and gτ1 psi1 6= ⊥ ⇒ gτ2 psi2 6= ⊥ from the above, and
replacing the precondition psi 1 6= ⊥ ⇒ psi 2 6= ⊥ with the stronger precondition psi 2 6= ⊥, we obtain
the following weaker statement:

psi2 6= ⊥

∧ (∀b1 :: τ1, b2 :: τ2. (b1, b2) ∈ R ⇒ (psi 1 b1, psi2 b2) ∈ v ; liftMaybe(v ; lift (,)(∆
seq

τ ′,∅,R)))

∧ (e1, e2) ∈ R

⇒ (gτ1 psi1 e1, gτ2 psi2 e2) ∈ ∆seq

τ,∅ .

We consider two instantiations of this. First, we instantiate

τ1 = [τ ′], R = v ; (unfoldr psi)−1, psi1 = listpsi , psi 2 = psi , e1 = unfoldr psi e, e2 = e
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for psi :: τ2 → Maybe (τ ′, τ2) such that psi ⊥ ∈ {⊥, Just ⊥}. Note that the instantiation for R is
permissible because the condition on psi guarantees that unfoldr psi is a strict function. We obtain:

psi 6= ⊥

∧ (∀b1 :: [τ ′], b2 :: τ2. b1 v unfoldr psi b2 ⇒ (listpsi b1, psi b2) ∈ v ; liftMaybe(v ; lift (,)(∆
seq

τ ′,∅,R)))

∧ unfoldr psi e v unfoldr psi e

⇒ (g[τ ′] listpsi (unfoldr psi e), gτ2 psi e) ∈ ∆seq

τ,∅ .

Since listpsi is monotonic, so that b1 v unfoldr psi b2 implies listpsi b1 v listpsi (unfoldr psi b2),
and since v is transitive, we can prove that the second conjunct of the precondition holds by showing

(listpsi (unfoldr psi b2), psi b2) ∈ v ; liftMaybe(v ; lift (,)(∆
seq

τ ′,∅,R))

for every b2 :: τ2. By the definitions of unfoldr and listpsi the element in the left position is equal to:

case psi b2 of Nothing → Nothing

Just (a, e′) → Just (a, unfoldr psi e′).

By case distinction on the value of psi b2 :: Maybe (τ ′, τ2) we can check that this is indeed always related
to psi b2 by v ; liftMaybe(v ; lift (,)(∆

seq

τ ′,∅,R)) as follows. The cases ⊥ and Nothing are straightforward,
using the reflexivity of v and the definition of liftMaybe. Similarly, the proof obligation in the case
psi b2 = Just (a, e′) for some a :: τ ′ and e′ :: τ2 reduces to:

((a, unfoldr psi e′), (a, e′)) ∈ v ; lift (,)(∆
seq

τ ′,∅,R).

But this follows from reflexivity of v, the definition of lift (,), law (11) for the closed type τ ′, and the
instantiation of R. Finally, in the case psi b2 = Just ⊥,

(⊥, Just ⊥) ∈ v ; liftMaybe(v ; lift (,)(∆
seq

τ ′,∅,R))

follows from ⊥ v Just ⊥, the definition of liftMaybe, the reflexivity of v, and the definition of lift (,).
The third conjunct of the precondition in the above implication is trivially true, hence we obtain:

psi 6= ⊥ ⇒ (g[τ ′] listpsi (unfoldr psi e), gτ2 psi e) ∈ ∆seq

τ,∅ ,

from which law (13) follows by the definition of destroy .
Second, we instantiate

τ2 = [τ ′], R = (unfoldr psi) ;v, psi 1 = psi , psi2 = listpsi , e1 = e, e2 = unfoldr psi e

for strict and total psi :: τ1 → Maybe (τ ′, τ1) that never returns Just ⊥. Note that the instantiation for R
is permissible because the conditions on psi guarantee that unfoldr psi is a strict and total function. Of
course, to guarantee that unfoldr psi is strict and total, it is enough to require that psi ⊥ ∈ {⊥, Just ⊥},
psi is total, and psi never returns Just ⊥ for a non-⊥ argument. But the argument below requires that
psi never returns Just ⊥ at all, not even for the argument ⊥. We obtain:

listpsi 6= ⊥

∧ (∀b1 :: τ1, b2 :: [τ ′]. unfoldr psi b1 v b2 ⇒ (psi b1, listpsi b2) ∈ v ; liftMaybe(v ; lift (,)(∆
seq

τ ′,∅,R)))

∧ unfoldr psi e v unfoldr psi e

⇒ (gτ1 psi e, g[τ ′] listpsi (unfoldr psi e)) ∈ ∆seq

τ,∅ .
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The first and the third conjuncts of the precondition in this implication obviously hold. To establish the
validity of the second conjunct, we note that for every b1 :: τ1 and b2 :: [τ ′], unfoldr psi b1 v b2 and
monotonicity of listpsi imply the following inequation:

listpsi (unfoldr psi b1) v listpsi b2.

By the definitions of unfoldr and listpsi its left-hand side is equal to:

case psi b1 of Nothing → Nothing

Just (a, e′) → Just (a, unfoldr psi e′).

Bearing in mind that neither psi nor listpsi ever returns Just ⊥ (the former by assumption, the latter by
definition), it is easy to see from this that the inequation constrains the values of psi b1 :: Maybe (τ ′, τ1)
and listpsi b2 :: Maybe (τ ′, [τ ′]) to one of the following combinations:

psi b1 listpsi b2

⊥ ⊥

⊥ Nothing

Nothing Nothing

⊥ Just (a′, as′)

Just (a, e′) Just (a′, as′) | a v a′ ∧ unfoldr psi e′ v as′

It remains to be checked that in each of these cases the two values are related by v ; lift Maybe(v
; lift (,)(∆

seq

τ ′,∅,R)). This is an easy exercise using the reflexivity of v, the facts that ⊥ v Nothing

and ⊥ v Just (a′,⊥) for every a′ :: τ ′, the definitions of liftMaybe and lift (,), law (11) for the closed type
τ ′, the instantiation of R, and strictness of unfoldr psi .

Having established the validity of all three conjuncts of the precondition in the above implication, its
conclusion gives law (14) by the definition of destroy . ut

The laws (13) and (14) are not yet the desired inequational statements about the destroy /unfoldr rule.
This is because they depend on the relational interpretation of the closed type τ . In previous proofs of
program transformations based on the fundamental property of a logical relation (e.g., in [10, 35]), such
interpretations of closed types have silently been assumed to coincide with the relational interpretations
of base types, i.e., with identity relations. This cannot be justified solely on the basis of Wadler’s para-
metricity theorem [36], from which these proofs claim to be derived, but also requires Reynolds’ identity
extension lemma [28].

In addition to a standard equational semantics, Reynolds also considered an “order-relation seman-
tics” in which the interpretations of base types are semantic approximation relations rather than identity
relations. He noted that an analogue of the identity extension lemma holds for the order-relation seman-
tics prior to the inclusion of polymorphic types. This motivates the following conjecture:

if τ is a closed type, then:

∆seq

τ,∅ = vτ (15)
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Coincidence of ∆seq

τ,∅ and vτ is easily established by induction for types τ not containing ∀-quantifica-
tions. This is because our logical relation interprets nonparametrized datatypes as v, and because its re-
lational actions for function types and parametrized datatypes preserve v — i.e., vτ →seq vτ ′ = vτ→τ ′

and, e.g., vMaybe τ ; liftMaybe(vτ ) = vMaybe τ . Thus, (15) is known to hold in most situations that are
interesting in practice. For example, the value produced by destroy g from an input list usually is not
polymorphic, and, although the data structures eliminated by the program transformations studied in this
paper are often polymorphic, they do not usually contain polymorphic values.

To show that conjecture (15) also holds for types involving polymorphism is more complicated.
Indeed, we encounter a problem analogous to that which arises in Section 8 of [28] for the identity
extension lemma. To complete the induction step for ∀-types, one needs to assume the validity of a
statement relating instances of a polymorphic value by the logical relation, interpreting the quantified
type variable by an arbitrary (in our case: admissible, total, and left-closed) relation between the types
at which instantiation occurs. But unless the set of functions from types to values contained by the
model at polymorphic types is winnowed at construction time to exclude those which do not satisfy the
required statement, the statement need not hold. Reynolds solves the analogous problem for the standard
equational semantics for λ∀ by incorporating precisely the required statement into the definition of the set
of values a polymorphic type contains; in fact, he considers the added condition to draw the dividing line
between parametric and ad hoc polymorphism. He then argues that no values of terms expressible in the
underlying language are unduly excluded by doing so by appealing to the identity extension lemma itself
and to the abstraction theorem. The latter corresponds to the generalized form of Wadler’s parametricity
theorem in Section 6 of [36] and thus to the generalization of the fundamental property (11) for types and
terms potentially containing free variables mentioned in our sketched proof in Section 6. Although no
formal proofs of the analogues of (15) are presently available for either the standard equational semantics
or the order-relation semantics for λ∀ with fixpoints and algebraic datatypes, it is reasonable to expect
that any Reynolds-inspired approach to establishing these results will be immediately applicable in our
setting as well.

Another approach to handling conjecture (15) is to mirror Pitts’ operational techniques [25]. Pitts
constructed a logical relation for the PolyFix calculus mentioned in Section 2, and proved that it inter-
prets arbitrary closed types as contextual equivalence relations. This was used in [12, 13, 14] to give
proofs of program transformations based on free theorems that make explicit the previously implicit use
of the coincidence of relational interpretations of closed types with identity relations. Because we be-
lieve a Pitts-like operational approach to be the most promising one for putting parametricity results for
polymorphic lambda calculi on a solid theoretical foundation, we are currently working to extend Pitts’
results to accommodate seq .

Using the plausible assumption (15), the laws (13) and (14) turn into the following:

if psi 6= ⊥ and psi ⊥ ∈ {⊥, Just ⊥}, then:

destroy g (unfoldr psi e) v g psi e (16)

if psi is strict and total and never returns Just ⊥, then:

destroy g (unfoldr psi e) w g psi e (17)



P. Johann, J. Voigtländer / The Impact of seq on Free Theorems-Based Program Transformations 27

In the following we argue — using counterexamples — that none of the preconditions appearing in
laws (16) and (17) can be dropped. The two instantiations used to show that conjecture (12) may break
in the presence of seq also show that neither psi 6= ⊥ nor psi ⊥ being ⊥ or Just ⊥ would alone be
enough in law (16). Likewise, each of the preconditions in law (17) really is required. The instantiations

g = (λx y → case x ⊥ of Nothing → 0) psi = (λx → Nothing) e = 0

g = (λx y → seq y 0) psi = ⊥ e = 0

(in that order) show that neither strictness of psi , nor totality of psi , can be omitted, while the instan-
tiation immediately following conjecture (12) shows that the requirement that psi never returns Just ⊥
cannot be dropped. Indeed, each of these instantiations fulfills all preconditions from law (17) except for
the one in question, but in all three cases g psi e is strictly more defined than destroy g (unfoldr psi e).

Note that the examples showing that the first and the third preconditions cannot be dropped from
law (17) do not involve seq . It is also possible to give an instantiation not involving seq which shows
that the potential generalization considered just after the second instantiation of (the weakening of) the
parametricity property of the function argument g to destroy in the proof of Theorem 8.1 would not only
compromise our particular proof, but in fact cannot be proved in any manner whatsoever because the
analogue of law (17) that would result does not hold. The following is such an instantiation:

g = (λx y → case x ⊥ of Just z → 0)

psi = (λx → Just (if x == 0 then (x, x) else (x, x)))

e = 0

On the other hand, it is not possible to construct an example without seq which shows that totality of
psi is required in law (17). This is because strictness of psi and psi not returning Just ⊥ are shown
in [14] to be sufficient to guarantee semantics-preservation of the destroy /unfoldr rule in the absence
of seq . When seq is present, conditions for semantics-preservation are obtained by combining laws (16)
and (17): psi must be strict, total, distinct from ⊥, and never return Just ⊥. It is interesting to note that
the folkloric approach would have yielded almost the same conditions for semantics-preservation of the
destroy /unfoldr rule, with only the requirement that psi 6= ⊥ left out. This requirement is, however,
necessary, since the other three preconditions do not ensure that psi 6= ⊥ if the domain of psi is {⊥}.
Our approach instead gives rise to a correct equational statement, and has the added benefit of delivering
inequational laws under weaker preconditions as well.

Seen from a pragmatic point of view, safeness of the destroy /unfoldr transformation — in the sense
of law (16) — is sufficient to justify its application even in the presence of seq . Because it ensures safe-
ness, the requirement that the first arguments of all occurrences of unfoldr in the original program are
non-⊥ functions that return either ⊥ or Just ⊥ when applied to ⊥ therefore merits foremost considera-
tion. Most of the examples given in [32] satisfy this restriction, with the notable exceptions of a — rather
toy — definition of the empty list in terms of unfoldr and the following function definition:

repeat x = unfoldr (λa → Just (x, a)) ⊥

Fusion with this function as a producer can be problematic. But overall the preconditions for safeness
of the destroy /unfoldr rule are not terribly severe. At least it is easy to see that they are fulfilled for
every producer unfoldr psi e of a nonempty finite list, i.e., of a list that has at least one element and ends



28 P. Johann, J. Voigtländer / The Impact of seq on Free Theorems-Based Program Transformations

with []. Detecting (automatically, in a compiler) whether a given fusion opportunity should be taken is
of course a different story altogether, because it requires determining psi 6= ⊥ and psi ⊥ being ⊥ or
Just ⊥ statically. For the former, only sufficient conditions can be used, such as psi being an explicit
λ-abstraction or a partially applied function. One of these will often be the case (and, indeed, this is so
for all examples from [32]). To statically detect that psi ⊥ ∈ {⊥, Just ⊥} one can resort to actually
checking strictness of psi , for which various approaches are available [16, 19, 20]. In fact, one might be
able to leverage strictness analysis passes that are already present in, e.g., the Glasgow Haskell Compiler.

To combine laws (16) and (17) to establish that a transformed program is exactly as defined as the
original program, two further requirements (besides psi 6= ⊥ and strictness of psi ) on the first argument
to unfoldr are necessary. While totality might seem a mild restriction at first sight, even an innocently
looking list producer like the running example from [32]:

enumFromTo n m = unfoldr (λ i → if i > m then Nothing else Just (i, i + 1)) n

breaks this requirement if m = ⊥. Fortunately, this can only lead to the transformed program being
more defined than the original one, not the other way around.

The condition that psi never return Just ⊥ in law (17) is merely an artifact of the choice of presen-
tation of unfoldr and destroy using the type Maybe (α, β) rather than a more tailored type such as the
pattern functor

data ListBase α β = N | J α β

for lists. The small — but essential — difference is that the data constructor J is applied to values of
types α and β singly, rather than encapsulated in a pair, so that ListBase α β does not contain a value
analogous to Just ⊥. The precondition that psi never returns this junk value would therefore not be
needed if such a specially designed type were used. The assertion that Just ⊥ is “junk” here is justified
by the fact that the pattern match in the definition of unfoldr has only branches Nothing and Just (a, e ′),
causing Just ⊥ to lead to a pattern match failure just as ⊥ does. Using Maybe (α, β) thus does not allow
specification of any more list producers as instances of unfoldr than using ListBase α β does. This also
means that not permitting psi to return Just ⊥ in law (17) is a rather lax restriction. Furthermore, the
type Maybe (α, β) has the advantage of being modularly constructed, with the usual attendant benefits,
such as more potential for reuse. In fact, the definition of unfoldr used in this paper comes straight from
the Haskell 98 report [21].

8.2. Short cut fusion

The classic program transformation whose correctness is proved with a free theorem is the foldr /build

rule [10]. It eliminates intermediate lists from compositions of list producers written in terms of build

and list consumers written in terms of foldr using the fact that for appropriately typed g, c, and n:

foldr c n (build g) = g c n (18)

Definitions of foldr and build are given in Figure 5. The function foldr takes as input a function c,
a value n, and a list l, and produces a value by replacing all occurrences of (:) in l by c and any occur-
rence of [] in l by n. For instance, foldr (+) 0 l sums the (numeric) elements of the list l. The function
build , on the other hand, takes as input a function g providing a type-independent template for construct-
ing “abstract” lists, and applies it to the list constructors (:) and [] to get a corresponding “concrete” list.
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For example, build (λ c n → c 3 (c 7 n)) produces the list [3,7]. When law (18) is applied, the result-
ing program avoids constructing intermediate lists produced by build g and immediately consumed by
foldr c n. This is accomplished by applying g to the (:)- and []-replacement functions c and n directly.
For example, foldr (+) 0 (build (λ c n → c 3 (c 7 n)) is optimized to (+) 3 ((+) 7 0).

The following instantiations show that law (18) fails in the presence of seq :

g = seq c = ⊥ n = 0

g = (λ c n → seq (c ⊥ ⊥) n) c = (λx y → y) n = 0

g = (λ c n → seq n (c ⊥ ⊥)) c = (:) n = ⊥

In each of these cases, g c n is strictly less defined than foldr c n (build g). The intuitive reason
for this possible decrease of definedness of the transformed program lies in the different definedness
and strictness properties of the arguments supplied to g prior and after applying the foldr /build rule,
respectively. While the list constructors (:) and [] — passed to g in build g — are both non-⊥, and so
is any value obtained by combining them, no such a priori guarantees exist with respect to c and n. As
a consequence, the same use of seq inside g might result in ⊥ on the right-hand side of (18) and in a
non-⊥ value on its left-hand side.

On the other hand, the transformed program cannot possibly be more defined than the original one,
even in the presence of seq . This is proved in the following theorem, which also gives conditions guar-
anteeing semantics-preservation. The proofs again rely on assumption (15).

Theorem 8.2. For every closed type τ , every function

g :: ∀β. (τ → β → β) → β → β ,

and appropriately typed c and n the following hold:

foldr c n (build g) w g c n (19)

if c ⊥ ⊥ 6= ⊥ and n 6= ⊥, then:

foldr c n (build g) = g c n (20)

Proof:
The parametricity property associated with g’s type is the following instance of law (11):

(g, g) ∈ ∆seq

∀β. (τ→β→β)→β→β,∅.

Expanding this statement according to Figure 4 yields that for every choice of closed types τ1 and τ2,
an admissible, total, and left-closed relation R ∈ Relseq(τ1, τ2), functions c1 :: τ → τ1 → τ1 and
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c2 :: τ → τ2 → τ2, and values n1 :: τ1 and n2 :: τ2 the following holds:

(gτ1 6= ⊥ ⇒ gτ2 6= ⊥)

∧ ( (c1 6= ⊥ ⇒ c2 6= ⊥)

∧ (∀x1, x2 :: τ, y1 :: τ1, y2 :: τ2.

(x1, x2) ∈ ∆seq

τ,[R/β] ⇒ (c1 x1 6= ⊥ ⇒ c2 x2 6= ⊥)

∧ ((y1, y2) ∈ R ⇒ (c1 x1 y1, c2 x2 y2) ∈ R))

⇒ (gτ1 c1 6= ⊥ ⇒ gτ2 c2 6= ⊥)

∧ ((n1, n2) ∈ R ⇒ (gτ1 c1 n1, gτ2 c2 n2) ∈ R)).

Using the fact that for the closed type τ we have ∆seq

τ,[R/β] = ∆seq

τ,∅ , dropping the conjuncts gτ1 6= ⊥ ⇒
gτ2 6= ⊥ and gτ1 c1 6= ⊥ ⇒ gτ2 c2 6= ⊥ from the above, and strengthening two preconditions by
replacing c1 6= ⊥ ⇒ c2 6= ⊥ and c1 x1 6= ⊥ ⇒ c2 x2 6= ⊥ with c2 6= ⊥ and c2 x2 6= ⊥, respectively,
we obtain the following weaker statement:

c2 6= ⊥

∧ (∀x1, x2 :: τ, y1 :: τ1, y2 :: τ2.

(x1, x2) ∈ ∆seq

τ,∅ ⇒ c2 x2 6= ⊥ ∧ ((y1, y2) ∈ R ⇒ (c1 x1 y1, c2 x2 y2) ∈ R))

∧ (n1, n2) ∈ R

⇒ (gτ1 c1 n1, gτ2 c2 n2) ∈ R.

We consider two instantiations of this. First, we instantiate as follows:

τ2 = [τ ], R = v ; (foldr c n)−1, c1 = c, c2 = (:), n1 = n, n2 = [].

Note that the instantiation for R is permissible because foldr c n is always a strict function. We obtain:

(:) 6= ⊥

∧ (∀x1, x2 :: τ, y1 :: τ1, y2 :: [τ ].

(x1, x2) ∈ ∆seq

τ,∅ ⇒ (:) x2 6= ⊥ ∧ (y1 v foldr c n y2 ⇒ c x1 y1 v foldr c n (x2 : y2)))

∧ n v foldr c n []

⇒ gτ1 c n v foldr c n (g[τ ] (:) []).

The first conjunct of the precondition is trivially true; the third one follows from the definition of foldr

and the reflexivity of v. Since an application of (:) to only one argument is partial and hence is not ⊥,
we can prove that the second conjunct of the precondition holds by showing that (x1, x2) ∈ ∆seq

τ,∅ and
y1 v foldr c n y2 imply

c x1 y1 v foldr c n (x2 : y2).

Since by the definition of foldr the right-hand side of this inequation is equal to c x2 (foldr c n y2),
monotonicity of c gives the desired statement provided that x1 v x2, which follows from (x1, x2) ∈ ∆seq

τ,∅
by assumption (15). Having established the validity of all three conjuncts of the precondition in the above
implication, its conclusion gives law (19) by the definition of build .
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Second, we instantiate

τ1 = [τ ], R = (foldr c n) ;v, c1 = (:), c2 = c, n1 = [], n2 = n

for c :: τ → τ2 → τ2 and n :: τ2 such that c ⊥⊥ 6= ⊥ and n 6= ⊥. The instantiation for R is permissible
because the conditions on c and n guarantee that foldr c n is a strict and total function. We obtain:

c 6= ⊥

∧ (∀x1, x2 :: τ, y1 :: [τ ], y2 :: τ2.

(x1, x2) ∈ ∆seq

τ,∅ ⇒ c x2 6= ⊥ ∧ (foldr c n y1 v y2 ⇒ foldr c n (x1 : y1) v c x2 y2))

∧ foldr c n [] v n

⇒ foldr c n (g[τ ] (:) []) v gτ2 c n.

The first conjunct of the precondition follows from c ⊥⊥ 6= ⊥; the third one follows from the definition
of foldr and the reflexivity of v. Since c ⊥ ⊥ 6= ⊥ also implies that c x2 6= ⊥ for every x2 :: τ ,
we can prove that the second conjunct of the precondition holds by showing that (x1, x2) ∈ ∆seq

τ,∅ and
foldr c n y1 v y2 imply

foldr c n (x1 : y1) v c x2 y2.

This is established via reasoning similar to that used above, using the definition of foldr , monotonicity
of c, and assumption (15). The conclusion of the above implication, together with the definition of build

and the previously proven (19), then gives (20). ut

Law (19) gives only partial correctness of the foldr /build rule in general because the transformed
program may be less defined than the original one. But that it holds without preconditions, even in the
presence of seq , was not previously known. To recover total correctness in law (20), c and n must be
restricted so that foldr c n is total (in addition to being strict, which it always is by the definition of
foldr ). That the precondition on c cannot be dropped from law (20) can be seen by considering the
first two instantiations preceding Theorem 8.2. The third instantiation shows that the precondition on n
cannot be dropped either. That totality of foldr c n is needed to guarantee total correctness in the presence
of seq just happens to coincide with what the folkloric approach had to say about the foldr /build rule;
indeed, this coincidence is likely responsible for its failure having gone unnoticed for so long.

It should be noted that the restrictions on c and n ensuring totality of foldr c n can actually hinder
fusion opportunities; in fact, the requirements that c ⊥ ⊥ 6= ⊥ and n 6= ⊥ are equivalent to totality
of foldr c n. While many functions consuming lists by structure — e.g., map h = foldr (λx ys →
h x : ys) [] — do indeed map non-⊥ lists to non-⊥ results, other functions expressed in terms of foldr

— even ones from Haskell’s standard prelude — break the required preconditions. A familiar example
of a function of the latter kind is the function sum = foldr (+) 0 discussed at the start of this subsection.
As with the preconditions of law (16) in the previous subsection, only sufficient criteria can be used when
verifying inside a compiler that a given instantiation fulfills c ⊥ ⊥ 6= ⊥ and n 6= ⊥.

As a final interesting observation, note that seq compromises the duality between the foldr /build and
destroy /unfoldr rules exhibited in its absence. For instance, the foldr /build rule can never produce a
program that is strictly more defined than the original (cf. law (19)), whereas we have given examples
(in Section 8.1) showing that the destroy /unfoldr rule can produce both programs which are strictly less
defined, and programs which are strictly more defined, than those from which they came.
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8.3. The concatenate vanishes for free

In [35] the function vanish++ from Figure 5 was given, together with a proof of the following law for
appropriately typed g in the absence of seq :

g [] (:) (++) = vanish++ g (21)

Read from left to right, this law can be considered as a program transformation rule that eliminates
concatenate operations from uniformly abstracted list producers. Examples of its use to improve the
performance of list-manipulating programs involving calls to ++ — some of which cannot be optimized
by other known techniques — are given in [35].

In Appendix B of [35] it was noted that in the presence of seq the transformation might improve the
termination behavior of programs. This is witnessed by the following two instantiations, each of which
makes the right-hand side of (21) more defined than the left-hand side:

g = (λn c a → seq (n ‘a‘ ⊥) n)

g = (λn c a → seq (⊥ ‘a‘ (0 ‘c‘ n)) n)

The intuitive reason for the possible increase of definedness of the transformed program (as well as
for why the definedness cannot possibly be decreased) lies in the different strictness properties of the
concatenate operation (++), on the one hand, and its abstract replacement (◦) in the efficient list imple-
mentation encapsulated by vanish++, on the other. While (◦) applied to two arbitrary arguments always
returns a non-⊥ value — namely, a λ-abstraction — applications of (++) yield ⊥ if the first argument
is [] and the second one is ⊥, or if the first argument is ⊥ and the second one is arbitrary. As a result,
the same use of seq inside g might result in ⊥ on the left-hand side of (21) and in a non-⊥ value on its
right-hand side.

The sketched proof in [35] that a converse failure of law (21) indeed cannot occur anticipated some
of the ideas from the present paper. In particular, it used an asymmetric approach, although it did not
correctly handle all the subtleties that the presence of seq entails for proofs based on free theorems. With
the logical relation constructed in Section 6, the fundamental property (11), and assumption (15), we now
more rigorously obtain the following (as well as analogous inequational laws for other vanish-combina-
tors given in [35]).

Theorem 8.3. For every closed type τ and every function

g :: ∀β. β → (τ → β → β) → (β → β → β) → β

the following holds:

g [] (:) (++) v vanish++ g (22)

Proof:
The parametricity property associated with g’s type is the following instance of law (11):

(g, g) ∈ ∆seq

∀β. β→(τ→β→β)→(β→β→β)→β,∅.
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Expanding this statement according to Figure 4 yields that for every choice of closed types τ1 and τ2, an
admissible, total, and left-closed relation R ∈ Relseq(τ1, τ2), values n1 :: τ1 and n2 :: τ2, and functions
c1 :: τ → τ1 → τ1, c2 :: τ → τ2 → τ2, a1 :: τ1 → τ1 → τ1, and a2 :: τ2 → τ2 → τ2 the following
holds:

(gτ1 6= ⊥ ⇒ gτ2 6= ⊥)

∧ ((n1, n2) ∈ R ⇒ (gτ1 n1 6= ⊥ ⇒ gτ2 n2 6= ⊥)

∧ ( (c1 6= ⊥ ⇒ c2 6= ⊥)

∧ (∀x1, x2 :: τ, y1 :: τ1, y2 :: τ2.

(x1, x2) ∈ ∆seq

τ,[R/β] ⇒ (c1 x1 6= ⊥ ⇒ c2 x2 6= ⊥)

∧ ((y1, y2) ∈ R ⇒ (c1 x1 y1, c2 x2 y2) ∈ R))

⇒ (gτ1 n1 c1 6= ⊥ ⇒ gτ2 n2 c2 6= ⊥)

∧ ( (a1 6= ⊥ ⇒ a2 6= ⊥)

∧ (∀x1, y1 :: τ1, x2, y2 :: τ2.

(x1, x2) ∈ R ⇒ (a1 x1 6= ⊥ ⇒ a2 x2 6= ⊥)

∧ ((y1, y2) ∈ R ⇒ (a1 x1 y1, a2 x2 y2) ∈ R))

⇒ (gτ1 n1 c1 a1, gτ2 n2 c2 a2) ∈ R))).

Using the fact that for the closed type τ we have ∆seq

τ,[R/β] = ∆seq

τ,∅ , dropping three conjuncts from the
above, and strengthening four preconditions, we obtain the following weaker statement:

(n1, n2) ∈ R

∧ c2 6= ⊥

∧ (∀x1, x2 :: τ, y1 :: τ1, y2 :: τ2.

(x1, x2) ∈ ∆seq

τ,∅ ⇒ c2 x2 6= ⊥ ∧ ((y1, y2) ∈ R ⇒ (c1 x1 y1, c2 x2 y2) ∈ R))

∧ a2 6= ⊥

∧ (∀x1, y1 :: τ1, x2, y2 :: τ2.

(x1, x2) ∈ R ⇒ a2 x2 6= ⊥ ∧ ((y1, y2) ∈ R ⇒ (a1 x1 y1, a2 x2 y2) ∈ R))

⇒ (gτ1 n1 c1 a1, gτ2 n2 c2 a2) ∈ R.

We instantiate as follows:

τ1 = [τ ], τ2 = [τ ] → [τ ], R = {(p, q) | ∀u :: [τ ]. p ++ u v q u}, n1 = [],

n2 = id , c1 = (:), c2 = (λx h ys → x : h ys), a1 = (++), a2 = (◦).

Permissibility of the instantiation for R follows from its equivalence to (λ p → seq p (p++)) ;v, which
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is easily established. We obtain (modulo some beta-reductions):

(∀u :: [τ ]. [] ++ u v id u)

∧ (λx h ys → x : h ys) 6= ⊥

∧ (∀x1, x2 :: τ, y1 :: [τ ], y2 :: [τ ] → [τ ].

(x1, x2) ∈ ∆seq

τ,∅ ⇒ (λh ys → x2 : h ys) 6= ⊥ ∧ ( (∀u :: [τ ]. y1 ++ u v y2 u)

⇒ (∀u :: [τ ]. (x1 : y1) ++ u v x2 : y2 u)))

∧ (◦) 6= ⊥

∧ (∀x1, y1 :: [τ ], x2, y2 :: [τ ] → [τ ].

(∀u :: [τ ]. x1 ++ u v x2 u) ⇒ (◦) x2 6= ⊥ ∧ ( (∀u :: [τ ]. y1 ++ u v y2 u)

⇒ (∀u :: [τ ]. (x1 ++ y1) ++ u v (x2 ◦ y2) u)))

⇒ (∀u :: [τ ]. (g[τ ] [] (:) (++)) ++ u v g[τ ]→[τ ] id (λx h ys → x : h ys) (◦) u).

The first conjunct of the precondition follows from the definitions of (++) and id and the reflexivity of
v. Since a λ-abstraction is always distinct from ⊥, the second conjunct of the precondition is fulfilled,
and we can prove the third one by showing that (x1, x2) ∈ ∆seq

τ,∅ and (∀u :: [τ ]. y1 ++ u v y2 u) imply

∀u :: [τ ]. (x1 : y1) ++ u v x2 : y2 u.

Using the definition of (++), this follows from assumption (15) and the monotonicity of (:). Since
(◦), as well as an application of it to only one argument, is distinct from ⊥, the fourth conjunct of
the precondition in the above implication is fulfilled, and we can prove the fifth one by showing that
(∀u :: [τ ]. x1 ++ u v x2 u) and (∀u :: [τ ]. y1 ++ u v y2 u) imply

∀u :: [τ ]. (x1 ++ y1) ++ u v (x2 ◦ y2) u.

Using the definition of (◦), this follows from the associativity and monotonicity of (++), and the tran-
sitivity of v. Having established the validity of all five conjuncts of the precondition, we can use the
conclusion of the above implication for u = [] to obtain

(g[τ ] [] (:) (++)) ++ [] v g[τ ]→[τ ] id (λx h ys → x : h ys) (◦) [] ,

from which law (22) follows by the definition of vanish++ and the fact that [] is a right unit for (++). ut

In contrast to the situation for Theorems 1.1, 8.1, and 8.2, we do not provide a second law in The-
orem 8.3, obtained from a “dual” instantiation of the parametricity property derived in its proof. The
reason is that for the instantiation of R to

v ; (λ p → seq p (p++))−1 = {(q, p) | ∀u :: [τ ]. q u v p ++ u} \ {((λu → ⊥),⊥)}

it is not possible to show that (x1, x2) ∈ R and (y1, y2) ∈ R imply (a1 x1 y1, a2 x2 y2) ∈ R for
a1 = (◦) and a2 = (++). This is because (⊥,⊥) ∈ R, but (⊥ ◦ ⊥,⊥ ++ ⊥) = ((λu → ⊥),⊥) /∈ R.
On the other hand, dropping the exclusion of ((λu → ⊥),⊥) from R is not an option because then the
relation would not be total, as is required. Recall that the counterexamples to the equational law (21)
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from the beginning of this subsection emerged exactly from the different propagation behaviors of (◦)
and (++) with respect to ⊥ arguments.

Unlike the program transformations considered in the previous two subsections, the rule for vanish ++

is not parametrized over values other than g which could somehow be constrained. Since putting any
preconditions on g itself is not possible if the only information we want to use about it is its type, there
is clearly no way to recover semantics-preservation of the vanish++ rule in the presence of seq . Hence, a
purely equational approach to free theorems would again be strictly inferior to ours here, which recovers
at least safeness of the transformation.

9. Conclusions and directions for future research

In this paper we have investigated the impact that a polymorphic strict evaluation primitive, such as
Haskell’s seq , has on free theorems derivable from polymorphic types — and the program transforma-
tions based on them — in a nonstrict functional language. We have shown that the conventional wisdom
regarding free theorems in Haskell with seq is incorrect, i.e., that quantifying only over admissible and
bottom-reflecting relations in the ∀-clause of the standard logical relation is not enough to recover from
the failure, in the presence of seq , of the standard (equational) free theorems derived from it. By ad-
dressing the subtle issues which arise when propagating up the type hierarchy restrictions imposed on a
logical relation in order to accommodate seq , we have provided a new logical relation whose parametric-
ity theorem allows the derivation of free theorems that remain valid even when seq is present. A crucial
ingredient of our approach is the use of an asymmetric logical relation, which leads to “inequational”
versions of the standard free theorems — enriched by preconditions guaranteeing their validity — for
the subset of Haskell corresponding to λ∀ with fixpoints, algebraic datatypes, and seq . Preconditions for
equational free theorems which hold even in the presence of seq can be obtained by combining those for
their two corresponding inequational variants. But the inequational approach has value in its own right
as well. As we have shown here, it allows the derivation of more free theorems than would be possible
via a purely equational revision of the standard approach. It also provides a means of performing more
detailed analyses of the impact of seq on free theorems-based program transformations than is possible
if we insist that the semantics of programs remain completely unchanged by the transformations.

It has been suggested that simply checking whether or not a function uses seq might provide a simpler
alternative to verifying the kind of preconditions we derive for our free theorems. To functions that do
not use seq we can then safely apply transformations based on standard free theorems. But for those that
do, such an analysis will only allow us to deduce that the standard transformations might fail. The goal
of the work reported here is to be able to say something more in the latter case by understanding the
conditions under which free theorems-based program transformations can safely be applied even when
seq is present.

The rule pragmas of [24] have successfully been used to incorporate standard free theorems-based
transformation rules into the Glasgow Haskell Compiler. The same approach could be used to implement
the transformation rules developed in this paper, assuming the development of “conditional” rule pragmas
that allow application of rules only when certain preconditions — such as those accompanying our free
theorems-based transformation rules — are met.

To ensure that seq impacts statements about programs only insofar as those programs actually use
it, a qualified type system along the lines of [17] could be devised and employed in derivations of free
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theorems. The basic challenge here is to determine when to use the standard relational actions for in-
terpreting function types or algebraic datatypes and when to use appropriately adapted relational actions
for doing so. If that challenge can be met, then the multi-parameter type class extension of Haskell [22]
might enable a very fine-grained analysis of the preconditions necessary for free theorems to hold. By
imposing different (from one another) restrictions on the relational interpretations of the two types over
which seq is polymorphic, this extension could be used to account for the distinct roles these relations
play in seq’s parametricity property, as well as their interplay.

Although free theorems derived from our new logical relation hold for programs which do not contain
seq at all, they may — of course — be overly restrictive in such situations compared with free theorems
obtained from the standard logical relation. On the other hand, using a (different) asymmetric logical
relation could also prove worthwhile in that setting. For example, the strongest justification for the
destroy /unfoldr rule in a nonstrict language without seq that could be proved in [14] was semantics-
preservation for strict psi that never returns Just ⊥. But by employing the asymmetry idea it should also
be possible to establish the inequational law (12) without preconditions.

The topic of free theorems for purely strict languages has been governed by the same conventional
wisdom as that for nonstrict languages which include a polymorphic strictness primitive. This conven-
tional wisdom yields, for example, that in a strict language every function filter with the type given in
the introduction fulfills the free theorem (filter (p ◦ h) [],filter p []) ∈ lift [](h) for appropriately typed
p and strict and total h. But this is not necessarily true if h = ⊥ — which could still be total because
its type could be of the form (∀α. α) → · · · , in which case no non-⊥ arguments are possible — be-
cause under strict semantics we would have filter (p ◦ h) [] = ⊥, whereas filter p [] could be different
from ⊥, in contradiction to the definition of lift [](h). It would therefore be interesting to investigate what
our approach has to say about free theorems in pure functional languages which have the type structure
considered in this paper but a strict evaluation order. Clearly, every program in such a language can be
type-preservingly translated — using seq to explicitly force the evaluation of function and constructor
arguments — into an equivalent program in a language for which our logical relation yields valid para-
metricity properties. This suggests that those parametricity properties also hold for the strict language.
However, it does not mean that the free theorems obtained by instantiating such parametricity properties
will always be the same in the strict setting as in the nonstrict setting with seq . For example, to establish
the equality stated in law (1) from the parametricity property derived from filter ’s type in the proof of
Theorem 1.1, the key condition — besides strictness and totality of h — was that p ◦ h 6= ⊥ ⇔ p 6= ⊥.
While in a nonstrict language including seq this condition is equivalent to p 6= ⊥, in a strict language it
is equivalent to p = ⊥∨h 6= ⊥. But since in a strict language law (1) obviously holds for h = ⊥ as well,
we could completely do away with all preconditions other than strictness and totality of h here. Indeed,
the first counterexample from the introduction does not break law (1) in a purely strict language. That
some preconditions imposed in the setting of a nonstrict language including seq might be superfluous
in a purely strict language is not entirely surprising, given that a program which is strict everywhere
behaves in a more disciplined fashion than one which mixes strictness and nonstrictness at will. But,
perhaps unexpectedly, the reverse situation can also arise: (filter (p ◦ h) [],filter p []) ∈ lift [](h) is a
free theorem in the setting of the present paper for p 6= ⊥ and strict and total h, but these conditions are
not sufficient in a purely strict language (as seen above). In addition to such differences that may arise
when instantiating properties derived from types to obtain free theorems in different settings, it is also
conceivable that in a purely strict language the parametricity properties themselves could be strictly less
restrictive than those in the setting of the present paper. There is much room for future research here,
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especially if one also considers functional languages in which strict evaluation is the default but laziness
can be imposed using special annotations (somewhat dually to the use of seq for introducing strictness;
cf. [30], for example).

An alternative to the denotational approach taken in the current paper is Pitts’ operational semantics-
based approach to constructing parametric models of higher-order lambda calculi [25]. The delicate
issue which arises in Pitts’ approach to parametricity is tying the operational semantics of a calculus
supporting new primitives into the relational interpretations of its types. The present paper can be seen
as providing insight into the issues which are likely to arise when modifying the operational approach
to accommodate seq , but the precise connections between the denotational style restrictions on relations
reflected in our adapted logical relation and operational style closure operators as employed by Pitts re-
main topics for further investigation. A starting point for such an investigation could be Abadi’s study [5]
of the connection between >>-closed relations (as used by Pitts in the presence of fixpoints, but absence
of seq) and admissibility.
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A. Continuity of relational interpretations of datatypes

We show that for all left-closed and continuous relations R and S the relations v ; lift Maybe(R), v
; lift (,)(R,S), and v ; lift [](R) are continuous. Similar proofs are possible for other algebraic datatypes.

A.1. Maybe

Let R ∈ Rel(τ1, τ2) be a left-closed and continuous relation. We prove the continuity of

v ; liftMaybe(R) ∈ Rel(Maybe τ1,Maybe τ2)

from the continuity of v and liftMaybe(R) as follows.
The following table lists all the possible combinations of values x and y such that (x, y) ∈ v

; liftMaybe(R). For each of these cases it also defines a value fx,y :: Maybe τ1.

x y | (x, y) ∈ v ; liftMaybe(R) fx,y ::Maybe τ1

⊥ ⊥ ⊥

⊥ Nothing Nothing

Nothing Nothing Nothing

⊥ Just b | ∃a. (a, b) ∈ R Just ⊥

Just a Just b | (a, b) ∈ v ;R Just a

The idea is to define fx,y such that it inherits the structure of y, but uses data entries from x where
available. It is easy to check that for every (x, y), (x′, y′) ∈ v ; liftMaybe(R) such that x v x′ and
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y v y′, we have fx,y v fx′,y′ . This could also be deduced from monotonicity of all functions definable
in Haskell because in fact fx,y can be computed as

case y of Nothing → Nothing

Just b → Just (case x of Just a → a).

Moreover, for all the above cases it is easy to check that x v fx,y holds and, since R is left-closed, that
(fx,y, y) ∈ liftMaybe(R) holds as well.

Now, consider chains x1 v x2 v . . . and y1 v y2 v . . . , where for every i, (xi, yi) ∈ v
; liftMaybe(R). The above observations imply that fx1,y1

v fx2,y2
v . . . and that for every i we have

xi v fxi,yi
and (fxi,yi

, yi) ∈ liftMaybe(R). Since v and liftMaybe(R) are continuous, this implies that⊔
xi v

⊔
fxi,yi

and (
⊔

fxi,yi
,
⊔

yi) ∈ liftMaybe(R), and hence

(
⊔

xi,
⊔

yi) ∈ v ; liftMaybe(R).

A.2. Pairs

Let R ∈ Rel(τ1, τ2) and S ∈ Rel(τ ′
1, τ

′
2) be left-closed and continuous relations. The continuity of

v ; lift (,)(R,S) ∈ Rel((τ1, τ
′
1), (τ2, τ

′
2))

is proved from the continuity of v and lift (,)(R,S) using the technique developed in Section A.1, but
using the following table:

x y | (x, y) ∈ v ; lift (,)(R,S) fx,y :: (τ1, τ
′
1)

⊥ ⊥ ⊥

⊥ (b, b′) | ∃a, a′. (a, b) ∈ R ∧ (a′, b′) ∈ S (⊥,⊥)

(a, a′) (b, b′) | (a, b) ∈ v ;R ∧ (a′, b′) ∈ v ;S (a, a′)

A.3. Lists

Let R ∈ Rel(τ1, τ2) be a left-closed and continuous relation. The continuity of

v ; lift [](R) ∈ Rel([τ1], [τ2])

is proved from the continuity of v and lift [](R) using the technique developed in Section A.1, but using
the following table:

x y | (x, y) ∈ v ; lift [](R) fx,y :: [τ1]

⊥ ⊥ ⊥

⊥ [] []

[] [] []

⊥ b :b′ | ∃a, a′. (a, b) ∈ R ∧ (a′, b′) ∈ lift [](R) ⊥ :f⊥,b′

a :a′ b :b′ | (a, b) ∈ v ;R∧ (a′, b′) ∈ v ; lift [](R) a :fa′,b′

Note that the definition of fx,y has a coinductive flavor since lift [](R) is defined as a greatest fixpoint.
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