
Code Selection by Tree Series Transducers

Björn Borchardt�

Dresden University of Technology,
Department of Computer Science, 01062 Dresden, Germany

borchard@tcs.inf.tu-dresden.de

Abstract. In this paper we model code selection by tree series transduc-
ers. We are given an intermediate representation of some compiler as well
as a machine grammar with weights, which reflect the number of machine
cycles of the instructions. The derivations of the machine grammar are
machine codes. In general, a machine grammar is ambiguous and hence
there might exist more than one derivation of an intermediate code. We
show how to filter out a cheapest such derivation and thereby perform
tree parsing and tree pattern matching using tree series transducers.

1 Introduction

In this paper we model code selection (cf.[GG78]) by tree series transducers
(for short: trstr’s). In general, a machine grammar is ambiguous and hence,
for some intermediate representation (for short: IR) there might exist several
machine codes. We would like to find a cheapest machine code, i.e., a machine
code with the least number of machine cycles. To visualize this, let us consider
the following example (cf. [GL97]): for the C-expression (f + i), where f and i
are of type float and int, respectively, a cheapest machine code for an Intel
iapX86 instruction set should be generated. All floating point operations are
performed in an internal format. There are several possibilities for encoding
(f + i) in the Intel instruction set: first both f and i are loaded and converted
into the internal format and then put into registers, from which the floating point
addition finally takes its arguments. Alternatively, only f is loaded and converted
into the internal format and put into a register; the floating point addition
then would take i from the memory and implicitly perform the loading and
converting, or vice versa. It turns out that the second of these alternatives is best.

In this paper we follow and extend the approach of [FSW94], in which tech-
niques of tree automata (e.g., subset construction) are applied to code selection.
We generate the cheapest machine code by using the more powerful model of
trstr’s (cf. [EFV02]). This gives us the chance to describe the cheapest machine
code as output of a sequence of trstr’s. Let us therefore briefly recall the concept
of (polynomial, top-down) trstr’s. Basically, trstr’s generalize tree transducers
(for short: trtr’s) by associating to every transition a weight, which is taken from

� Financially supported by the German Research Foundation (DFG, grant GK 334/3).

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 57–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:borchard@tcs.inf.tu-dresden.de

58 B. Borchardt

a semiring. The tree transformation of a trstr is similar to that of classical trtr,
but additionally weights are accumulated: the weights of the transitions of a run
on an input tree s are multiplied and finally the weights of all accepting runs
which translate s to the same output tree t are summed up. Hence s is trans-
formed by M into the tree series τM (s). The support of τM (s) can be considered
as the set of output trees and

(
τM (s)

)
(t) denotes the weight of the transforma-

tion from s to t. We note that trstr’s also cover (top-down) finite state weighted
tree automata (for short: w-fta, cf. [BR82]).

We select the cheapest machine code by modeling the given machine grammar
G by a regular, weighted tree grammar. Then the trstr MTP

G translates the
given IR s into the tree series τMTP

G
(s). Each tree of the support of this tree

series uniquely corresponds to a machine code, i.e., a derivation of the associated
regular, weighted tree grammar, and the coefficient of such an output tree is
the number of required machine cycles of the corresponding machine code, i.e.,
the weight of the corresponding derivation (tree parsing; also cf. [GG78]). The
cheapest machine code of s then can be found by searching in the tree series
τMTP

G
(s) for a tree with minimal weight. We also show how to compute this

minimal weight by providing the w-fta Mmincost
G . Moreover, we would like to find

all occurrences of the right hand side of a rule r of G in s (tree pattern matching;
also cf. [HO82]). Therefore we present the w-fta MPM

r̃ , which generates the set
of all occurrences of the right hand side of r in the input tree.

Let us point out the two main improvements to [FSW94]. There tree parsing is
done by representing machine code as a computation of tree automata, while we
generate the machine code explicitly. Moreover, tree pattern matching is solved
in the aforementioned paper by deciding, whether or not a pattern is contained
in the input tree, whereas we compute all the references on the occurrences of
the pattern in the input tree.

This paper is organized as follows: in Sect. 2 we recall basic concepts, while
the code selection problem is attacked in Sect. 3. We conclude this paper in
Sect. 4 by stating open problems.

2 Preliminaries

2.1 Notions on Trees

Throughout this paper IN and IN+ denote the sets of all non-negative integers
and all positive integers, respectively. Moreover, for every i, j ∈ IN, [i, j] = {n ∈
IN | i ≤ n ≤ j}. We abbreviate [1, i] by [i]. Also, let x1, x2, . . . be variables,
X = {x1, x2, . . . }, and Xn = {x1, . . . , xn} for every n ∈ IN. A ranked alphabet is
a tuple (Σ, rk) consisting of a non-empty, finite set Σ being disjoint withX and a
rank mapping rk : Σ → IN. We always assume the rank mapping to be implicitly
given and write Σ rather than (Σ, rk). Moreover, let Σ(k) = {σ ∈ Σ | rk(σ) = k}
for every k ∈ IN and let maxrk(Σ) ∈ IN = max{k ∈ IN | Σ(k) �= ∅}. Now let
X ′ ⊆ X. The set of trees over Σ (indexed by X ′) is denoted by TΣ(X ′) and
defined to be the smallest subset T of (Σ ∪X ′ ∪{(,), ,})∗ satisfying (i) X ′ ⊆ T

Code Selection by Tree Series Transducers 59

and (ii) given k ∈ IN, σ ∈ Σ(k), and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T .
As usual, we set TΣ = TΣ(∅). We will be short in notation and write s =
σ(s1, . . . , sk) ∈ TΣ(X ′) as a shorthand for “there exist k ∈ IN, σ ∈ Σ(k), and
s1, . . . , sk ∈ TΣ(X ′)”. To define the tree substitution let t ∈ TΣ(Xn) for some
n ∈ IN and s1, . . . , sn ∈ TΣ(X). Then t[s1, . . . , sn] ∈ TΣ(X) is obtained from t
by replacing simultaneously every occurrence of every variable xi ∈ Xn by si.

Let us now define some properties of a tree s ∈ TΣ(X ′). The number #X′(s) ∈
IN of occurrences of elements of X ′ in s and the set pos(s) ∈ P(IN∗) of positions
of s are given by #X′(s) = 1 and pos(s) = {ε} if s ∈ X ′, and #X′(s) =∑
i∈[k] #X′(si) and pos(s) = {ε} ∪ {i.o | i ∈ [k], o ∈ pos(si)} provided that

s = σ(s1, . . . , sk) ∈ TΣ(X ′). Further, for every i ∈ IN the position o(s, i) ∈ pos(s)
of the ith occurrence of an element of X ′ in s is o(s, 1) = ε provided that s ∈ X ′,
o(s, i) = j.o(sj , i′) if s = σ(s1, . . . , sk) ∈ TΣ(X ′) and there exist an i′ ∈ IN and a
j ∈ [k] such that j =

∑
l∈[j−1] #X′(sl)+i′; otherwise o(s, i) is undefined. Further,

for every o ∈ pos(s) the subtree s|o ∈ TΣ of s at position o is defined by s|o = s
and provided that o = ε and if o = i.o′ for some i ∈ [k] and o′ ∈ pos(si) then
s|o = si|o′ . We call s a subtree of t, denoted by s ≤ t if s = t|o for some o ∈ pos(t).
Finally, for every o ∈ pos(s) the label labs(o) ∈ Σ of s at position o is given by
labs(o) = s provided that s ∈ X ′, labs(o) = σ if s = σ(s1, . . . , sk) ∈ TΣ(X ′) and
o = ε, and labs(o) = labsi

(o′), if s = σ(s1, . . . , sk) ∈ TΣ(X ′) and o = i.o′ for
some i ∈ [k] and o′ ∈ pos(si).

For a given n ∈ IN and ranked alphabet Σ, a pattern (also: (Σ-n-) context)
is a tree C ∈ (Xn) such that every variable xi ∈ Xn occurs precisely once in C.
The class of all Σ-n-contexts is denoted by CΣ(Xn). If C ∈ CΣ(Xn), t ∈ TΣ ,
and o ∈ pos(t), then C is a pattern of t at position o, if t|o = C[t1, . . . , tn] for
some trees t1, . . . , tn ∈ TΣ . Finally, occC(t) is the set of all o ∈ pos(t) of t such
that C is a pattern of t at o.

2.2 Semirings

A semiring is tuple A = (A,⊕,	,0,1) satisfying the following conditions: (i)
(A,⊕,0) is a commutative monoid (i.e., ⊕ is a binary, associative, commutative
operation on A with the neutral element 0), (ii) (A,	,1) is a monoid, (iii) 	
distributes over ⊕, (i.e., a	(b⊕c) = (a	b)⊕(a	c) and (a⊕b)	c = (a	c)⊕(b	c)
for every a, b, c ∈ A), and (iv) 0 is absorptive (i.e., 0 	 a = 0 = a 	 0 for
every a ∈ A). For a finite index set I = {i1, . . . , in} and semiring elements
aij ∈ A for every j ∈ [n] we write

⊕
i∈I ai for ai1 ⊕ · · · ⊕ ain provided that

I �= ∅. For the sake of completeness we set
⊕

i∈I ai = 0 if I = ∅. Throughout
this paper let A = (A,⊕,	,0,1) be a semiring. In this paper we make us of
the Boolean semiring Bool = ({0, 1},∨,∧, 0, 1), the Tropical semiring Trop =
(IN ∪ {+∞},min,+,+∞, 0), and for a (not necessarily finite) alphabet Σ the
language semiring LangΣ = (P(Σ),∪, ., ∅, {ε}).

2.3 Tree Series and Tree Series Substitution

Let Σ be a ranked alphabet and X ′ ⊆ X. A (formal) tree series (over Σ and A)
is a total mapping S : TΣ(X ′)→ A. The image S(t) ∈ A is called coefficient of

60 B. Borchardt

t ∈ TΣ(X ′), and as usual, we write (S, t) rather than S(t). The tree series, which
maps every t ∈ TΣ(X ′) to 0, is denoted by 0̃. The support of S is defined to be the
set supp(S) = {t ∈ TΣ(X ′) | (S, t) �= 0}. We will be short in notation and write⊕

t∈supp(S)(S, t) t to denote
⊕

t∈TΣ
(S, t) t. The tree series S is called polynomial,

if its support is finite. Further, A〈〈TΣ(X ′)〉〉 and A〈TΣ(X ′)〉 are the classes of
all tree series and of all polynomial tree series over Σ and A, respectively. The
sum of two tree series S, T ∈ A〈〈TΣ(X ′)〉〉 is denoted by S + T and defined by
pointwise addition, i.e. (S + T, s) = (S, s)⊕ (T, s) for every s ∈ TΣ(X ′).

To define the tree series substitution (cf. [EFV02]) let T ∈ A〈TΣ(Xk)〉 and
S = (S1, . . . , Sk) ∈ A〈TΣ〉k for some k ∈ IN. Then for every s ∈ TΣ

(T ← S, s) =
⊕

t∈supp(T)
(∀i∈[k]):ti∈supp(Si)

s=t[t1,...,tk]

(T, t)	 (S1, t1)	 · · · 	 (Sk, tk) .

2.4 Regular, Weighted Tree Grammars

Definition 1 (cf.[AB87]). A regular, weighted tree grammar is defined to be a
6-tuple G = (N , Σ, I,R,A,wt) satisfying N ∩Σ = ∅, where N and Σ are ranked
alphabets (of non-terminals and terminals, respectively) with N = N (0), I ∈ N
(the initial non-terminal), R is a finite set (of rules) N → s, where N ∈ N ,
s ∈ TΣ(N)\N , and wt : R → A is the weight mapping. Let r = (N → s) ∈ R be
a rule. The type of r is type(r) = (N1, . . . , Nn) → N , where (N1, . . . , Nn) ∈ Nn

is the sequence of non-terminals, which is obtained by reading the leaves of s from
left to right and omitting all terminals. Moreover, we denote the right hand side
s of r by RHS(r) and define the set RHS(G) = {RHS(r) | r ∈ R}.

In order to define the semantics of a regular, weighted tree grammar G let
us introduce the notation r̃ for some rule r ∈ R of type (N1, . . . , Nn) → N : we
define r̃ ∈ CΣ(Xn) as the context, which is obtained from RHS(r) by replacing
Ni by xi for every i ∈ [n]. Moreover, let ∆(G) = {r(n) | r ∈ R, type(r) =
(N1, . . . , Nn) → N} be a ranked alphabet. An N -derivation (tree) of s ∈ TΣ
(with respect to G) is a tree ψ = r(ψ1, . . . , ψn) ∈ T∆(G) such that r ∈ R is
of type (N1, . . . , Nn) → N and there exist trees s1, . . . , sn ∈ TΣ with s =
r̃[s1, . . . , sn] and ψi is an Ni-derivation of si for every i ∈ [n]. An I-derivation
of s is also called a derivation (tree) (also: abstract syntax tree) of s. The set
of all derivations of s with respect to G is denoted by derG(s). The weight
of an N -derivation r(ψ1, . . . , ψn) where r ∈ R is of type (N1, . . . , Nn) → N
and ψi is a Ni-derivation for every i ∈ [n] is defined by wt(r(ψ1, . . . , ψn)) =
wt(r)	 wt(ψ1)	 · · · 	 wt(ψn).

2.5 Tree Series Transducer

Let us now recall the definition of trstr’s. Being more precise, we instantiate the
concept of trstr’s introduced in [EFV02]: for our purposes it suffices to consider
top-down trstr, which is reflected in Condition (b) of the next paragraph; also,

Code Selection by Tree Series Transducers 61

we restrict the devices to polynomial trstr’, i.e., the weight of every transition is
a polynomial tree series.

The transitions of a trstr and their weights are coded in a tree representation
(over a non-empty ranked alphabet Q = Q(1) of states, ranked alphabets Σ and
∆ (of input and output symbols, respectively), and A), which is a family µ =
(µk : Σ(k) → A〈T∆(X)〉Q×Q(Xk)∗ | k ∈ IN) of mappings such that

(a) for every σ ∈ Σ(k) there exist only finitely many indices (q, w) ∈ Q×Q(Xk)∗

satisfying µk(σ) �= 0̃ and
(b) for every σ ∈ Σ(k) and (q, w) ∈ Q×Q(Xk)∗ it holds that supp(µk(σ)q,w) ⊆

CΣ(Xl), where l denotes the length of w.

The semantics of a trstr is defined in terms of the mapping hµ : TΣ →
A〈T∆〉Q, given for every s = σ(s1, . . . , sk) ∈ TΣ and q ∈ Q by

hµ(s)q =
⊕

w=q1(xi1)...ql(xil
)∈Q(Xk)∗

µk(σ)q,w ←
(
hµ(si1)q1 , . . . , hµ(sil)ql

)
.

Definition 2 ([EFV02]). A (polynomial, top-down) tree series transducer (for
short: trstr) is a tuple M = (Q,Σ,∆,Qd,A, µ), where Q = Q(1), Σ, and ∆ are
ranked alphabets, Qd ⊆ Q, and µ is a tree representation over Q, Σ, ∆, and
A. Moreover, M is called tree transducer (for short: trtr), if A = Bool, and
it is called (finite state) weighted tree automaton (for short: w-fta) if Σ =
∆ and for every k ∈ IN, σ ∈ Σ(k), q ∈ Q, and w ∈ Q(Xk)∗ it holds that
µk(σ)q,w = a σ(x1, . . . , xk) for some a ∈ A provided that w = q1(x1) . . . qk(xk),
and µk(σ)q,w = 0̃ otherwise. The semantics of M is a mapping τM : TΣ →
A〈T∆〉, which is defined for every s ∈ TΣ by τM (s) =

⊕
q∈Qd

hµ(s)q.

As usual, we simplify notations for a trtr by writing M = (Q,Σ,∆, F, µ)
rather than M = (Q,Σ,∆, F,Bool, µ) and identifying every tree series occurring
in the syntax or semantics of M with its support. Moreover, the generation of the
output tree by a w-fta is superfluous. Further, if µk(σ)q,w �= 0̃, then w is of type
q1(x1) . . . qk(xk). In particular, µk(σ)q,w with w not being of the aforementioned
type do not contribute to any generated tree series. We therefore shorten notation
by writing M = (Q,Σ,Qd,A, µ) and µk(σ)q,(q1,...,qk) = a rather than M =
(Q,Σ,Σ,Qd,A, µ) and µk(σ)q,(q1(x1),...,qk(xk)) = a σ(x1, . . . , xk), respectively.
Also, in the accepted tree series τM (s) we omit the output tree, i.e., a stands
for a s. Hence, every input tree is accepted by a w-fta with a semiring element.
Thus the semantics of M also can be considered as a tree series, which we denote
by SM .

3 Code Selection

For the rest of this section let G = (N , Σ, I,R,Trop,wt) be a regular, weighted
tree grammar and s ∈ TΣ .

62 B. Borchardt

3.1 Tree Parsing

In this section we generate a representation of all derivations of s together with
their costs, i.e. we solve the (extended) tree parsing problem (cf. [GG78]):

(Extended) Tree Parsing Problem: Compute explicitly derG(s)
and the weight of every ψ ∈ derG(s).

Therefore we define the trstr MTP
G . This trstr generates for every input tree t

a tree series the support of which uniquely corresponds to derG(t). Moreover, the
coefficient of a tree contained in supp(τMTP

G
) is the weight of the corresponding

derivation.
Let us first show, how we represent a derivation ψ ∈ derG(s). We introduce for

every k ∈ [0,maxrk(Σ)] a symbol ek. The pseudo-code tree also contains nodes
the label of which represents a rule r ∈ R and the rank of which equals the rank of
the topmost element of RHS(r): ∆pseu = {e(k)k | k ∈ [0,maxrk(Σ)]}∪{r(k)pseu | r ∈
R, k = rk(labRHS(r)(ε))}. By definition it holds that ψ = r(ψ1, . . . , ψn) for some
r ∈ R, n ∈ IN, and ψ1, . . . , ψn ∈ derG. The pseudo-code tree of ψ is inductively
defined to be the tree pseu(ψ) = Cr[pseu(ψ1), . . . ,pseu(ψn)] ∈ T∆pseu , where
Cr ∈ C∆pseu(Xn) is a context satisfying pos(Cr) = pos(r̃) (= pos(RHS(r))) and
for every o ∈ pos(C),

labCr (o) =

⎧
⎪⎨

⎪⎩

rpseu , if o = ε

ek , if o �= ε and labr̃(o) ∈ Σ(k) for some k ∈ IN
labr̃(o) , otherwise .

Clearly, from the pseudo-code tree the original computation ψ can be induc-
tively reobtained by replacing the context Cr by the n-ary label r.

Let us now present the trstr MTP
G , which solves the tree parsing problem. It

traverses the input tree s and successively replaces patterns of s corresponding to
a right hand side of some r ∈ R by Cr also checking, whether the “connecting”
non-terminals are of appropriate type. Hence the states ofMTP

G are all the proper
subtrees of trees contained in RHS(G) as well as the initial non-terminal I. The
transitions are defined in the obvious way, where the weight of the rule r is
assigned to the transition, which consumes the topmost element of RHS(r).

Definition 3. The trstr MTP
G = (Q,Σ,∆, F,A, µ) is defined by Q = {I}∪{t′ ∈

TΣ(N) | (∃t ∈ RHS(G)) : t′ < t}, ∆ = ∆pseu, Qd = {I}, A = Trop, and for
every k ∈ IN, σ ∈ Σ(k), w = q1(xi1) . . . ql(xil) ∈ Q(Xk)∗, and q ∈ Q it holds that

µk(σ)q,w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wt(r) rpseu(x1, . . . , xk) , if w = q1(x1) . . . qk(xk),
r = (q → σ(q1, . . . , qk)) ∈ R

0 ek(x1, . . . , xk) , if w = q1(x1) . . . qk(xk),
q = σ(q1, . . . , qk)

+̃∞ , otherwise .

Code Selection by Tree Series Transducers 63

Lemma 1. It holds that τMTP
G

(s) =
⊕

ψ∈derG(s) wt(ψ) pseu(ψ).

Example 1. Let us consider the regular, weighted tree grammar G given by N =
{I, A,B}, Σ = {σ(2), α(0)}, and R = {r1, r2, r3, r4}, where

r1 : I → σ(σ(A,A), A) wt(r1) = 3, r3 : I → σ(B,α) wt(r3) = 2,
r2 : A → α wt(r2) = 1, r4 : B → σ(A,A) wt(r4) = 3.

According to Definition 3 the set of states ofMTP
G isQ = {I, A,B, α, σ(A,A)},

where I is the unique designated state. Moreover,

r1 : µ2(σ)I, σ(A,A)(x1)A(x2) = 3 (r1)pseu(x1, x2),
µ2(σ)σ(A,A), A(x1)A(x2) = 0 e2(x1, x2),

r2 : µ0(α)A, () = 1 (r2)pseu,

r3 : µ2(σ)I, B(x1)α(x2) = 2 (r3)pseu(x1, x2),
µ0(α)α, () = 0 e0,

r4 : µ2(σ)B, A(x1)A(x2) = 3 (r4)pseu(x1, x2),

and the not yet defined entries of the tree representation µ are set +̃∞. Let us
consider the input tree s = σ(σ(α, α), α). Clearly, derG(s) = {ψ1, ψ2}, where
ψ1 = r1(r2, r2, r2), wt(ψ1) = 6, ψ2 = r3(r4(r2, r2)), and wt(ψ2) = 7. Let us
now compute τMTP

G
(s). For this purpose we calculate the characteristic vec-

tor hµ(s) of s, which is shown in the following table, where t1 and t2 denote
the trees pseu(ψ1) = (r1)pseu(e2((r2)pseu, (r2)pseu), (r2)pseu) and pseu(ψ2) =
(r3)pseu((r4)pseu((r2)pseu, (r2)pseu), e0), respectively.

hµ(t)q α σ(α, α) s

I +̃∞ +̃∞ min {6 t1, 7 t2}
A 1 (r2)pseu +̃∞ +̃∞
B +̃∞ 5 (r4)pseu((r2)pseu, (r2)pseu) +̃∞
α 0 e0 +̃∞ +̃∞

σ(A,A) +̃∞ 2 e2((r2)pseu, (r2)pseu) +̃∞
Consequently, τMTP

G
(s) = hµ(s)I = min {6 pseu(ψ1), 7 pseu(ψ2)}.

3.2 Cost of a Cheapest Derivation

Now we compute the weight of a cheapest derivation of s with respect to G by the
w-fta Mmincost

G , which works very similar to MTP
G . Rather than replacing input

symbols it just copies them. Moreover, it accumulates in every run the weight of
a derivation of the input tree. Since a w-fta finally sums up (in Trop: takes the
minimum) over the weights of all successful runs, Mmincost

G indeed computes the
minimum of the weights of all derivations of the input tree.

Definition 4. The w-fta Mmincost
G = (Q,Σ,Qd,A, µ) is defined by Q = {I} ∪

{t′ ∈ TΣ(N) | (∃t ∈ RHS(G)) : t′ < t}, Qd = {I}, A = Trop, and for every

64 B. Borchardt

k ∈ IN, σ ∈ Σ(k), q = (q1, . . . , qk) ∈ Qk, and q ∈ Q it holds that

µk(σ)q,q =

⎧
⎪⎨

⎪⎩

wt(r) , if r = (q → σ(q1, . . . , qk)) ∈ R
0 , if q = σ(q1, . . . , qk)
+∞ , otherwise .

Lemma 2. It holds that (SMmincost
G

, s) = min{wt(ψ) ∈ IN | ψ ∈ derG(s)}.
The pseudo-code tree of a derivation having minimal weight is obtained by

searching in τMTP
G

(s) for an output tree with the coefficient (SMmincost
G

, s).

3.3 Obtaining the Cheapest Machine Code

In this section we translate each pseudo-code tree pseu(ψ) into its correspond-
ing machine code ψ by the trtr M trans

G . Clearly, the input ranked alphabet
of this trtr is ∆pseu and its output ranked alphabet is ∆(G) = {r(n) | r ∈
R, type(r) = (N1, . . . , Nn) → N}. Now let us show the states and transitions
of M trans

G . For this purpose let us consider the pseudo-code tree pseu(ψ) =
Cr[pseu(ψ1), . . . ,pseu(ψn)] for some rule r ∈ R of type N → (N1, . . . , Nn)
and Ni-derivation ψi for every i ∈ [n]. The trtr M trans

G should generate for this
particular input tree the set {r(ψ1, . . . , ψn)}. By traversing pseu(ψ) the device
consumes the topmost symbol rpseu, generates {r(x1, . . . , xn)}, and changes to
w = q1(x1) . . . ql(xl). Since M trans

G should substitute each of the variables xi of
{r(x1, . . . , xn)} by {ψi} (which is generated by the “subrun” on pseu(ψi)), the
automaton has to traverse Cr to the node at position o(Cr, i) when fulfilling the
computation of qi(xi). Therefore all the tuples (t, i) are states of M trans

G where
t is a subtree Cr for some rule r of G and i is a positive integer such that t
contains at least i variables. Further, (I, 1) is a state. In particular, it is the
unique designated state of M trans

G . The transitions are defined according to the
aforementioned procedure.

Definition 5. Let M trans
G = (Q,Σ,∆,Qd, µ) be the trtr which is given by Q =

{(I, 1)} ∪ {(t, i) | (∃i ∈ IN+)(∃r ∈ R) : t < Cr, o(t, i) defined}, ∆ = ∆(G),
and Qd = {(I, 1)}. Moreover, for every k ∈ IN, q ∈ Q, and σ ∈ Σ(k), w =
(q1(xi1), . . . , ql(xil)), it holds that

µk(σ)q,w

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{r(x1, . . . , xl)} , if (∃r = N → t ∈ R), (∀j ∈ [l]), (∃j′ ∈ [l]) :
Cr = σ(Cr|1, . . . , Cr|k) ∈ CΣ(Xl), q = (N, 1),
(
qj = (Cr|ij , j′) ⇐⇒ o(Cr, j) = ij .o(Cr|ij , j′)

)

{x1} , if (∃t ∈ TΣ(Xl), (∃i ∈ [k]), (∃j, j′ ∈ IN) :
σ = ek, t = σ(t|1, . . . , t|k), q = (t, j), l = 1,
(
q1 = (t|i1 , j′) ⇐⇒ o(t, j) = i1.o(t|i1 , j′)

)

∅ , otherwise .

Code Selection by Tree Series Transducers 65

Lemma 3. For every ψ ∈ derG(s) it holds that τMtrans
G

(pseu(ψ)) = {ψ}.
Example 2. Let us reconsider the regular, weighted tree grammar G of Ex-
ample 1. According to Definition 5 the set of states of M trans

G is given by
Q = {(I, 1), (A, 1), (B, 1), (e2(A,A), 1), (e2(A,A), 2)}, where (I, 1) is the unique
designated state. The transitions having a weight different from ∅ are

Cr1 : µ2((r1)pseu)(I,1), (e2(A,A),1)(x1).(e2(A,A),2)(x1).(A,1)(x2)
= {r1(x1, x2, x3)},

µ2(e2)(e2(A,A),1), (A,1)(x1) = {x1},
µ2(e2)(e2(A,A),2), (A,1)(x2) = {x1},

Cr2 : µ0((r2)pseu)(A,1), () = {r2},
Cr3 : µ2((r3)pseu)(I,1), (B,1)(x1) = {r3(x1)},
Cr4 : µ2((r4)pseu)(B,1), (A,1)(x1).(A,1)(x1) = {r4(x1, x2)}.

Let us now consider pseu(ψ1) = (r1)pseu(e2((r2)pseu, (r2)pseu), (r2)pseu), which we
generated in Example 1. The following table shows all the intermediates steps
of the translation of M trans

G from pseu(ψ1) to {ψ1}.
hµ(t)q (r2)pseu e2((r2)pseu, (r2)pseu) pseu(ψ1)
(I, 1) ∅ ∅ {r1(r2, r2, r2)}
(A, 1) {r2} ∅ ∅
(B, 1) ∅ ∅ ∅

(e2(A,A), 1) ∅ {r2} ∅
(e2(A,A), 1) ∅ {r2} ∅

In particular, τMtrans
G

(ψ1) = hµ(pseu(ψ1))(I,1) = {r1(r2, r2, r2)} = {ψ1}.

3.4 Tree Pattern Matching

In this section we attack the tree pattern matching problem, i.e., for a given
pattern C /∈ X we generate the set occC(s) of occurrences of the pattern C in
an input tree s ∈ TΣ (cf. [HO82]).

Tree Pattern Matching Problem: Let s ∈ TΣ and C ∈ CΣ(Xn)\
Xn for some n ∈ IN. Compute the set occC(s).

The tree pattern matching problem is solved by the w-fta MPM
C over LangIN.

By letting MPM
C run on the input tree s ∈ TΣ we obtain a set containing an

element o ∈ occC(s). How is this o computed? The automaton traverses s start-
ing at its root as far as it assumes an occurrence of C. It also outputs as a
weight the set containing the position of s, at which it assumes the copy of C.
By consuming the top-most symbol of this assumed occurrence of C it changes
the state keeping the information that it just has consumed the root of C. Now
MPM
C either meets the whole pattern C and consumes it without changing the

66 B. Borchardt

up to now generated output or it stops. Clearly, if the w-fta has consumed a
copy of C, then it has to consume the subtrees of s at the open position of the
copy of C and keep the information that a pattern C was found. The traversing
of s up to the occurrence of C is done in a state C, while the consumption of
the pattern C is done in the states t < C, t /∈ X. The traversing of the subtrees
at the open positions of C is done in the state ⊥.

Definition 6. Let n ∈ IN. Moreover, let C ∈ CΣ(Xn) \Xn. The w-fta MPM
C =

(Q,Σ,Qd,A, µ) is defined by Q = {⊥}∪ {t ∈ TΣ(Xn) \Xn | t ≤ C}, Qd = {C},
A = LangIN, and for every k ∈ IN, σ ∈ Σ(k), q = (q1, . . . , qk) ∈ Qk, q ∈ Q, and
l ∈ [k] by

µk(σ)q,q

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ε} , if
(
(∀i ∈ [k]) : q = qi = ⊥)

or
(
(∃I ⊆ [k]), (∀i ∈ I), (∀j ∈ [k] \ I), (∃Ti, Tj ∈ T∆(Xn)) :
Ti = labi(q) ∈ Xn, Tj = qj , q = σ(T1, . . . , Tk), qi = ⊥,
qj ∈ TΣ(Xn)

)

{l} , if (∀i ∈ [k] \ {l}) : ql = C = q, qi = ⊥,
∅ , otherwise .

Lemma 4. For every n ∈ IN and C ∈ CΣ(Xn) \Xn, (SMPM
C
, s) = occC(s).

4 Conclusion and Open Problems

We extended the techniques of [FSW94] for code selection by using trstr’s rather
than tree automata and represented the cheapest machine code as output of a
sequence of trstr’s. Thereby we solved the tree parsing and the tree pattern
matching problems by trstr’s. It remains to “optimize”, i.e., determinize and
minimize these devices. In particular, it is an interesting question under which
conditions trstr’s over Trop can be determinized and minimized.

Acknowledgment

I would like to thank the unknown referees as well as Heiko Vogler, Andreas
Maletti, and Janis Voigtländer for their helpful comments on previous versions
of this paper.

References

[AB87] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleenes theo-
rem. Information Processing Letters, 24(1):1–4, January 1987.

[BR82] J. Berstel and C. Reutenauer. Recognizable formal power series on trees.
Theoretical Computer Science, 18(2):115–148, 1982.

Code Selection by Tree Series Transducers 67

[EFV02] J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree series
transformations. J. Automata, Languages and Combinatorics, 7:11–70, 2002.

[FSW94] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree automata for code selection.
Acta Informatica, 31(8):741–760, 1994.

[GG78] R.S. Glanville and S.L. Graham. A new method for compiler code generation.
In Proceedings of the 5th ACM Symposium on Principles of Programming
Languages, pages 231–240, 1978.

[GL97] K.J. Gough and J. Ledermann. Optimal code-selection using MBURG. Pre-
sented to the 20th Australian Computer Science Conference, Sydney, 1997.

[HO82] C. Hoffmann and M.J. O’Donnell. Pattern matching in trees. J. ACM,
29:68–95, 1982.

	Introduction
	Preliminaries
	Notions on Trees
	Semirings
	Tree Series and Tree Series Substitution
	Regular, Weighted Tree Grammars
	Tree Series Transducer

	Code Selection
	Tree Parsing
	Cost of a Cheapest Derivation
	Obtaining the Cheapest Machine Code
	Tree Pattern Matching

	Conclusion and Open Problems

