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Abstract. This paper presents a functional program transformation that removes
intermediate data structures in compositions of two members of a class of recur-
sive functions with accumulating parameters. To avoid multiple traversals of the
input data structure, the composition algorithm produces circular programs that
make essential use of lazy evaluation and local recursion. The resulting programs
are simplified using a post-processing phase sketched in the paper. The presented
transformation, called lazy composition, is compared with related transformation
techniques both on a qualitative level and based on runtime measurements. An
alternative use of higher-orderedness instead of circularity is also briefly explored.
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1. Introduction

Lazy functional languages are well suited for a modular programming
style that solves a task by combining solutions of subproblems. This
style simplifies the design and verification of programs and encourages
reuse. Unfortunately, modular programs are often less efficient than
monolithic programs that solve the same tasks. Such inefficiencies are,
amongst others, caused by multiple traversals of input data structures
and by the production and consumption of structured intermediate
results.

Bird [1] described how multiple traversals originating from nested
function calls can be avoided by manually creating circular programs.
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Several traversals of the same input data structure are fused by tu-
pling their results and applying unfold/fold-transformation steps [2].
Possible intra-traversal dependencies—if information gathered in one
traversal is used in another—are captured by circular definitions in the
transformed program, which given certain conditions are well-behaved
under a lazy evaluation strategy. Johnsson [13], Kuiper & Swierstra [18]
advocated attribute grammars [15] for better understanding the in-
volved transformation. Multiple-traversal programs are reformulated
as attribute grammars, which then are efficiently implemented as cir-
cular programs in a lazy functional language. Recently, Chin et al. [4]
presented a strictness-guided tupling algorithm that allows for Bird’s
transformation to be automated.

On the other hand, one often encounters—instead of two traversals
of the same input data structure—a composition of two functions, the
first of which traverses the input and produces an intermediate data
structure that is traversed by the second function, which produces the
final result. Consider the following Haskell definitions of an algebraic
data type for representing simple arithmetic expressions with constants
and addition, and an instance of the Show class for unparsing:

data Term = Num Int | Add Term Term

instance Show Term where
show t = unp t “”

where unp :: Term→ String→ String

unp (Num x) z = shows 1 x z
unp (Add x1 x2) z = unp x1 (′+′ : unp x2 z)

Further, consider a function for transforming an arithmetic term as
above into a left-associative sum:

asc :: Term→ Term→ Term

asc (Num x) y = Add y (Num x)
asc (Add x1 x2) y = asc x1 (asc x2 y)

Like unp, this function is defined using an accumulating parameter. An
example evaluation illustrating its use is given in Figure 1.

If one wants to output a thus rearranged term, then the evaluation
of an expression

e = (unp (asc t (Num 0)) “”)

requires creation (by asc) and consumption (by unp) of an intermedi-
ate result. A standard technique for eliminating intermediate results is

1 The function shows from the standard Haskell prelude is used here to convert
an integer value to a string-to-string function, e.g. shows 42 z = ′4′ : ′2′ : z.
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Figure 1. Accumulating parameter of asc initialized with (Num 0).

Wadler’s deforestation [37], an algorithmic instance of the unfold/fold-
technique. However, classical deforestation does not succeed here due
to its well-known problem of not reaching accumulating parameters [3].

Kühnemann [16], Correnson et al. [5] tackled this problem by a
program transformation approach based on attribute grammars. Prim-
itive recursive function definitions with accumulating parameters are
transformed into attribute grammars, respectively the more abstract
attributed tree transducers [7]. Under certain conditions, two attribute
grammars can be composed into a single one, which can then be trans-
formed back into a functional program that uses no intermediate re-
sult. More direct accounts of a related approach on the level of func-
tional programs—without indirection via attribute grammars—have
been given by Kakehi et al. [14] for a restricted class of map-style
list transformers, and by Voigtländer & Kühnemann [36] for extended
schemes of primitive recursion, so-called macro tree transducers [6].

The latter technique of tree transducer composition strictly gener-
alizes attribute grammar composition by handling less restricted pro-
grams. The transformation result, however, is not always satisfactory
because the price for eliminating the intermediate data structure can be
that multiple traversals of the input data structure become necessary.
Simply applying the tupling transformation strategy [1, 4, 21, 22] to
the resulting programs does not help in general. In the present paper
we circumvent this problem by composing into a circular program, thus
integrating the tupling with the composition transformation.

For the sake of simplicity, we do not consider mutual recursion
here, restricting ourselves to “single-state macro tree transducer”-like
functions, referred to as mtt-functions in the following. Such an mtt-
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function is defined by pattern matching on its first argument, where
the right-hand side of every defining equation may contain the variables
from the equation’s left-hand side, data constructors, recursive function
calls (the first arguments of which must be variables from the pattern
match on the left-hand side), and external calls to other functions. Since
many typical functions on algebraic data types are defined by such a
structural descent, mtt-functions represent a large class of functional
programs using accumulating parameters.

We develop the lazy composition algorithm, which transforms the
composition of two mtt-functions fulfilling appropriate restrictions into
a monolithic program. For the running example, our technique trans-
forms the expression e into

e′′ = (let (c, c1,1) = ascunp ′′ t “” (shows 0 c1,1) in c) ,

additionally producing the following function definition:

ascunp ′′ :: Term→ String→ String→ (String,String)
ascunp ′′ (Num x) z y′ = (y′, ′+′ : shows x z)
ascunp ′′ (Add x1 x2) z y

′ = let (v1, v2) = ascunp ′′ x1 z v3
(v3, v4) = ascunp ′′ x2 v2 y

′

in (v1, v4)

The intermediate result has been eliminated and only one traversal of
the input term is necessary. Additional post-processing steps yield the
expression

e′′′′ = (shows 0 (ascunp ′′′′ t “”))

and the following function definition:

ascunp ′′′′ :: Term→ String→ String

ascunp ′′′′ (Num x) z = ′+′ : shows x z
ascunp ′′′′ (Add x1 x2) z = ascunp ′′′′ x2 (ascunp ′′′′ x1 z)

Measurements confirm that this version is considerably more efficient
than the original program consisting of e, asc, and unp.

The remainder of this paper is organized as follows. Section 2 de-
scribes the functional language and mtt-functions. Section 3 presents
the ideas of lazy composition; Section 4, the details of the algorithm. In
Section 5 we show the application of the algorithm to our introductory
example and consider post-processing steps and variations on the theme
of lazy composition. Section 6 informally compares lazy composition
with classical deforestation, shortcut fusion [9], and tree transducer
composition. Section 7 discusses efficiency issues for programs produced
by lazy composition and performs a runtime measurements based com-
parison with the results of other transformation techniques. Section 8
concludes.
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2. Functional language

We consider programs in a first-order subset of the lazy functional
programming language Haskell [24], typed using the Hindley-Milner
polymorphic type system [19]. There is no partial application, so that
each data constructor C or function symbol f has a fixed arity. The
considered functions are defined by sequences of equations as given by
the grammar in Figure 2, where n and m range over natural numbers,
and v, v1, . . . , vn range over variable names. Whenever possible with-
out causing confusion, brackets are omitted. It is not allowed for two
defining equations of the same function to have the same constructor
in their patterns. The local bindings in a let-block can be mutually
recursive.

δ ::= ε1 · · · εn — function definition

ε ::= f π v1 · · · vn = let β1

...
βm

in φ

— equation with optional bindings
(omitted if m = 0)

π ::= (C v1 · · · vn) — pattern

φ ::= v — variable
| (C φ1 · · ·φn) — constructor application
| (φ1, . . . , φn) — tuple with n ≥ 2
| (f φ1 · · ·φn) — function call

β ::= (v1, . . . , vn) = φ — binding with n ≥ 1

Figure 2. Functional language.

The functions that are used as input for our transformation tech-
nique must be defined by structural recursion on their first arguments,
but may use additional arguments to accumulate their results.

Definition 1. Let G be a set of function symbols. An mtt-function
with external calls to G is a function f 6∈ G in our language such that

− the defining equations of f have no local bindings (i.e. m = 0 in
the rule for ε in Figure 2) and

− every function call in the right-hand side of a defining equation
of f is either a call to some g ∈ G or a recursive call to f with one
of the variables from the pattern in the equation’s left-hand side
as its first argument.

If G = ∅, then f is called an mtt-function without external calls.
�
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Note that being an mtt-function is a purely syntactic condition on a
function’s defining equations; hence, mtt-functions are easily identi-
fied. The preclusion of local bindings simplifies the description of the
restrictions necessary in order to apply our technique and prevents the
original program from already being circular.

The first argument of an mtt-function is called its recursion argu-
ment, the others are called context parameters. Correspondingly, in a
defining equation with left-hand side

f (C x1 · · · xk) y1 · · · yr

the variables x1, . . . , xk and y1, . . . , yr are called recursion variables
and context variables, respectively. An mtt-function is called recursion-
linear if the right-hand side of each of its defining equations contains
every recursion variable at most once; analogously for context-linear.

Example 1. The function unp (from the introduction) is an mtt-
function with an external call to G = {shows}. The function asc is an
mtt-function without external calls, and so are the functions defined
in Figure 3. Except for exp (which is context-linear, but not recursion-
linear) and hanoi (which is neither recursion- nor context-linear), all
the given functions are both recursion- and context-linear.

�

3. Ideas of lazy composition

Engelfriet & Vogler [6] studied macro tree transducers and proved
composition results which for our setting imply that two mtt-functions
without external calls can be composed into a single mtt-function if
one of the two original functions has no context parameters. In [34] we
have generalized their constructions to the case that both functions
use context parameters, but fulfill certain linearity restrictions (see
also [36]). The lazy composition transformation is based on similar
ideas, to be described informally in this section.

3.1. Translating right-hand sides of f1 with f2

Given a composition of two mtt-functions f1 and f2 (with r and s con-
text parameters, respectively), we want to construct a new function f1 f2
that computes the same result, but without producing and consuming
the intermediate data structure.

In the spirit of the define/instantiate/unfold/fold-strategy of Burstall
& Darlington [2], we start from the basic idea of folding nested calls of
the form

f2 (f1 θ φ1 · · · φr) ψ1 · · ·ψs
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data Tree α = Tip α | Node α (Tree α) (Tree α)
data Nat = Zero | Succ Nat

pre :: Tree α→ [α]→ [α]
pre (Tip x) ys = x : ys
pre (Node x xl xr) ys = x : (pre xl (pre xr ys))

rev :: [α]→ [α]→ [α]
rev [] zs = zs
rev (x : xs) zs = rev xs (x : zs)

(++) :: [α]→ [α]→ [α]
(++) [] ys = ys
(++) (x : xs) ys = x : ((++) xs ys)

exp :: Nat→ Nat→ Nat

exp Zero y = Succ y
exp (Succ x) y = exp x (exp x y)

hanoi :: Int→ α→ α→ α→ [(α, α)] → [(α, α)]
hanoi 0 y1 y2 y3 ys = ys
hanoi (x+ 1) y1 y2 y3 ys = hanoi x y1 y3 y2

((y1, y2) : (hanoi x y3 y2 y1 ys))

Figure 3. Example definitions.

to
f1 f2 θ φ1 · · ·φr ψ1 · · ·ψs.

Reading this replacement backwards as a definition for f1 f2 , and instan-
tiating the recursion argument θ to the pattern (C x1 · · · xk) for every
data constructor C (of arity k) for which f1 is defined2, we obtain

f1 f2 (C x1 · · · xk) y1 · · · yr z1 · · · zs =f2 (f1 (C x1 · · · xk) y1 · · · yr) z1 · · · zs

as a candidate equation for f1 f2 at C. Given an equation

f1 (C x1 · · · xk) y1 · · · yr = rhsf1 ,C

in the original program, an unfolding transforms this candidate to:

f1 f2 (C x1 · · · xk) y1 · · · yr z1 · · · zs = f2 (rhsf1 ,C) z1 · · · zs.

The right-hand side can be further manipulated by applying unfold-
steps using f2’s defining equations and fold-steps as introduced above,
thus in a sense “translating” rhsf1 ,C with f2.

2 Since f1 and f2 are strict in their first arguments, so is f1 f2 ; hence, the instan-
tiation step is safe [28].
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So far, we have described a variant of classical deforestation [37],
tailored to mtt-functions by implicitly abstracting context parameters
with let-expressions3 [17].

Example 2. We apply the strategy discussed so far to the introduc-
tory example by calculating the following defining equations for ascunp:

ascunp (Num x) y z
= unp (rhsasc,Num) z
= unp (Add y (Num x)) z

� unp y (′+′ : unp (Num x) z) — by unfolding
� unp y (′+′ : shows x z) — by unfolding

ascunp (Add x1 x2) y z
= unp (rhsasc,Add) z
= unp (asc x1 (asc x2 y)) z

� ascunp x1 (asc x2 y) z — by folding.
�

Note that in the previous example only parts of the intermediate result
are reached by the transformation. Namely, in the recursive case the
fold-step—also shown in Figure 4—simply copies the context param-
eter (asc x2 y) of the outer call to the producer asc, without any
manipulation. The transformed program then still requires the explicit
construction of this part of the intermediate result and its eventual
consumption by an unp-call (compare Example 9 in Section 6.1).

unp

asc

x1

asc

x2 y

z

;

ascunp

x1

asc

x2 y

z

Figure 4. Fold-step of classical deforestation.

We are going to present a solution to this problem that is based on
a different treatment of context parameters of recursive f1-calls during
the translation of rhsf1 ,C with f2, which will ensure that all relevant
parts of rhsf1 ,C are reached by the translation process.

3 More precisely, a function call of the form (f xi φ1 · · · φn) is interpreted as
(let (v1, . . . , vn) = (φ1, . . . , φn) in f xi v1 · · · vn) and the blazed deforestation
algorithm is applied, transforming let-bound expressions separately.
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3.2. Adding translated parameters of f1 to f1 f2

From now on, we assume that f1 is an mtt-function without external
calls. Then, according to Definition 1 and the grammar in Figure 2,
rhsf1 ,C might contain tuples, data constructors, the variables x1, . . . , xk

and y1, . . . , yr, and recursive calls to f1 on some xi. For typing reasons,
the first argument of f2 is never a tuple. Thus, during the translation of
rhsf1 ,C with f2 we can encounter only the following kinds of calls to f2:

(a) f2 (D φ1 · · ·φn) ψ1 · · ·ψs, for a data constructor D,

(b) f2 xi ψ1 · · ·ψs, for a recursion variable xi,

(c) f2 yh ψ1 · · ·ψs, for a context variable yh, and

(d) f2 (f1 xi φ1 · · · φr) ψ1 · · ·ψs, for a recursion variable xi.

In case (a) we simply unfold the defining equation given for f2 at D.
Exactly such unfold-steps will lead to the elimination of intermediate
data structures. In case (b) we can preserve the call to f2 on xi because
there is no intermediate result to be eliminated here.

In case (c), however, we must not preserve the f2-call on yh because
then we would miss the elimination of the intermediate data structure
inside the h-th context parameter of f1. Instead, we go beyond the
unfold/fold-technique by assuming that beside y1, . . . , yr and z1, . . . , zs

the function f1 f2 takes additional arguments, namely translations of
f1’s context parameters with f2. By such a translation we mean a
complete application of f2 with appropriate context parameters. Under
the assumptions that these could be determined correctly and that the
obtained translations are stored in additional variables y ′1, . . . , y

′
r, i.e.

the left-hand side of the equation under consideration is extended to

f1 f2 (C x1 · · · xk) y1 · · · yr z1 · · · zs y
′
1 · · · y

′
r ,

we can simply output y′h in case (c).
From this approach the question arises whether it is at all possible

to determine “a priori” the correct context parameters of f2 in trans-
lations of context parameters of f1 to be passed to calls of f1 f2 . The
problem is illustrated by attempting to adapt Example 2 to use our
proposed extended strategy. Its general form will be discussed in the
next subsection.

Example 3. The calculation of the defining equation for the base case
of ascunp is easily adapted:

ascunp (Num x) y z y′
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= unp (rhsasc,Num) z
= unp (Add y (Num x)) z

� unp y (′+′ : unp (Num x) z) — by (a)
� y′ — by (c)

Note that the last transformation step here is only possible because we
assume that y′ already stores the unp-translation of y with exactly the
correct context parameter, in this case (′+′ : unp (Num x) z).

The calculation for the recursive case, however, gets stuck early:

ascunp (Add x1 x2) y z y
′

= unp (rhsasc,Add) z
= unp (asc x1 (asc x2 y)) z

� · · · — by (d)?

The ascunp-call on x1 to be created here should take the translation of
asc’s context parameter (asc x2 y) with unp as additional argument. To
perform this translation, we would first have to specify the appropriate
context parameter for unp on (asc x2 y), i.e. to fill the question mark
position in Figure 5.

�

unp

asc

x1

asc

x2 y

z

;

ascunp

x1

asc

x2 y

z unp

asc

x2 y

?

Figure 5. An extended fold-step, missing information about the context parameter
of unp on the intermediate result produced inside the context parameter of asc.

3.3. Reaching accumulating parameters

Let us consider the general case (d) from the previous subsection, when
we have encountered a nested call

f2 (f1 xi φ1 · · ·φr) ψ1 · · ·ψs

during the translation of rhsf1 ,C with f2.
By the idea of folding, this should be replaced by a call to function

f1 f2 on xi, taking as further arguments the context parameters of f1

and f2, and—according to our proposed extension—the f2-translations
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of the context parameters of f1:

f1 f2 xi φ1 · · ·φr ψ1 · · ·ψs (f2 φ1 ? · · · ?
︸ ︷︷ ︸

s × “?”

) · · · (f2 φr ? · · · ?
︸ ︷︷ ︸

s × “?”

).

Here the transformation “reaches” intermediate data structures in f1’s
accumulating/context parameters (as opposed to classical deforesta-
tion). However, before we go on to translate the φ1, . . . , φr with f2, we
have to fill the question mark slots in the previous expression.

What are we supposed to provide in those places? Clearly, it should
be the context parameter values with which f2 is expected to “arrive”
at occurrences of φ1, . . . , φr during computation of the nested call

f2 (f1 xi φ1 · · ·φr) ψ1 · · ·ψs

encountered above (and thus clearly depends on the value substituted
for xi). Since it is not obvious whether we can always provide such
information, we better first answer the following question in general:

? Given some recursion argument θ for f1 and a context variable yh,
can we uniquely determine the values in context parameter posi-
tions of calls of the form (f2 yh · · ·) occurring during the compu-
tation of (f2 (f1 θ y1 · · · yr) z1 · · · zs) ?

f2

f1

θ

y1 yr

z1 zs

· · ·

· · ·
⇒∗

f2

%

z1 zs· · ·

yh

⇒∗
f2

yh ? ?· · ·

Figure 6. Can we uniquely determine the values in question mark positions?

3.4. Conditions for uniqueness

We claim that the above question can be answered positively if f1 is
context-linear and f2 is recursion-linear—or, trivially, if one of the two
functions has no context parameters at all—by reasoning as follows.

If f1 does not copy its context parameters, then for every recursion
argument θ at most one occurrence of each of the y1, . . . , yr will appear
in the result % of (f1 θ y1 · · · yr). If, moreover, f2 is recursion-linear,
then for every position in this intermediate result % there is at most
one possible manner how it can be reached by a call of f2 during
computation of (f2 (f1 θ y1 · · · yr) z1 · · · zs).
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However, uniqueness is not enough; we also need to know how to
effectively compute the requested context parameter values. This could
be solved by constructing additional function definitions (cf. [36]), which
can lead to additional traversals of the input data structure though. To
avoid this, we instead adjust the function f1 f2 to not only compute the
composition of f1 and f2, but also the answers to the above question.

3.5. Returning a tuple

More precisely,
f1 f2 θ y1 · · · yr z1 · · · zs y

′
1 · · · y

′
r

will return a tuple
(c, c1,1, . . . , cr,s) ,

where—assuming that the y′1, . . . , y
′
r contain the correct f2-translations

of y1, . . . , yr—the value in c is the result of

f2 (f1 θ y1 · · · yr) z1 · · · zs

and every ch,l-position contains the l-th context parameter value in
occurrences of a call to f2 on yh during the computation of this result,
if such a call exists.

To find out how this additional information can be computed in the
construction of the defining equation for f1 f2 at recursion argument
(C x1 · · · xk), we return attention to the discussion of case (c) in Sec-
tion 3.2. There we considered the situation that f2 reaches a context
variable yh, say with a call

f2 yh ψ1 · · ·ψs.

We made use of the provided f2-translations of f1’s context param-
eters and replaced this call by y′h, discarding the values ψ1, . . . , ψs.
But these are exactly the sought context parameters of a call to f2 on
yh, so instead of discarding them we should output ψ1, . . . , ψs in the
ch,1, . . . , ch,s-positions.

Example 4. We illustrate how the additional information can be de-
termined in the construction of the defining equation for ascunp at
Num by further adapting the first calculation from Example 3:

ascunp (Num x) y z y′

= (unp (rhsasc,Num) z, ?)
= (unp (Add y (Num x)) z, ?)

� (unp y (′+′ : unp (Num x) z), ?) — by (a)
� (y′, ′+′ : unp (Num x) z) — by (c), revised
� (y′, ′+′ : shows x z) — by (a).

�
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Note that in general no ch,l is assigned with two different values because
the right-hand side of every equation f1 (C x1 · · · xk) y1 · · · yr = rhsf1 ,C is
linear in the y1, . . . , yr, and because f2 is recursion-linear and hence no
position in rhsf1 ,C can be visited twice with different context parameters
during the translation of rhsf1 ,C with f2. If for some ch,l no value at all
is assigned, then this means that no call of f2 on the h-th context
parameter of f1 can occur for the given recursion argument; hence, in
this case the ch,1, . . . , ch,s-positions will not be needed anyway.

3.6. Creating circular bindings

Let us now conclude the discussion of case (d) from Section 3.3. There
we had encountered a nested call of the form

f2 (f1 xi φ1 · · ·φr) ψ1 · · ·ψs

and decided to replace it by a call

f1 f2 xi φ1 · · ·φr ψ1 · · ·ψs (f2 φ1 ? · · · ?
︸ ︷︷ ︸

s × “?”

) · · · (f2 φr ? · · · ?
︸ ︷︷ ︸

s × “?”

) ,

still having to fill the question mark positions.
But now, having decided that f1 f2 returns beside the composition

of f1 and f2 also the context parameter values with which f2 reaches
the context parameters of f1, we can resolve the question marks by
creating a binding for fresh variables v, v1,1, . . . , vr,s:

(v, v1,1, . . . , vr,s) = f1 f2 xi φ1 · · · φr ψ1 · · ·ψs (f2 φ1 v1,1 · · · v1,s)
· · ·

(f2 φr vr,1 · · · vr,s) ,

where the first tuple element gives us the sought composition.

Example 5. Using bindings as suggested above, we can complete the
calculation of the defining equation for ascunp at Add as follows:

ascunp (Add x1 x2) y z y
′

= (unp (rhsasc,Add) z, ?)
= (unp (asc x1 (asc x2 y)) z, ?)

� let (v, v1,1) = ascunp x1 (asc x2 y) z
(unp (asc x2 y) v1,1)

in (v, ?)

— by (d)

� let (v, v1,1) = ascunp x1 (asc x2 y) z v
′

(v′, v′1,1) = ascunp x2 y v1,1 (unp y v′1,1)
in (v, ?)

— by (d)

� let (v, v1,1) = ascunp x1 (asc x2 y) z v
′

(v′, v′1,1) = ascunp x2 y v1,1 y
′

in (v, v′1,1).

— by (c)
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The two performed (d)-steps are illustrated in Figure 7, where the
elements bound in tuples are represented by explicit occurrences of the
pair selectors fst and snd (with the variable names from the above
calculation annotated for clarity).

unp

asc

x1

asc

x2 y

z

;

fst

ascunp

x1

asc

x2 y

z unp

asc

x2 y

snd

v1,1

v

;

fst

ascunp

x1

asc

x2 y

z fst

ascunp

x2 y snd unp

y snd

v′1,1

v′

v1,1

v

Figure 7. The information missing in Figure 5 determined by using circular bindings.

We have now solved the problem of not reaching intermediate results
produced inside context parameters. Note that—beside its translation
with unp—also the context parameter (asc x2 y) itself still appears
in the transformed program. Such a preservation is necessary for full
generality of lazy composition in cases where in the original program
parts of the intermediate result are copied literally into the final output
by the consuming mtt-function and hence their construction cannot be
completely avoided. If this is not the case, then such fragments are
removed from the transformed program by a post-processing phase as
to be shown for our running example in Section 5.1.

�

Created bindings such as the one for (v, v1,1, . . . , vr,s) above the previ-
ous example are circular, i.e. we have “tied the knot”. In the follow-
ing subsection we argue that nevertheless there are no truly circular
data dependencies and hence a lazy evaluation mechanism can order
the computations in such a way that the transformed program still
terminates.

3.7. Termination under lazy evaluation

To ensure termination of the transformed program, we have to establish
that in a created binding of the form

(v, v1,1, . . . , vr,s) = f1 f2 xi y1 · · · yr z1 · · · zs (f2 y1 v1,1 · · · v1,s)
· · ·

(f2 yr vr,1 · · · vr,s)

no vh,l depends circularly on itself.
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Assume the contrary were the case, i.e. such a circular dependency
would exist. Then the vh,l-position of the result tuple of the above f1 f2 -
call would have to depend on the call’s y ′h-argument4. Since the former
computes the l-th context parameter of occurrences of a call to f2 on yh

resulting from (f2 (f1 xi y1 · · · yr) z1 · · · zs)—i.e. the l-th question mark
position in Figure 6—this would mean that during the computation of

f2 (f1 xi y1 · · · yr) z1 · · · zs

a call of f2 on yh occurs, the l-th context parameter of which depends
on the f2-translation of yh. Such a situation, depicted in Figure 8,
would obviously contradict with the observation that—in our setting
of context-linear f1 and recursion-linear f2—the context parameters of
occurrences of calls to f2 on yh are uniquely determined.

f2

f1

xi

y1 yr

z1 zs

· · ·

· · ·
⇒∗

f2

yh ? ...

f2

yh ? ?

?· · ·· · ·

· · ·

Figure 8. Nested f2-translations of the same context parameter would violate the
uniqueness condition.

4. The full algorithm

Based on the ideas from the previous section we describe the lazy com-
position algorithm formally by syntax-directed transformation rules.

One detail we have disregarded so far is the fact that not all context
parameters of f1 need to have the same type as the intermediate data
being eliminated. Thus, it does not necessarily make sense to translate
all the context parameters of f1 with f2 as suggested in Section 3.2.
In the following transformation this issue is resolved by utilizing the
Hindley-Milner type discipline.

TRANSFORMATION 1. Let f1 be an mtt-function without external
calls and let f2 be an mtt-function with external calls to G (where f2 6∈

4 This follows because the expression (f2 yh vh,1 · · · vh,s) in that argument posi-
tion contains the only appearance of vh,l in the right-hand side of the binding.
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G), such that either f1 is context-linear and f2 is recursion-linear or
one of the two has no context parameters. Let the arities of f1 and f2

be r + 1 and s+ 1, respectively, and assume that an expression

e = (f2 (f1 θ φ1 · · · φr) ψ1 · · ·ψs)

occurs in the program. Without loss of generality—since a reordering
of arguments is possible—let r′ ≤ r be such that of the context pa-
rameters φ1, . . . , φr of f1 exactly the first r′ have the same type as the
intermediate result (f1 θ φ1 · · · φr)

5. We replace e by the expression

e=(let (c, c1,1, . . . , cr′,s)= f1 f2 θ φ1 · · ·φr ψ1 · · ·ψs (f2 φ1 c1,1 · · · c1,s)
· · ·

(f2 φr′ cr′,1 · · · cr′,s)
in c) ,

where the c, c1,1, . . . , cr′,s are fresh variables and f1 f2 is defined by pat-
tern matching on its first argument as follows. For every equation

f1 (C x1 · · · xk) y1 · · · yr = rhsf1 ,C

in the program we produce an equation for f1 f2 at the same pattern:

f1 f2 (C x1 · · · xk) y1 · · · yr z1 · · · zs y
′
1 · · · y

′
r′ =

let c = L[[f2 (rhsf1 ,C) z1 · · · zs]]
· · ·

in (c, c1,1, . . . , cr′,s) ,

where L[[.]] is defined by the eight rules given below. As a side-effect,
L[[.]] produces further bindings to be collected in the let-block.

1. L[[v]] � v.

2. L[[C ξ1 · · · ξn]] � C L[[ξ1]] · · · L[[ξn]].

3. L[[(ξ1, . . . , ξn)]] � (L[[ξ1]], . . . ,L[[ξn]]).

4. L[[g ξ1 · · · ξn]] � g L[[ξ1]] · · · L[[ξn]] , if g ∈ G.

5. L[[f xi ξ1 · · · ξn]] � f xi L[[ξ1]] · · · L[[ξn]] , if f ∈ {f1, f2}.

6. L[[f2 (D φ1 · · ·φn) ψ1 · · ·ψs]]
� L[[ψ[x1, . . . , xn, z1, . . . , zs ← φ1, . . . , φn, v1, . . . , vs]]] ,

if the program contains the equation f2 (D x1 · · · xn) z1 · · · zs = ψ.
Here the v1, . . . , vs are fresh variables for which the bindings v1 =
L[[ψ1]], . . . , vs = L[[ψs]] are produced.

5 Due to the Hindley-Milner type system—allowing no polymorphic recursion—
these are then the only context parameters of f1 that might potentially be reached
by calls of f2 in the intermediate result.
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7. L[[f2 yh ψ1 · · ·ψs]]
� y′h ,

and the bindings ch,1 = L[[ψ1]], . . . , ch,s = L[[ψs]] are produced.

8. L[[f2 (f1 xi φ1 · · · φr) ψ1 · · ·ψs]]
� v ,

and—for fresh variables v, v1,1, . . . , vr′,s—the binding

(v, v1,1, . . . , vr′,s) = f1 f2 xi φ1 · · ·φr L[[ψ1]] · · · L[[ψs]]
L[[f2 φ1 v1,1 · · · v1,s]]
· · ·
L[[f2 φr′ vr′,1 · · · vr′,s]]

is produced.

If for a ch,l among the c1,1, . . . , cr′,s no binding was produced, then we
add the binding ch,l = ⊥.

The only case not covered by the above rules is the possibility that for
L[[f2 (D φ1 · · · φn) ψ1 · · ·ψs]] there is no defining equation of f2 at data
constructor D in the program. In this case we are at a position where
also the original program would fail (if it would reach that position at
all), so we may safely proceed by:

L[[f2 (D φ1 · · ·φn) ψ1 · · ·ψs]]
� error “Nonexhaustive patterns in function f2 ”.

�

4.1. Termination and correctness

While program transformations based on the unfold/fold-technique [3,
10, 30, 37] generally require considerable effort to ensure termination
of the transformation process, the restricted form of input programs
for lazy composition prevents such problems.

LEMMA 1. The lazy composition transformation terminates.
Proof. We measure an argument ξ of L[[.]] with the pair of natural

numbers (p, q), where p is the maximal size6 of a recursion argument
of a call to f2 in ξ and q is the size of ξ. With the well-founded order
defined by

(p1, q1) < (p2, q2) iff p1 < p2 or (p1 = p2 and q1 < q2)

it is easy to see that every application of a rule from 1–8 in Transfor-
mation 1 gives rise only to applications of L[[.]] to expressions with a
smaller measure than that of ξ. Termination of L[[.]] follows.

�

6 The size of an expression φ (see Figure 2) is defined as follows. The size of a
variable is one and the size of a constructor application, a function call, or a tuple
is one greater than the sum of the sizes of its immediate subexpressions.
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We do not provide a formal correctness proof for lazy composition.
Instead, we substantiate the semantic equivalence of the original ex-
pression e and its replacement e by justifying each of the transformation
rules used to build the defining equations of f1 f2 . We then give a
short discussion on the relation between the total correctness issue for
lazy composition and an existing formal correctness proof for the tree
transducer composition technique.

As motivated in Section 3.1, the defining equation for f1 f2 at some
constructor C is obtained by translating the right-hand side of f1 at C

with f2, formally specified by the rules 1–8 from Transformation 1.
It should be clear that the rules 1–6 of L[[.]] are locally equivalence-

preserving. The abstraction from the ψ1, . . . , ψs by introduction of fresh
variables with appropriate bindings in the unfolding rule 6—which cor-
responds to case (a) from Section 3.2—enables the sharing mechanism
of lazy evaluation to avoid duplicated computations in the resulting
program in case that ψ is nonlinear in the z1, . . . , zs.

In rule 7—corresponding to case (c) from the informal discussion—
we use the provided translation of yh with f2. At this point we also know
the context parameters of f2 at occurrences of yh, which are exactly the
values that we have to provide in the result tuple for the ch,1, . . . , ch,s-
positions. Uniqueness of such values is guaranteed by f1 being context-
linear and f2 being recursion-linear, as discussed in Sections 3.4 and 3.5.

In rule 8 we apply the function f1 f2 to compute the composition
of f1 and f2 on a part of the recursion argument, as discussed in
Section 3.3 for case (d). In order to do so, we have to provide the
context parameters of f1 and f2 and the f2-translations of those con-
text parameters of f1 that might be reached by f2 in the intermediate
result (f1 xi φ1 · · · φr). For the latter we need the context parameter
values of f2 on reaching such occurrences of φ1, . . . , φr′ . These are also
computed by the f1 f2 -function, yielding a circular definition that will
always behave well under lazy evaluation (cf. Sections 3.6 and 3.7).

Sands [29] developed and used improvement theory to establish total
correctness of program transformations based on local equivalences.
Unfortunately, his machinery is not readily applicable to lazy com-
position because our rules 7 and 8 do not fit into this setting. They
necessitate and complement each other, but are in general applied at
completely different places in the program. Hence, contrary to Sands’
modular approach for pure unfold/fold-transformations, a formal proof
for lazy composition would have to take into account the transformation
of the whole program at once, much as in our correctness proof for the
tree transducer composition technique [36].

In fact, the latter provides a certain kind of justification also for
the present technique using circular programs. The crucial point about
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total correctness of lazy composition is to establish that runs of the
resulting program always terminate, i.e. that no truly circular data
dependencies can occur. Essentially the same problem surfaces also in
the composition of restricted macro tree transducers, but at transfor-
mation time. Namely, since no circular bindings can be introduced in
that setting, translations of context parameters of the first transducer
with functions of the second transducer are repeatedly nested in the
right-hand sides of the resulting transducer to provide for potential
dependencies between them. By proving noncircularity of the associ-
ated dependency relation, it was shown in [36] that this nesting process
can safely be stopped after finitely many steps in order not to create
right-hand sides of infinite size. That formal proof corresponds to the
informal argument made in Section 3.7 with the help of Figure 8. The
key difference is that lazy composition does not break the (only poten-
tial) circularity at transformation time, but rather lets it be resolved at
runtime of the transformed program by the lazy evaluation mechanism.

5. Practical aspects

We apply Transformation 1 to the example from the introduction and
consider post-processing issues. Then we discuss relaxations on the
linearity restrictions required by lazy composition, and an alternative
use of higher-order functions instead of circular bindings.

Example 6. Consider lazy composition for f1 = asc and f2 = unp
(with r = r′ = s = 1). Using Transformation 1, we can replace a call

e = (unp (asc t (Num 0)) “”)

in the program by the expression

e = (let (c, c1,1) = ascunp t (Num 0) “” (unp (Num 0) c1,1) in c) ,

where the function ascunp is defined by the equations to be read off
from the following calculations (annotated with the applied rules):

ascunp (Num x) y z y′

= let c=L[[unp (Add y (Num x)) z]]
in (c, c1,1)

� let c =L[[unp y (′+′ : unp (Num x) v1)]]
v1 =L[[z]]

in (c, c1,1)

— by 6

� 2 let c = y′

v1 = z
c1,1 =L[[′+′ : unp (Num x) v1]]

in (c, c1,1)

— by 7,1
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� 2 let c = y′

v1 = z
c1,1 = ′+′ : L[[unp (Num x) v1]]

in (c, c1,1)

— by 2

� let c = y′

v1 = z
c1,1 = ′+′ : L[[shows x v2]]
v2 =L[[v1]]

in (c, c1,1)

— by 6

� 4 let c = y′

v1 = z
c1,1 = ′+′ : shows x v2

v2 = v1
in (c, c1,1)

— by 4,1

ascunp (Add x1 x2) y z y
′

= let c=L[[unp (asc x1 (asc x2 y)) z]]
in (c, c1,1)

� let c = v1

(v1, v2) = ascunp x1 (asc x2 y) L[[z]]
L[[unp (asc x2 y) v2]]

in (c, c1,1)

— by 8

� 2 let c = v1

(v1, v2) = ascunp x1 (asc x2 y) z v3

(v3, v4) = ascunp x2 y L[[v2]] L[[unp y v4]]
in (c, c1,1)

— by 1,8

� 3 let c = v1

(v1, v2) = ascunp x1 (asc x2 y) z v3

(v3, v4) = ascunp x2 y v2 y
′

c1,1 = v4
in (c, c1,1)

— by 1,7

In the resulting program the intermediate result is not used anymore.
Although fragments of the intermediate data structure still textually
appear in the program—e.g. (asc x2 y)—they will not be evaluated
under lazy evaluation and can thus be removed by useless variable
elimination (cf. the next subsection).

�

5.1. Post-processing

In this subsection we present post-processing steps to get rid of ballast
that might be introduced by the lazy composition transformation. We
illustrate these steps on the program obtained in Example 6 for the
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original expression (unp (asc t (Num 0)) “”), thus gaining the final
program from the introduction.

Firstly, the result of an ascunp-call never depends on its second
argument. To detect this, we can use the sufficient condition that the j-
th argument (with j > 1) of a function f1 f2 is useless if in no right-hand
side of a defining equation for f1 f2 it occurs elsewhere than inside the
j-th argument positions of recursive calls to f1 f2 . A useless argument
can be removed from every f1 f2 -call and from every defining equation
of f1 f2 . Doing so for the program in Example 6 gives the definition

ascunp ′ (Num x) z y′ = let c = y′

v1 = z
c1,1 = ′+′ : shows x v2

v2 = v1
in (c, c1,1)

ascunp ′ (Add x1 x2) z y
′ = let c = v1

(v1, v2) = ascunp ′ x1 z v3
(v3, v4) = ascunp ′ x2 v2 y

′

c1,1 = v4
in (c, c1,1)

to be used with the expression

e′ = (let (c, c1,1) = ascunp ′ t “” (unp (Num 0) c1,1) in c).

Secondly, some of the let-bindings in the above equations can be
inlined. There are several strategies for inlining [25]; in our example we
choose to inline all variables that are not bound as part of a tuple. The
result of this inlining and an additional unfold-step in e′ is then the
program of expression e′′ and function ascunp ′′ from the introduction.

Considering this program, another optimization becomes possible
by realizing that for every terminating call of ascunp ′′ the first element
of the result tuple is equal to the last argument of the call. This fact is
established by a kind of abstract interpretation similar to the automatic
elimination of copy-states [34] for macro tree transducers. By replacing
in the right-hand sides of defining equations for ascunp ′′ all constructor
applications and calls to other functions than ascunp ′′ with the special
symbol ?, we obtain the following version:

ascunp ′′ (Num x) z y′ = (y′, ?)
ascunp ′′ (Add x1 x2) z y

′ = let (v1, v2) = ascunp ′′ x1 z v3
(v3, v4) = ascunp ′′ x2 v2 y

′

in (v1, v4)

From the base case (Num x) we obtain the conjecture that ascunp ′′

returns in the first element of its result tuple its last argument, while
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the ?-symbol in the second tuple element indicates that some other
value than just an argument from the left-hand side is returned there.
By applying this conjecture for the recursive calls in the inductive case
(Add x1 x2), the second equation is transformed into:

ascunp ′′ (Add x1 x2) z y
′ = let (v1, v2) = (v3, ?)

(v3, v4) = (y′, ?)
in (v1, v4)

Inlining the two tupled bindings confirms that also in the inductive
case the first element of the result tuple is y ′.

Using the thus gained information, we can systematically optimize
ascunp ′′ further into ascunp ′′′ by replacing every binding of the form

(v, v1,1) = ascunp ′′ x ψ φ′

with the pair of bindings

v =φ′

v1,1 = ascunp ′′′ x ψ v

and dropping the first element of the result tuple in every defining
equation. Thus, we get the expression

e′′′ = (let c = shows 0 c1,1

c1,1 = ascunp ′′′ t “” c
in c)

and the following function definition:

ascunp ′′′ (Num x) z y′ = ′+′ : shows x z
ascunp ′′′ (Add x1 x2) z y

′ = let v1 = v3
v2 = ascunp ′′′ x1 z v1
v3 = y′

v4 = ascunp ′′′ x2 v2 v3
in v4

Finally, inlining and removal of the useless last argument of ascunp ′′′

yields the expression e′′′′ together with the function ascunp ′′′′ as given
in the introduction.

Measurements show that the optimization by elimination of tuple
elements is crucial for achieving an efficiency improvement. Hence, it
would be desirable to characterize subclasses of programs for which
the function produced by lazy composition computes one of its result
tuple elements always by projection on one of its parameters. To give
one sufficient condition for this, we need the notions of recursive and
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nonrecursive constructors, respectively. A data constructor is called
recursive if at least one of its arguments in the corresponding data
type definition is of the type being defined; otherwise, it is called non-
recursive. For example, Node and (:) are recursive constructors, while
Tip and [] are nonrecursive.

The function f1 f2 produced by lazy composition will in the first
element of its result tuple always project on one of its y ′1, . . . , y

′
r′ -

parameters if the right-hand sides of equations for f1 contain no nonre-
cursive constructors and contain recursion variables of the output type
of f1 only as first arguments of recursive calls, and if every right-hand
side of an equation of f2 for a recursive constructor is rooted by a call
to f2. If additionally r′ = 1, then the optimization presented above can
eliminate the first element of the result tuple because that one will—
detectably—always be equal to the y ′1-argument. Examples fulfilling
the condition on f1 are pre and hanoi , but not asc. Examples fulfilling
the condition on f2 are rev and exp, but not (++).

Another sufficient condition for the elimination of a tuple element to
be applicable is when some context parameter of f2 is passed unchanged
to the same parameter position of all recursive calls, as is the case
for (++).

5.2. Changing termination behavior on infinite inputs

The tuple elimination step of the post-processing presented in the pre-
vious subsection sometimes transforms nonterminating programs into
terminating ones. For illustration, consider the definition

infinite term :: Term

infinite term = h 1
where h :: Int→ Term

h n = Add (h (n+ 1)) (Num n)

of the infinite term depicted in Figure 9. The evaluation of the original
expression (unp (asc infinite term (Num 0)) “”) from the introductory
example leads to an infinite reduction never producing any output.
In contrast, the expression (shows 0 (ascunp ′′′′ infinite term “”)) ob-
tained by lazy composition plus post-processing produces the infinite
output string “0 + 1 + 2 + 3 + 4 + · · ·”. When applying Haskell’s stan-
dard head function to the original expression and to the transformed
expression, respectively, the former program does not terminate, while
the latter does so with result ′0′. The change in termination behavior
is caused by the fact that the “abstract interpretation” in the previous
subsection considered only terminating calls of ascunp ′′, whereas the
outcome of this analysis was applied unconditionally, thus affecting also
nonterminating calls of the function.
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Figure 9. infinite term

Since it cannot happen that conversely a terminating program is
turned into a nonterminating one, we might ignore this phenomenon or
even be pleased that the termination behavior can be improved. In some
situations—e.g. during testing of programs—such a semantic change is
undesirable because a nontermination usually indicates an algorithmic
mistake that should not be “hidden” by the compiler. Hence, the user
should be given the possibility to control the application of transforma-
tions that might turn nonterminating programs into terminating ones,
e.g. through a compiler flag.

5.3. Relaxing linearity restrictions

Note that lazy composition as presented in Transformation 1 does not
require f1 to be recursion-linear. Thus, it can also handle functions
like exp from Figure 3, which cannot be transformed into an attribute
grammar of the form required for the deforestation method by attribute
grammar composition [5, 16]. In this subsection we discuss how the
linearity restrictions on the mtt-functions involved in lazy composition
can be relaxed a bit further.

As an example, consider the function hanoi from Figure 3, imple-
menting the recursive solution to the well-known “Towers of Hanoi”
problem by using an accumulating parameter ys to avoid inefficient
concatenations. Assume that for a given number of discs d we want to
compute the reversed list of moves, i.e. (rev (hanoi d 1 3 2 []) []).

Note that lazy composition is not immediately applicable because
hanoi is not context-linear as required for f1 in Transformation 1.
However, we only imposed linearity restrictions in order to avoid two
different calls of f2 on the same context parameter of f1. Since in
the definition of hanoi only the first three context parameters are
copied and—for typing reasons—these will never be reached by a call
of rev during the translation of hanoi ’s right-hand sides, the viola-
tion of context-linearity does no harm here. Hence, lazy composition is
applicable as follows.
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Example 7. Transformation 1 assumes that among the context pa-
rameters of f1 the ones with the same type as f1’s result appear first.
Since this is not the case for hanoi , a reordering making ys the first
context parameter would be necessary (such that then r ′ = 1). For
the sake of clarity, we abstain from this reordering in the following
calculations:

hanrev 0 y1 y2 y3 ys zs ys ′

= let c=L[[rev ys zs ]]
in (c, c4,1)

� let c = ys ′

c4,1 =L[[zs]]
in (c, c4,1)

— by 7

� let c = ys ′

c4,1 = zs
in (c, c4,1)

— by 1

hanrev (x+ 1) y1 y2 y3 ys zs ys ′

= let c=L[[rev (hanoi x y1 y3 y2

((y1, y2) : (hanoi x y3 y2 y1 ys))) zs ]]
in (c, c4,1)

� let c = v1

(v1, v2)= hanrev x y1 y3 y2

((y1, y2) : (hanoi x y3 y2 y1 ys)) L[[zs]]
L[[rev ((y1, y2) : (hanoi x y3 y2 y1 ys))

v2]]
in (c, c4,1)

— by 8

� 2 let c = v1

(v1, v2)= hanrev x y1 y3 y2

((y1, y2) : (hanoi x y3 y2 y1 ys)) zs
L[[rev (hanoi x y3 y2 y1 ys)

((y1, y2) : v3)]]
v3 =L[[v2]]

in (c, c4,1)

— by 1,6

� 2 let c = v1

(v1, v2)= hanrev x y1 y3 y2

((y1, y2) : (hanoi x y3 y2 y1 ys)) zs v4

v3 = v2
(v4, v5)= hanrev x y3 y2 y1

ys L[[((y1, y2) : v3)]] L[[rev ys v5]]
in (c, c4,1)

— by 8,1
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� 7 let c = v1

(v1, v2)= hanrev x y1 y3 y2

((y1, y2) : (hanoi x y3 y2 y1 ys)) zs v4

v3 = v2
(v4, v5)= hanrev x y3 y2 y1 ys ((y1, y2) : v3) ys ′

c4,1 = v5
in (c, c4,1)

— by 2,3,
1,7

Post-processing as in Section 5.1 transforms the replacement

let (c, c4,1) = hanrev d 1 3 2 [] [] (rev [] c4,1) in c

for
rev (hanoi d 1 3 2 []) []

into
hanrev

′′′′
d 1 3 2 [] ,

where the following defining equations are produced:

hanrev
′′′′

0 y1 y2 y3 zs = zs

hanrev
′′′′

(x+ 1) y1 y2 y3 zs = hanrev
′′′′
x y3 y2 y1

((y1, y2) : (hanrev
′′′′
x y1 y3 y2 zs))

�

For similar reasons as discussed above the previous example, the restric-
tion on f2 in the lazy composition transformation can be relaxed by
requiring not linearity in all recursion variables, but only that there are
no two different recursive calls to f2 on the same recursion argument.
Then care has to be taken to avoid duplicated computations in the
resulting program, e.g. by introducing appropriate additional binding
equations in rule 6 of Transformation 1.

Further extensions to the applicability of lazy composition have been
sketched in the appendix of [35].

5.4. Replacing circularity by higher-orderedness

One referee of the conference version of this paper suggested to elim-
inate the circularities from our resulting tupled programs by using
the lambda-abstraction strategy [22, 23], thus obviating the need for
costly lazy evaluation. In this subsection we follow this advice for our
introductory example, but also demonstrate its limitations by giving a
negative example.

Example 8. Consider the circular program consisting of the expres-
sion e′′ and the function definition for ascunp ′′ from the introduction.
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To perform an export of information in the terminology of [23], we first
analyze the actual dependencies of the two result tuple elements on
the parameters of ascunp ′′. This step is similar to the computation of
attribute dependencies for an attribute grammar and yields that the
y′ parameter is only required for the first element and the z parameter
only for the second element of the result tuple, i.e. the following equality
holds:

ascunp ′′ t z y′ = (fst (ascunp ′′ t ⊥ y′), snd (ascunp ′′ t z ⊥)).

Hence, if we introduce a variant ascunp ? of ascunp ′′ by removing the
last two arguments, but parameterizing the tuple elements accordingly
with lambda-abstractions:

ascunp ? t = (λy′ → fst (ascunp ′′ t ⊥ y′), λz → snd (ascunp ′′ t z ⊥)) ,

then we can replace a binding of the form

(c, c1,1) = ascunp ′′ t z y′

by the triple of bindings

(c?, c?1,1)= ascunp ? t
c = c? y′

c1,1 = c?1,1 z

for fresh variables c? and c?1,1.
From e′′ this strategy gives the expression

e? = (let (c?, c?1,1)= ascunp ? t
c = c? (shows 0 c1,1)
c1,1 = c?1,1 “”

in c)

without any circular dependencies between bindings.
It still remains to derive a new noncircular definition for the function

ascunp ? :: Term → (String → String,String → String), independent of
the circular ascunp ′′. To do so, we can use the definition of ascunp ? in
terms of ascunp ′′, the defining equations for ascunp ′′, and the above
strategy for replacing calls to ascunp ′′ with calls to ascunp ?.

For the base case we derive the defining equation as follows:

ascunp ? (Num x)
= (λy′ → fst (ascunp ′′ (Num x) ⊥ y′),

λz → snd (ascunp ′′ (Num x) z ⊥))
= (λy′ → fst (y′, ′+′ : shows x ⊥), λz → snd (⊥, ′+′ : shows x z))
= (λy′ → y′, λz → ′+′ : shows x z)
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For the recursive case we calculate (additionally using let-floating [26]
and inlining):

ascunp ? (Add x1 x2)
= (λy′ → fst (ascunp ′′ (Add x1 x2) ⊥ y′),

λz → snd (ascunp ′′ (Add x1 x2) z ⊥))
= (λy′ → fst (let (v1, v2) = ascunp ′′ x1 ⊥ v3

(v3, v4) = ascunp ′′ x2 v2 y
′

in (v1, v4)),
λz → snd (let (v1, v2) = ascunp ′′ x1 z v3

(v3, v4) = ascunp ′′ x2 v2 ⊥
in (v1, v4)))

= (λy′ → fst (let (v?
1 , v

?
2)= ascunp ? x1

v1 = v?
1 v3

v2 = v?
2 ⊥

(v?
3 , v

?
4)= ascunp ? x2

v3 = v?
3 y

′

v4 = v?
4 v2

in (v1, v4)),
λz → snd (let (v?

1 , v
?
2) = ascunp ? x1

v1 = v?
1 v3

v2 = v?
2 z

(v?
3 , v

?
4) = ascunp ? x2

v3 = v?
3 ⊥

v4 = v?
4 v2

in (v1, v4)))
= let (v?

1 , v
?
2) = ascunp ? x1

(v?
3 , v

?
4) = ascunp ? x2

in (λy′ → fst (v?
1 (v?

3 y
′), v?

4 (v?
2 ⊥)),

λz → snd (v?
1 (v?

3 ⊥), v?
4 (v?

2 z)))
= let (v?

1 , v
?
2) = ascunp ? x1

(v?
3 , v

?
4) = ascunp ? x2

in (λy′ → v?
1 (v?

3 y
′), λz → v?

4 (v?
2 z))

�

Note that the program finally obtained in the previous example indeed
contains no circular definitions and hence terminates even under eager
evaluation. When compiled with a standard lazy compiler, however, its
performance is rather disappointing (see Table I in Section 7.1).

Moreover, the strategy of replacing circularity by higher-orderedness
is not successful in general, as we now demonstrate with an artificial
example. Assume given a context-linear function f1 that—beside some
others—has the following two defining equations for nullary construc-
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tors N1 and N2:
f1 N1 y1 y2 = Add y1 y2

f1 N2 y1 y2 = Add y2 y1

If we apply lazy composition for this f1 and f2 = asc, then we obtain—
after useless variable elimination and inlining—the equations

f1asc
′′

N1 z y
′
1 y

′
2 = (y′1, y

′
2, z)

f1asc
′′

N2 z y
′
1 y

′
2 = (y′2, z, y

′
1)

and for an expression of the form (asc (f1 t y1 y2) z) the replacement

let (c, c1,1, c2,1) = f1asc
′′
t z (asc y1 c1,1) (asc y2 c2,1) in c.

Dependency analysis based on the defining equations of f1asc
′′

yields
that the first element of its result tuple requires y ′1 and y′2, the second
element requires z and y′2, and the third element requires z and y ′1.

7

Now, by analogy with Example 8, a variant f1 asc
?

of f1asc
′′

would be
introduced and the circular binding in the above expression involving

f1asc
′′

would have to be adapted to the following:

let (c?, c?1,1, c
?
2,1)= f1 asc

?
t

c = c? (asc y1 c1,1) (asc y2 c2,1)
c1,1 = c?1,1 z (asc y2 c2,1)
c2,1 = c?2,1 z (asc y1 c1,1)

in c.

However, here we have circular definitions yet again, so eager evaluation
will not be sufficient.

6. Related work

In this section we compare lazy composition with classical deforesta-
tion and shortcut fusion on a qualitative level. We also distinguish the
current work from tree transducer composition.

6.1. Classical deforestation

Since mtt-functions may be defined using nesting of terms in context
parameter positions and hence are not treeless programs in general,
Wadler’s original deforestation algorithm [37] does not apply directly

7 Obviously, the other defining equations of f1 can be chosen in such a way that
no more dependencies than these occur.
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to them. This problem can be solved by abstracting context parameters
using let-expressions explicitly [10] or implicitly [17], which yields an
algorithm along the lines of Section 3.1.

To illustrate in which sense lazy composition eliminates more inter-
mediate data structures than classical deforestation, we compare the
programs produced for the introductory example by classical deforesta-
tion and by lazy composition plus post-processing, respectively.

Example 9. Consider the deforested program from Example 2. Lazy
evaluation for the input (Add (Num 1) (Num 2)) yields the computation

ascunp (Add (Num 1) (Num 2)) (Num 0) “”

⇒ ascunp (Num 1) (asc (Num 2) (Num 0)) “”

⇒ unp (asc (Num 2) (Num 0)) (′+′ : shows 1 “”)

⇒ unp (Add (Num 0) (Num 2)) (′+′ : shows 1 “”)

⇒ unp (Num 0) (′+′ : unp (Num 2) (′+′ : shows 1 “”))

⇒ shows 0 (′+′ : unp (Num 2) (′+′ : shows 1 “”))

⇒ shows 0 (′+′ : shows 2 (′+′ : shows 1 “”)) ,

where the underlined expressions are parts of the intermediate result
that have not been eliminated.

Compare this with the shorter computation for the program pro-
duced by lazy composition plus post-processing:

shows 0 (ascunp ′′′′ (Add (Num 1) (Num 2)) “”)
⇒ shows 0 (ascunp ′′′′ (Num 2) (ascunp ′′′′ (Num 1) “”))
⇒ shows 0 (′+′ : shows 2 (ascunp ′′′′ (Num 1) “”))
⇒ shows 0 (′+′ : shows 2 (′+′ : shows 1 “”)).

�

On the other hand, variants of classical deforestation are applicable to
a bigger class of programs than just mtt-functions.

6.2. Shortcut fusion

Shortcut fusion achieves elimination of intermediate results by using
higher-order, polymorphic combinators, compositions of which can be
transformed by cata/build -rules [8, 9, 12]. Such rules embody the idea
of substituting the operations that are to replace the data constructors
of an intermediate result directly into the algorithm producing it, put
forward also in [32].

To this aim, the consumer of an intermediate result needs to be
expressed as a catamorphism. Such a representation can be synthesized
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from the defining equations of an mtt-function in a systematic way,
using a higher-order catamorphism to capture context parameters.

Example 10. Using the catamorphism combinator

cataTerm :: (Int→ α)→ (α→ α→ α)→ Term→ α
cataTerm n a (Num x) = n x
cataTerm n a (Add x1 x2) = a (cataTerm n a x1) (cataTerm n a x2)

the consumer unp from the introductory example can be expressed as

unp = cataTerm (λx z → shows x z) (λr1 r2 z → r1 (′+′ : r2 z)).
�

On the other hand, all data constructors need to be abstracted uni-
formly from the producer of an intermediate result in a polymorphic
way. Since in the case of mtt-functions parts of the produced output
can be “hidden” in the context parameters, these have to be prepared
for abstraction via an additional traversal.

Example 11. Using the rank-2 polymorphic combinator

buildTerm :: (∀α. (Int→ α)→ (α→ α→ α)→ α)→ Term

buildTerm g = g Num Add

the producer asc from the introductory example can be expressed as

asc t y = buildTerm (λn a→ let h (Num x) y = a y (n x)
h (Add x1 x2) y = h x1 (h x2 y)

in h t (cataTerm n a y)).

Now, the rule
cataTerm n a (buildTerm g) = g n a

can be applied to the expression e = (unp (asc t (Num 0)) “”). After
some beta-reductions and an unfolding, the following results:

(let h (Num x) y = λz → y (′+′ : shows x z)
h (Add x1 x2) y = h x1 (h x2 y)

in h t (λz → shows 0 z)) “”.

Here the intermediate term has been eliminated, but in its stead a se-
quence of suspended function calls has been introduced. An equivalent
result could have been obtained by using a variant of Johann’s augment -
combinator together with its associated cata/augment -rule [12].

�

The observed introduction of suspended function calls compromises
the intended efficiency gain by shortcut fusion, as discussed by Sven-
ningsson [31] who for this reason disputes the use of higher-order cata-
morphisms like above. As remedy he proposes the destroy/unfoldr -rule
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(for the list case), which however handles accumulating parameters
only for consumers of intermediate lists; the more difficult problem of
producers using accumulating parameters is not approached by his rule.
Interestingly though, it successfully handles consumers recursing over
several lists simultaneously, which is not addressed by our technique.

Nishimura [20] uses type information to guide a higher-order removal
phase that transforms programs resulting from shortcut fusion into
tupled, circular programs similar to the results of lazy composition. He
informally compares his technique with our work on lazy composition
and tree transducer composition [35, 36] and observes that it matches
the transformational power of our method quite closely.

6.3. Tree transducer composition

Kühnemann [16, 17] first proposed to use composition techniques for
various classes of tree transducers [6, 7] as a means to eliminate in-
termediate results in functional programs. In [36] a single composition
construction is given that generalizes the previously considered ones.
The programs handled by it differ from mtt-functions in that no exter-
nal calls are considered and recursion variables may not occur elsewhere
than as first arguments of recursive calls. However, in contrast to the
situation with lazy composition in its current form, also mutually re-
cursive functions can be handled by the construction in [36]. It shares
with lazy composition the ideas of “translating” the right-hand sides
of the producer of an intermediate result by using the consumer’s
defining equations, and of holding available translated versions of the
producer’s accumulating parameters in the composed program. An
analogous question to the one raised in Figure 6 then gives rise to
conditions on the involved functions that are similar to the linearity
restrictions introduced for lazy composition in Section 3.4, albeit in
the more general setting of mutual recursion.

The key difference between the construction in [36] and lazy com-
position lies in how the requested context parameter values of the
consumer—needed to make the idea of “providing translated versions
of the producer’s context parameters” effective—are actually obtained.
While the former incorporates an elaborate scheme to construct defin-
ing equations of additional functions that compute the required infor-
mation (in additional traversals of the input data structure), the latter
simply passes this information up (as part of a tupled function result)
from a unique call site during the translation process. The circular bind-
ings created to access such information necessitate a lazy evaluation
mechanism to be used for the programs obtained by lazy composition,
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whereas the macro tree transducers produced by the technique from [36]
are terminating even under eager evaluation.

One topic of interest in the theoretical study of tree transducer
composition is how additional restrictions on the composition partners
carry over to the composed program. To perform such a study for lazy
composition and the linearity restrictions introduced in Section 2 is
complicated by rule 8 from Transformation 1, which duplicates parts of
rhsf1 ,C, namely the φ1, . . . , φr′ . This duplication is necessary because the
function f1 f2 in general needs to preserve the original context parame-
ters of f1 (beside their translations with f2). This need, in turn, arises
from the freedom of mtt-functions to use recursion variables elsewhere
than as first arguments of recursive calls. If this were outlawed, then
it could not anymore be the case that in the original program parts
of the intermediate result produced by f1 are copied literally into the
final output by f2. Hence, in the composed program f1 f2 would not
need its y1, . . . , yr-parameters, simplifying the expression e and rule 8
from Transformation 1 accordingly. Under this assumption and the
additional assumptions that f1 is context-linear and f2 is recursion-
linear, it is easy to see that then for recursion-linear f1 the right-hand
side of each defining equation of f1 f2 contains every recursion variable
at most once, and for context-linear f2 the right-hand side of each
defining equation of f1 f2 contains every context variable at most once.

7. Efficiency considerations

So far, we have considered the pure prevention of creation and con-
sumption of an intermediate data structure by lazy composition as
success. However, such an elimination alone is no guarantee for a better
efficiency. The dependency of a circular program on lazy evaluation can
run counter to benefits that the original program might have gained
from strictness analysis. The tupling of function results leads to the
building of extra closures, which themselves could be seen as a kind
of “intermediate data structures” and can deteriorate the efficiency by
requiring additional heap space and execution time.

Often a post-processing phase as described in Section 5.1 can elimi-
nate such additional ballast. When post-processing is not applicable or
does not produce satisfactory results, there are also possibilities for run-
time improvements using a compiler that generates more efficient code
for functions returning tupled results. Van Groningen [33] described and
implemented a compiler optimization for the lazy functional language
Clean that reuses closure and tuple selector nodes in recursive calls
of functions that yield multiple results in tuples. He observed massive
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improvements in execution and garbage collection times for a range of
examples. The functions produced by lazy composition fulfill exactly
the syntactic conditions that are required in order for this tuple opti-
mization to be applicable. Hence, the latter might drastically reduce the
price that lazy composition has to pay for eliminating intermediate data
structures by introducing tuples. The experimental implementation in
the Clean compiler does not transform functions using circular de-
pendencies, but according to van Groningen [personal communication,
2002] the application of his tuple optimization to circular programs
poses no problems in principle (apart from extra implementation work).

Another approach to reduce the runtime costs originating from the
building of unnecessary closures could be to investigate how to ex-
tend the lazy composition algorithm with a “strictness-guidance”, as
performed for the tupling transformation strategy by Chin et al. [4].

7.1. Measurements

To demonstrate efficiency gains realized by our technique in practice,
we perform measurements for three examples. For each example we
compare execution times for multiple runs of different program versions
with varying input sizes. The program versions considered are: (i) the
original program, (ii) the program obtained by applying lazy compo-
sition, (iii) the program obtained from (ii) by additionally applying
post-processing as discussed in Section 5.1, (iv) the program obtained
from the original one by applying classical deforestation as indicated
in Section 6.1, and (v) the program obtained by applying shortcut
fusion as discussed in Section 6.2. For the introductory example we
additionally measure runtimes of the variant obtained in Example 8 by
replacing circularity with higher-orderedness.

The different program versions were coded as ordinary Haskell source
(available at http://wwwtcs.inf.tu-dresden.de/∼voigt/hosc-measure.lhs),
compiled with the Glasgow Haskell Compiler (version 5.04.1, opti-
mization level -O), and run on a Sun Ultra 10 workstation (300MHz,
256MB). The runtimes (in seconds) shown in the measurement tables
below are split into the time spent for actual expression evaluation (the
first summand) and the time spent on garbage collection (the second
summand), as obtained from the statistics produced using the runtime
system option -s. The given execution times include the test frame
with generation of input data and consumption of final output. This is
unavoidable because a more detailed cost center profiling would corrupt
the precision of the measured garbage collection times considerably.

Table I contains the measurements for the introductory example
(unp (asc t (Num 0)) “”) on fully balanced terms of different heights h.
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They show no significant improvement in runtime behavior for the pro-
grams obtained by classical deforestation (cf. Example 2) and shortcut
fusion (cf. Example 11). On the other hand, the program consisting
of the expression e′′′′ and function ascunp ′′′′ from the introduction
achieves a decrease of the time needed for expression evaluation (muta-
tor time) and a considerable improvement of the time spent on garbage
collection—especially for large inputs—and hence of the total runtimes.
The higher-order program produced in Example 8 seems to suffer from a
high garbage collection expense due to the creation of function closures.
Apparently, the compiler could not really profit from the fact that eager
evaluation is sufficient for this program in contrast to a circular one.
By using a strict pair constructor and manually adding strictness an-
notations the total runtimes of the higher-order program version can
be reduced considerably, but not to the degree of compensating all the
overhead compared to the original program.

Table I. (unp (asc t (Num 0)) “”), n runs with fully balanced terms of height h

n × h: 60000 × 5 2000 × 10 60 × 15 2 × 20

original progr. 2.0+0.1=2.1 2.0+0.1=2.1 2.0+3.5= 5.5 2.3+ 7.4= 9.7

lazy compos. 3.8+0.1=3.9 3.9+0.6=4.5 3.7+3.9= 7.6 3.8+ 6.9=10.7

+post-process. 1.9+0.0=1.9 1.8+0.0=1.8 1.8+1.4= 3.2 1.9+ 1.6= 3.5

class. deforest. 2.1+0.0=2.1 2.1+0.1=2.2 2.0+3.5= 5.5 2.4+ 7.2= 9.6

shortcut fusion 2.0+0.1=2.1 2.0+0.2=2.2 2.1+3.4= 5.5 2.3+ 7.3= 9.6

e? and ascunp? 3.3+0.1=3.4 3.6+0.6=4.2 3.7+8.0=11.7 3.8+11.8=15.6

A similar improvement by lazy composition plus post-processing as
above is obtained for the example (rev (hanoi d 1 3 2 []) []) from
Section 5.3, as witnessed by the measurements in Table II. Classical
deforestation achieves no elimination of any part of the intermediate
result in this program because hanoi produces its output exclusively
inside its accumulating parameter. The performance of the program
produced by shortcut fusion is about on a par with that of the program
produced by our techniques for relatively small input numbers, but
for larger inputs the fused program has a considerably higher garbage
collection overhead, probably caused by the introduction of a sequence
of suspended function calls as discussed by Svenningsson [31].

Table III shows execution times for (rev (pre t []) []), which was the
running example of the conference version of the present paper [35],
where also the differently transformed program versions used for the
measurements can be found. Interestingly, on large inputs—where the
garbage collection times become dominant—there is an efficiency im-
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Table II. (rev (hanoi d 1 3 2 []) []), n runs with input d

n × d: 30000 × 5 1000 × 10 30 × 15 1 × 20

original progr. 1.6+0.0=1.6 1.7+0.2=1.9 1.7+3.0=4.7 1.8+6.1=7.9

lazy compos. 3.3+0.2=3.5 3.5+1.2=4.7 3.1+3.6=6.7 3.4+5.2=8.6

+post-process. 1.4+0.0=1.4 1.5+0.0=1.5 1.5+1.2=2.7 1.6+1.3=2.9

class. deforest. 1.6+0.0=1.6 1.7+0.2=1.9 1.6+3.1=4.7 1.8+6.1=7.9

shortcut fusion 1.3+0.0=1.3 1.4+0.1=1.5 1.4+3.0=4.4 1.5+5.1=6.6

provement even for the program obtained by lazy composition only
(without post-processing).

Table III. (rev (pre t []) []), n runs with fully balanced trees of height h

n × h: 100000 × 5 3000 × 10 100 × 15 3 × 20

original progr. 3.0+0.0=3.0 2.8+0.2=3.0 3.2+5.2= 8.4 3.1+10.6=13.7

lazy compos. 5.0+0.1=5.1 5.2+0.7=5.9 4.7+6.0=10.7 4.6+ 7.5=12.1

+post-process. 2.1+0.0=2.1 2.0+0.0=2.0 2.1+1.8= 3.9 2.0+ 1.7= 3.7

class. deforest. 3.0+0.1=3.1 2.8+0.2=3.0 3.0+5.3= 8.3 3.0+10.7=13.7

shortcut fusion 2.0+0.0=2.0 1.8+0.1=1.9 2.3+3.8= 6.1 2.0+ 6.7= 8.7

8. Conclusion

We have developed a program transformation technique for certain
recursive functions with accumulating parameters that eliminates inter-
mediate data structures in compositions of two such functions. To assess
better the utility for practical implementations, sufficient conditions
should be studied under which lazy composition plus post-processing
guarantees an efficiency improvement.

The composition and post-processing constructions for macro tree
transducers [34, 36] have been implemented in the Haskell+ program
transformation system [11]. As another road to application an analysis
phase detecting tree transducers in Haskell source programs and a
simple composition transformation have been integrated into a full-
scale functional compiler [27]. We want to include lazy composition
and related techniques in either of these two frameworks.
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