Preface

The purpose of this Handbook is to highlight both theory and applications of
weighted automata.

Weighted finite automata are classical nondeterministic finite automata
in which the transitions carry weights. These weights may model, e.g., the
cost involved when executing a transition, the amount of resources or time
needed for this, or the probability or reliability of its successful execution. The
behavior of weighted finite automata can then be considered as the function
(suitably defined) associating with each word the weight of its execution.
Clearly, weights can also be added to classical automata with infinite state
sets like pushdown automata; this extension constitutes the general concept
of weighted automata.

To illustrate the diversity of weighted automata let us consider the follow-
ing scenarios. Assume that a quantitative system is modelled by a classical
automaton in which the transitions carry as weights the amount of resources
needed for their execution. Then the amount of resources needed for a path in
this weighted automaton is obtained simply as the sum of the weights of its
transitions. Given a word, we might be interested in the minimal amount of
resources needed for its execution, i.e., for the successful paths realizing the
given word. In this example, we could also replace the “resources” by “profit”
and then be interested in the maximal profit realized, correspondingly, by a
given word. Furthermore, if the transitions carry probabilities as weights, the
reliability of a path can be formalized as the product of the probabilities of its
transitions, and the reliability of a word could be defined again as the maxi-
mum of the reliabilities of its successful paths. As another example, we may
obtain the multiplicity of a word, defined as the number of paths realizing it,
as follows: let each transition have weight 1; for paths take again the product
of the weights of its transitions (which equals 1); then the multiplicity of a
word equals the sum of the weights of its successful paths. Finally, if in the
latter example we replace sum by “maximum”, weight 1 is associated to a
word if and only if it is accepted by the given classical automaton.
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In all these examples, the algebraic structure underlying the computa-
tions with the weights is that of a semiring. Therefore, we obtain a uniform
and powerful automaton model if the weights are taken from an abstract
semiring. Here the multiplication of the semiring is used for determining the
weight of a path, and the weight of a word is then obtained by the sum of the
weights of its successful paths. In particular, classical automata are obtained
as weighted automata over the Boolean semiring. Many constructions and al-
gorithms known from classical automata theory can be performed very gener-
ally for such weighted automata over large classes of semirings. For particular
properties, sometimes additional assumptions on the underlying semiring are
needed.

Another dimension of diversity evolves by considering weighted automata
over discrete structures other than finite words, e.g., infinite words, trees,
traces, series-parallel posets, or pictures. Alternatively, in a weighted auto-
maton the state set needs not to be finite, so we can consider, e.g., weighted
pushdown automata with states being pairs of states (in the usual mean-
ing) and the contents of the pushdown tape. Moreover, weighted context-free
grammars and algebraic systems arise from weighted automata over trees by
using the well-known equivalence between frontier sets of recognizable tree
languages and context-free languages.

For the definition of weighted automata and their behaviors, matrices and
formal power series are used. This makes it possible to use methods of linear
algebra over semirings for more succinct, elegant, and convincing proofs.

Weighted finite automata and weighted context-free grammars were first
introduced in the seminal papers of Marcel-Paul Schiitzenberger (1961) and
Noam Chomsky and Marcel-Paul Schiitzenberger (1963), respectively. These
general models have found much interest in Computer Science due to their
importance both in theory as well as in current practical applications. For
instance, the theory of weighted finite automata and weighted context-free
grammars was essential for the solution of classical automata theoretic prob-
lems like the decidability of the equivalence: of unambiguous context-free lan-
guages and regular languages; of deterministic finite multitape automata; and
of deterministic pushdown automata. For the variety of theoretical results
discovered, we refer the reader to the indispensible monographs by Samuel
Eilenberg (1974), Arto Salomaa and Matti Soittola (1978), Wolfgang Wech-
ler (1978), Jean Berstel and Christophe Reutenauer (1984), Werner Kuich
and Arto Salomaa (1986), and Jacques Sakarovitch (2003). (See Chapter 1
for precise references). On the other hand, weighted automata and weighted
context-free grammars have been used as basic concepts in natural language
processing and speech recognition, and, recently, weighted automata have been
used in algorithms for digital image compression.
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Since the publication of the mentioned monographs the field of weighted
automata has further developed both in depth and breadth'. The editors of
this Handbook are very happy that international experts of the different areas
agreed to write survey articles on the present shape of their respective field.
The chapters of this Handbook were written such that a basic knowledge of
automata and formal language theory suffices for their understanding.

Next, we give a short overview of the contents of this Handbook. Part I
provides foundations. More specifically, in Chapter 1, Manfred Droste and
Werner Kuich present basic foundations for the theory of weighted automata,
in particular, semirings, formal power series, and matrices. As is well known,
regular and context-free languages can be obtained as least solutions of suit-
able fixed point equations. In Chapter 2, Zoltan Esik provides an introduction
to that part of the theory of fixed points that has applications to weighted
automata and their behaviors, and to weighted context-free grammars in the
shape of algebraic systems.

Part II of this Handbook investigates different concepts of weighted recog-
nizability. In Chapter 3, Zoltan Esik and Werner Kuich develop the theory of
finite automata starting from ideas based on linear algebra over semirings. In
particular, they derive the fundamental Kleene-Schiitzenberger characteriza-
tion of the behaviors of weighted automata over Conway semirings. In Chapter
4, Jacques Sakarovitch presents the theory of rational and recognisable formal
power series over arbitrary semirings and graded monoids. As a consequence,
he derives that the equivalence of deterministic multi-tape transducers is de-
cidable. A seminal theorem of J. Richard Biichi (1960) and Calvin C. Elgot
(1961) shows the equivalence in expressive power between classical finite au-
tomata (over finite and infinite words) and monadic second-order logic. In
Chapter 5, Manfred Droste and Paul Gastin present a weighted version of
monadic second-order logic and derive corresponding equivalence results for
weighted automata. In Chapter 6, Mehryar Mohri presents several funda-
mental algorithms for weighted graphs, weighted automata, and regulated
transducers as, e.g., algorithms for shortest-distance computation, e-removal,
determinization, minimization, and composition.

In Part III of this Handbook, alternative types of weighted automata and
various discrete structures other than words are considered. In Chapter 7, Ion
Petre and Arto Salomaa present the core aspects of the theory of algebraic
power series in noncommuting variables, weighted pushdown automata, and
their relationship to formal languages. In Chapter 8, Juha Honkala extends
the theory of algebraic power series by considering Lindenmayerian algebraic
systems and several restricted such systems. The following two chapters con-
sider weighted automata acting on extensions of finite words. In Chapter 9,
Zoltan Filop and Heiko Vogler survey the theory of weighted tree automata

! For instance, see the biannual workshops on “Weighted Automata: Theory and
Applications” (WATA) since 2002.
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and weighted tree transducers. This combines classical results of weighted au-
tomata and transducers on words and of unweighted tree automata and tree
transducers. In Chapter 10, Ina Fichtner, Dietrich Kuske, and Ingmar Mei-
necke present different weighted automata models for concurrent processes,
formalized by traces and series-parallel posets, and analyse their relationships.
They also consider two-dimensional extensions of words, viz. pictures.

Part IV deals with applications of weighted automata. In Chapter 11,
Jiirgen Albert and Jarkko Kari present the use of weighted automata and
transducers for digital image compression and give comparisons with the im-
age compression standard JPEG. In Chapter 12, George Rahonis describes
the theory of fuzzy recognizable languages. This theory arises by consider-
ing weighted automata over particular semirings, viz. bounded distributive
lattices. In Chapter 13, Christel Baier, Marcus Grofler, and Frank Ciesin-
ski present the main concepts of Markov decision processes as an operational
model for probabilistic systems, and basic steps for the (qualitative and quan-
titative) analysis against linear-time properties. In Chapter 14, Kevin Knight
and Jonathan May address the re-awakened interest in string and tree au-
tomata among computational linguists. The chapter surveys tasks occurring
in natural language processing and shows their solutions by using weighted
automata.

Some of the chapters contain open problems. We hope that this will stim-
ulate further research.

Finally, we would like to express our thanks to all authors of this Hand-
book and to the referees for their careful work. Moreover, warm thanks go to
Carmen Heger for her support in the technical compilation of the chapters.

Manfred Droste Werner Kuich Heiko Vogler
Leipzig Wien Dresden

January 9, 2009
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