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Abstract

Several induction theorem provers were developed to verify functional programs
mechanically. Unfortunately, automatic verification often fails for functions with
accumulating arguments. Using concepts from the theory of tree transducers and
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cumulative functional programs into non-accumulative ones, which are much better
suited for mechanized verification. The overall goal is to reduce the need for gener-
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1 Introduction

Automatic transformation of programs is a key technology in software engi-
neering, as it enables programmers to work at a higher level of abstraction
than would otherwise be possible and thus raises their productivity. Another
important trend, in particular for safety-critical applications, is formal verifi-
cation of programs. This paper combines these two paradigms, employing an
automatic program transformation to improve the amenability of programs to
automatic verification. So while most classical program transformations aim at
improving the efficiency, our goal is to develop transformations which improve
the provability. This goal is detailed in the following.

To automate correctness proofs about programs as much as possible, sev-
eral powerful induction theorem provers have been developed, which can be
used for mechanized reasoning about program properties (e.g., NQTHM [8],
ACL-2 [33], RRL [32], CLAM [10,9], INKA [2,61], SPIKE [7]). While their
most successful application area is that of functional programming, such
provers can in principle also be used for the verification of imperative pro-
grams. To this end, imperative programs are translated into the functional
input language of induction provers. Unfortunately, this leads to a certain
form of programs that poses severe problems for the existing provers.

As an example, we consider the calculation of a decreasing list containing the
first x1 even numbers (i.e., [2 · x1 − 2, . . . , 4, 2, 0]). This problem can be solved
by the following part peven of an imperative program (in C-like syntax [34]):

[int] even (int x1)

{ int y1 = 0; [int] y2 = [];

while (x1!=0) { y2 = y1:y2; y1 = y1+2; x1--; };

return y2; }

Here, [int] denotes the type of integer lists, [] denotes the empty list, and :

denotes list insertion, i.e., y1 : y2 inserts the element y1 in front of the list y2. In
the absence of pointers, as above, imperative programs can easily be translated
into functional ones by transforming every while-loop into a separate function
whose parameters record the changes during a run through the while-loop [42].
For our program peven we obtain the following tail-recursive program pacc (in
Haskell-like syntax [47]) together with an initial call racc = (lev x1 0 [ ]). Here,
“lev” stands for “list of even numbers”. The program pacc represents natural
numbers with the constructors 0 and S for the successor function, and uses
pattern matching on lev ’s first argument, called recursion argument:

pacc : lev (S x1) y1 y2 = lev x1 (S (S y1)) (y1 : y2)

lev 0 y1 y2 = y2
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The described translation of imperative into functional programs always yields
tail-recursive functions that compute their result using accumulators. For in-
stance, the decreasing list of the first three even numbers is computed by pacc

as follows (where ⇒pacc
denotes the reduction relation w.r.t. pacc):

lev (S3 0) 0 [ ]

⇒pacc
lev (S2 0) (S2 0) (0 : [ ])

⇒pacc
lev (S 0) (S4 0) ((S2 0) : (0 : [ ]))

⇒pacc
lev 0 (S6 0) ((S4 0) : ((S2 0) : (0 : [ ])))

⇒pacc
(S4 0) : ((S2 0) : (0 : [ ]))

As one can see, lev accumulates values in its context arguments (arguments
different from the recursion argument, i.e., lev ’s second and third argument).
A function is called accumulative if at least one of its context arguments is
modified in a recursive call. For instance, lev is accumulative because both
the second and the third argument do not remain unchanged in the recursive
call. A program like pacc , containing an accumulative function, is itself called
accumulative.

Now assume that our aim is to verify the equivalence of racc and rspec =
(lev2 x1) for all natural numbers x1, where pspec is the following specification of
our problem. Here, (lev 2 x1) calculates the desired list and (doub x1) computes
2 · x1:

lev2 (S x1) = (doub x1) : (lev2 x1) doub (S x1) = S (S (doub x1))

lev2 0 = [ ] doub 0 = 0

Note that even if there exists such a “natural” non-accumulative recursive
specification of a problem, imperative programs are typically written using
loops, which translate into accumulative programs like pacc above. The accu-
mulative version may also be more efficient than a non-accumulative imple-
mentation (see, e.g., Appendix B).

But unfortunately, accumulative programs pose serious problems for mecha-
nized verification. For example, an automatic proof of

lev x1 0 [ ] = lev2 x1

by induction (using this equation for fixed x1 as induction hypothesis) fails
because in the induction step (x1 7→ (S x1)) the induction hypothesis can-
not be successfully applied to prove the equality of (lev (S x1) 0 [ ]) and
(lev2 (S x1)). The reason is that lev uses accumulators: the context arguments
of the term (lev x1 (S (S 0)) (0 : [ ])), which originates from rule application to
(lev (S x1) 0 [ ]), do not fit to the context arguments of the term (lev x1 0 [ ]) in
the induction hypothesis! So the problem is that accumulating arguments are
typically initialized with some fixed values (like 0 and [ ]), which then appear
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also in the conjecture to be proved and hence in the induction hypothesis.
But since accumulators are changed in recursive calls, after rule application
we have different values (like (S (S 0)) and (0 : [ ])) in the statement to be
proved in the induction step.

In induction theorem proving this problem is usually solved by transforming
the conjecture to be proved. More precisely, the aim is to invent a suitable
generalization (see, e.g., [1,8,9,29,30,33,61]). So, as a replacement for the orig-
inal conjecture, one tries to find a stronger conjecture that however is easier
to prove. In our example, the original conjecture may be generalized to

lev x1 y1 y2 = (lev ′
2 x1 y1) ++ y2 ,

where ++ denotes list concatenation and where lev ′
2 and doub ′ are defined as

follows:

lev ′
2 (S x1) y1 = (doub ′ x1 y1) : (lev ′

2 x1 y1)

lev ′
2 0 y1 = [ ]

doub ′ (S x1) y1 = S (S (doub ′ x1 y1))

doub ′ 0 y1 = y1

However, finding successful generalizations automatically is often very hard.
The ACL-2 prover [33], for instance, performs a series of generalizations for
the above original conjecture that do not increase verifiability, and it ends
up with consuming all memory available. This corresponds to the problem of
inventing suitable loop invariants in classical approaches to direct verification
of imperative programs [26]. While there are heuristics for discovering good
loop invariants [12,30,39,48,51], in general this task is hard to mechanize [14].
Since discovering good generalizations of conjectures is equally difficult, the
development of techniques to verify accumulative functions is one of the most
important research topics in the area of inductive theorem proving [29].

In contrast to the classical approach of generalizing conjectures, we suggest an
automatic, semantics-preserving program transformation. It transforms func-
tions for which conjectures are hard to verify into functions that are much
more suitable for mechanized verification. The advantage of this approach is
that by transforming a function definition the verification problems with this
function are typically solved once and for all (i.e., for all conjectures one would
like to prove about this function). This is unlike the situation when using the
generalization approach, where one has to find a new generalization for ev-
ery new conjecture to be proved. In particular, finding generalizations is very
difficult for conjectures with several occurrences of an accumulative function
(see, e.g., [23] and Appendices A and B).
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The transformation to be presented in this paper transforms the original pro-
gram pacc with initial call racc into the following equivalent program pnon :

pnon : lev ′ (S x1) = sub (lev ′ x1) (S (S 0)) (0 : [ ])

lev ′ 0 = [ ]

sub (x1 : x2) y1 y2 = (sub x1 y1 y2) : (sub x2 y1 y2) sub 0 y1 y2 = y1

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub [ ] y1 y2 = y2

with initial call rnon = (lev ′ x1). Since pnon contains a function lev ′ without
context arguments and a function sub with unchanged context arguments in
recursive calls, pnon is a non-accumulative program and our transformation
technique is called deaccumulation. An application (sub t s1 s2) of the sub-
stitution function sub replaces all occurrences of 0 and [ ] in t by s1 and s2,
respectively. For instance, the decreasing list of the first three even numbers
is computed by pnon as follows (where the superscript of ⇒pnon

indicates the
number of reduction steps):

lev ′ (S3 0)

⇒4
pnon

sub (sub (sub [ ] (S2 0) (0 : [ ])) (S2 0) (0 : [ ])) (S2 0) (0 : [ ])

⇒pnon
sub (sub (0 : [ ]) (S2 0) (0 : [ ])) (S2 0) (0 : [ ])

⇒3
pnon

sub ((S2 0) : (0 : [ ])) (S2 0) (0 : [ ])

⇒7
pnon

(S4 0) : ((S2 0) : (0 : [ ]))

This computation shows that the constructors 0 and [ ] in pnon are used as
“placeholders”, which are repeatedly substituted by (S2 0) and (0 : [ ]), respec-
tively. Our transformation is meant to be applied as an explicit pre-processing
step preceding actual verification attempts.

Now, the statement

lev ′ x1 = lev 2 x1 (1)

can be proved by three nested inductions as follows. We only give the induc-
tion step (x1 7→ (S x1)), omitting the simple base case (x1 = 0). We have to
prove lev ′ (S x1) = lev2 (S x1). For the left-hand side lev ′ (S x1), exhaus-
tive rewriting with the (directed) equations from pnon and application of the
induction hypothesis (IH ) lev ′ x1 = lev2 x1 yields

lev ′ (S x1)

= sub (lev ′ x1) (S (S 0)) (0 : [ ])

= sub (lev 2 x1) (S (S 0)) (0 : [ ]). (IH )

For the right-hand side lev 2 (S x1), we obtain

lev2 (S x1) = (doub x1) : (lev2 x1)
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by rewriting. So to finish the proof, we have to show the conjecture

sub (lev 2 x1) (S (S 0)) (0 : [ ]) = (doub x1) : (lev2 x1). (2)

Note that there is no need to invent such subgoals manually here because they
show up automatically as proof obligations during the course of the proof. For
the proof of (2), we again only give the induction step (x1 7→ (S x1)). We
apply the same strategy as above by exhaustively rewriting both sides of the
equation and by applying the induction hypothesis afterwards. For the left-
hand side, this yields

sub (lev 2 (S x1)) (S (S 0)) (0 : [ ])

= sub ((doub x1) : (lev2 x1)) (S (S 0)) (0 : [ ])

= (sub (doub x1) (S (S 0)) (0 : [ ])) : (sub (lev 2 x1) (S (S 0)) (0 : [ ]))

= (sub (doub x1) (S (S 0)) (0 : [ ])) : ((doub x1) : (lev2 x1)) (IH )

and for the right-hand side, we obtain

(doub (S x1)) : (lev2 (S x1)) = (S (S (doub x1))) : ((doub x1) : (lev2 x1)).

Since the tails of the two resulting list expressions are identical, we have to
show the following conjecture to finish the proof:

sub (doub x1) (S (S 0)) (0 : [ ]) = S (S (doub x1)). (3)

Conjecture (3) is again proved by induction. In the step case, the left-hand
side is transformed as follows:

sub (doub (S x1)) (S (S 0)) (0 : [ ])

= sub (S (S (doub x1))) (S (S 0)) (0 : [ ])

= S (S (sub (doub x1) (S (S 0)) (0 : [ ])))

= S (S (S (S (doub x1)))) (IH )

and rewriting the right-hand side yields

S (S (doub (S x1))) = S (S (S (S (doub x1)))).

Thus, Conjecture (3) is verified. This also proves (2) and the original conjecture
(1). A similar proof can also be generated automatically by existing induction
theorem provers like ACL-2, if provided with the transformed program.

In this paper we consider the definition of lev in pacc as a macro tree transducer
(for short mtt) [16,18,22] with one function. In general, such a function is
defined by equations which perform a case analysis on the root symbol of its
recursion argument t. The right-hand side of such a defining equation may,
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beside constructors and context arguments, only contain (extended) primitive-
recursive function calls, i.e., ones in which the function being defined is called
with a recursion argument that is a variable referring to a subtree of t. The
functions lev ′ and sub together are viewed as a 2-modular tree transducer (for
short modtt) [19], where it is allowed that a function in module 1 (here lev ′)
calls a function in module 2 (here sub) non-primitive-recursively.

In [24] we have simplified a decomposition technique from [37], which itself
is based on results in [16,18,19] and transforms mtts like lev into modtts like
lev ′ and sub without accumulators. It turned out that the programs obtained
right after decomposition are still not suitable for automatic verification. Since
their verification problems are caused only by the form of the new initial calls,
which still contain initial values, we developed another transformation step,
called (basic) constructor replacement, which yields initial calls of the innocu-
ous form (f ′ x1). An implementation of decomposition and basic constructor
replacement (up to now without integration into an induction theorem prover)
is described in [50].

The second transformation step, however, imposed a quite strong restriction on
the original program, namely that the initial values for the context arguments
of the function f to be transformed are pairwise distinct nullary constructors
not occurring in the right-hand sides of defining equations for f . 3 While this
restriction is fulfilled for 0 and [ ] in the example considered above, it is not
hard to envisage other examples (cf. Section 3.2) where this is not the case,
but where performing an automatic deaccumulation to improve the suitability
for verification would still be desirable. Extending on our earlier work [24], we
show how to overcome this restriction in the current paper. The idea is to
allow more control to take place in module 2 of the resulting modtt than is
the case for the kind of simple substitution function seen above. The need
to determine the exact way in which this (finite) control is to be exercised
leads to an analysis problem regarding the original program, which is solved
using a fixpoint construction. Compared to the preliminary version of this pa-
per [24], this program analysis, the advanced deaccumulation technique based
on it, and the associated correctness proofs constitute the main additional
contributions of the current article. We also developed an implementation of
the fixpoint construction, though again it is not integrated into an induction
theorem prover up to now.

3 The reason is that the function sub is used to replace these nullary constructors
by context arguments of f . The restriction on f and its initial call ensures that after
the transformation, for each occurrence of a nullary constructor it is clear whether
it is just a placeholder that must be replaced by a former context argument or
whether it stands for the nullary constructor itself. A more detailed motivation for
the restriction is given in Section 3.1.2.
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Also independent of the tail-recursive embedding of imperative programs, the
accumulating style is a quite common programming idiom in functional lan-
guages (cf., e.g., Chapter 6 of [20]). Therefore, the topic of transforming accu-
mulative functions (not necessarily into non-accumulative ones) has received
much attention in recent years [13,23,27,31,43,44,52], partly drawing on con-
cepts from the theory of tree transducers as well [35,36,56,57,59]. The present
work continues this line of research, with the interesting twist that our aim is
not the classical one of improving the efficiency of programs. Choosing mtts as
model for functional programs with accumulating arguments opens the way to
deal with a large class of typical functions on algebraic data types, which are
indeed often defined by structural descent on a distinguished argument. For
example, manipulation of abstract syntax trees in compilers often follows the
recursion scheme of mtts [22,54], and the “tree transformation core” of XML
processing languages can be compiled into compositions of mtts [17,41]. Ac-
cordingly, we will demonstrate by examples that deaccumulation can not only
be useful for functions resulting from the translation of imperative programs,
but also for accumulative functional programs in general.

Beside this introduction, the paper contains four further sections and four
appendices. Section 2 introduces necessary notions and notations, our func-
tional language, and tree transducers. Section 3 develops basic and advanced
deaccumulation. Section 4 considers related work. Section 5 concludes with
a discussion of our approach and its future implementation, and points out
directions for further research. Three additional examples demonstrating the
application of our results can be found in Appendices A, B, and C. Appendix D
contains full proofs.

2 Preliminaries, Language, and Tree Transducers

We denote by
�

the set of natural numbers including 0. For every n ∈
�
, [n]

denotes the set {1, . . . , n} and [0, n] denotes the set {0} ∪ [n]. For every finite
subset of

�
, the mapping max gives the maximum of that subset’s elements,

where by convention max( � ) = 0. Let S be a set. We denote by S∗ the set of
finite sequences of elements of S. The power set of S is denoted by P(S). If S
is finite, then the number of its elements is denoted by |S|.

A ranked alphabet is a pair (Σ, rankΣ), where Σ is a finite set of symbols
and rankΣ assigns to each of these symbols a natural number, its rank. In
the following, we usually omit the rankΣ-function and only mention Σ when
referring to a ranked alphabet. For every k ∈

�
we define Σ(k) = {σ ∈

Σ | rankΣ(σ) = k}. The rank k of a symbol σ is also denoted by writing
σ(k). A nullary symbol is one of rank 0, a unary symbol is one of rank 1, and
an n-ary symbol (with n ∈

�
) is one of rank n. For the sake of brevity, a

quantification over a symbol in a ranked alphabet implicitly quantifies also its
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rank. For example, we write “for every σ ∈ Σ(k)” instead of “for every k ∈
�

and for every σ ∈ Σ(k)”. We use the following sets of variables, denoted by
lowercase letters. Let X be the set {x1, x2, x3, . . .} of variables, and for every
k ∈

�
, Xk is the finite set {x1, . . . , xk} ⊆ X; analogously for Y . Note that

X0 = Y0 = � . For a ranked alphabet Σ and a set V of variables disjoint
from Σ we define the set TΣ(V ) of trees (or terms) over Σ indexed by V as
the smallest set T ⊆ (Σ ∪ V ∪ {(, )})∗ such that (i) V ⊆ T and (ii) for ev-
ery σ ∈ Σ(k) and t1, . . . , tk ∈ T : (σ t1 · · · tk) ∈ T . If readability allows, outer
brackets of trees are omitted. For a unary symbol σ, n ∈

�
, and t ∈ TΣ(V ),

we write (σn t) for the tree obtained by putting n occurrences of σ on top
of t. We denote TΣ( � ) by TΣ. We define the height of a (ground) tree by
height(σ t1 · · · tk) = 1 + max({height(ti) | i ∈ [k]}) for every σ ∈ Σ(k) and
t1, . . . , tk ∈ TΣ.

Let n ∈
�
, let α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct, and let Σ′ and

V ′ be a ranked alphabet and a set of variables, respectively, where (Σ ∪
Σ′) ∩ (V ∪ V ′) = � . For trees t′1, . . . , t

′
n ∈ TΣ′(V ′), the tree substitution

� [α1, . . . , αn
� − t′1, . . . , t

′
n] (written postfix and also written using the alter-

native, set comprehension-like notation � [αi
� − t′i | i ∈ [n]]), is a function

mapping trees from TΣ(V ) to trees from TΣ−{α1 ,...,αn}∪Σ′(V −{α1, . . . , αn}∪V ′).
It is defined as follows:

αj[αi
� − t′i | i ∈ [n]] = t′j , for all j ∈ [n]

v[αi
� − t′i | i ∈ [n]] = v , for all v ∈ V − {α1, . . . , αn}

(σ t1...tk)[αi
� − t′i | i ∈ [n]] = σ t1[αi

� − t′i | i ∈ [n]] ... tk[αi
� − t′i | i ∈ [n]] ,

for all σ ∈ (Σ − {α1, ..., αn})
(k), t1, ..., tk ∈ TΣ(V ).

So a tree substitution permits the replacement of both variables and nullary
symbols. (In our approach, we do not need more general tree substitutions that
replace arbitrary trees. Such substitutions might be needed when extending
our approach to more general forms of programs where the initial values of
context arguments are not just nullary constructors.)

The following lemma will be needed repeatedly later on.

Lemma 1 (properties of tree substitutions) Let Σ be a ranked alphabet,
V be a set of variables disjoint from Σ, n ∈

�
, and α1, . . . , αn ∈ Σ(0) ∪ V be

pairwise distinct. For every t, t1, . . . , tn, t
′
1, . . . , t

′
n ∈ TΣ(V ):

(1) t[αi
� − αi | i ∈ [n]] = t,

(2) t[αi
� − ti | i ∈ [n]][αj

� − t′j | j ∈ [n]] = t[αi
� − ti[αj

� − t′j | j ∈ [n]] | i ∈
[n]], and

(3) t[αi
� − βi | i ∈ [n]][βi

� − ti | i ∈ [n]] = t[αi
� − ti | i ∈ [n]] for pairwise

distinct β1, . . . , βn ∈ Σ(0) that do not occur in t.
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PROOF. Straightforward, by induction on the structure of t. 2

We consider a simple first-order, constructor-based functional programming
language P as source and target language for the transformations. Every pro-
gram p ∈ P consists of some modules. In every module some functions are
defined by complete case analysis on the first argument (recursion argument)
via pattern matching, where only flat patterns of the form (c x1 . . . xk) for
constructors c and variables xi are allowed. The other arguments are called
context arguments. If, in a right-hand side of a function definition, there is a
call of a function that is defined in the same module, then this call is (ex-
tended) primitive recursive, i.e. the first argument of this function call has
to be a subtree xi of the first argument in the corresponding left-hand side.
Moreover, the variables x1, . . . , xk may not occur anywhere else in the right-
hand side of function definitions. Our transformation will only work on tree
transducers, which are special programs satisfying these requirements. To ease
readability, we choose an untyped ranked alphabet Cp of constructors, which
is used to build up input trees and output trees (i.e., results) of every function
in p. In example programs and transformations we sometimes relax the com-
pleteness of function definitions on TCp

by leaving out those equations which
are not intended to be used in evaluations.

Definition 2 (program, module, function definition, rhsp,f,c, RHS)
Let C and F be ranked alphabets of constructors and defined function symbols,
respectively, such that F (0) = � , and X, Y , C, F are pairwise disjoint. We
define the sets P , M , D, R of programs, modules, function definitions, and
right-hand sides as follows. Here, p, m, d, r, c, and f (also equipped with
indices) range over the sets P , M , D, R, C, and F , respectively.

• A program p is a set of modules m1 · · ·ml.
• A module m is a set of function definitions d1 · · ·dh.
• A function definition d is a set of defining equations of the form

f (c x1 · · ·xk) y1 · · · yn = r

• A right-hand side r is a tree of the following forms:
· xi

· yj

· c r1 · · · rk

· f r0 r1 · · · rn

The sets of constructors and defined function symbols that occur in p ∈ P
are denoted by Cp and Fp, respectively. For every f ∈ Fp, there is exactly
one module m in p and exactly one function definition d in m such that f
is defined in d. The set of functions defined in m ∈ p is denoted by Fm. For
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every m ∈ p, f ∈ F (n+1)
m , and c ∈ C(k)

p , there is exactly one equation of the
form

f (c x1 · · ·xk) y1 · · · yn = rhsp,f,c ,

where rhsp,f,c ∈ RHS (Fm, Cp ∪ Fp − Fm, Xk, Yn). Here, for every F ′ ⊆ F ,
C ′ ⊆ C ∪ F , X ′ ⊆ X, and n ∈

�
, RHS (F ′, C ′, X ′, Yn) is the smallest set

RHS ⊆ TF ′∪C′(X ′ ∪ Yn) such that:

− Yn ⊆ RHS,

− for every c ∈ C ′(a) and r1, . . . , ra ∈ RHS: (c r1 . . . ra) ∈ RHS, and

− for every f ∈ F ′(a+1), xi ∈ X ′, and r1, . . . , ra ∈ RHS: (f xi r1 . . . ra) ∈
RHS.

Note that, in addition to constructors, defined function symbols may also be
contained in the second argument C ′ of RHS in the previous definition. The
functions in C ′ may then be called with arbitrary arguments in right-hand
sides, whereas in calls of functions from F ′−C ′, the recursion argument must
be an xi. Hence, the latter calls are (extended) primitive recursive.

Example 3 (the introductory example formalized in our language)
Consider the programs pacc and pnon from the introduction. Then:

− pacc ∈ P , where pacc contains one module macc,lev with the definition
of lev, and

− pnon ∈ P , where pnon contains two modules mnon ,lev ′ and mnon ,sub, defining
lev ′ and sub, respectively.

For every program p ∈ P , its evaluation (possibly on terms with variables) is
described by a (nondeterministic) reduction relation ⇒p on TCp∪Fp

(Y ), defined
in the usual way by interpreting defining equations as rewrite rules [3]. We
consider only terminating programs, i.e., ones for which there is no infinite
chain s1 ⇒p s2 ⇒p s3 ⇒p · · ·. By their definition, programs in P never
contain critical pairs, hence ⇒p is also confluent. As a consequence, for every
s ∈ TCp∪Fp

(Y ) there is a unique normal form with respect to ⇒p, denoted by
nfp(s). By the completeness of function definitions, any element of TCp∪Fp

−TCp

cannot be a normal form with respect to ⇒p. Consequently, nfp(s) ∈ TCp
for

every s ∈ TCp∪Fp
.

Before introducing the classes of tree transducers relevant for this paper, we
consider a special kind of program modules which will be needed for our deac-
cumulation technique, cf. the module with the function sub in the introduction.
Since such a program module contains a substitution function which substi-
tutes designated substitution constructors π1, . . . , πn by parameters y1, . . . , yn,
respectively, and retains other constructors (from a set C ′), the module is
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called sub-module induced by C ′ and π1, . . . , πn.

Definition 4 (induced sub-module) Let C ′ ⊆ C, sub ∈ F (n+1), and let
π1, . . . , πn ∈ (C − C ′)(0) be pairwise distinct. The sub-module induced by C ′

and π1, . . . , πn consists of the following defining equations:

sub πj y1 · · · yn = yj , for every j ∈ [n]

sub (c x1 · · ·xk) y1 · · · yn = c (sub x1 y1 · · · yn) · · · (sub xk y1 · · · yn) ,

for every c ∈ C ′(k).

For example, the function sub from the program pnon in the introduction
represents the sub-module induced by C ′ = {:(2), S(1)} and π1 = 0, π2 = [ ].

The next lemma shows that the evaluation of a term sub s s1 · · · sn replaces
all occurrences of πj in s by sj, for all j ∈ [n].

Lemma 5 (semantics of substitution functions) Let p∈P , sub∈F (n+1)
p ,

and let π1, . . . , πn ∈ C(0)
p be pairwise distinct. If p contains the sub-module

induced by Cp − {π1, . . . , πn} and π1, . . . , πn, then for every s, s1, . . . , sn ∈
TCp∪Fp

:

nfp(sub s s1 · · · sn) = nfp(s)[πj
� − nfp(sj) | j ∈ [n]].

PROOF. Straightforward, by induction on the structure of nfp(s) ∈ TCp
. 2

Some further useful information about substitution functions can be derived
by additionally taking properties of tree substitutions into account.

Lemma 6 (properties of substitution functions)Let p∈P, sub ∈ F (n+1)
p ,

and let π1, . . . , πn ∈ C(0)
p be pairwise distinct. If p contains the sub-module in-

duced by Cp−{π1, . . . , πn} and π1, . . . , πn, then for every s, s1, . . . , sn, s
′
1, . . . , s

′
n

∈ TCp∪Fp
:

(1) nfp(sub s π1 · · ·πn) = nfp(s),

(2) nfp(sub (sub s s1 · · · sn) s′1 · · · s
′
n)

= nfp(sub s (sub s1 s′1 · · · s
′
n) · · · (sub sn s′1 · · · s

′
n)) , and

(3) nfp(sub s s1) = (cz1+z2 π1), if n = 1 and nfp(s) = (cz1 π1), nfp(s1) =
(cz2 π1) for some c ∈ C(1)

p and z1, z2 ∈
�
.

PROOF. Straightforward, using Lemma 5 and statements (1) and (2) of
Lemma 1. 2

Our transformations are based on the concepts of macro tree transducers
[16,18] and modular tree transducers [19], which were motivated in the in-
troduction and for which example computations were shown there. Since we
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will present our deaccumulation technique only for modules defining exactly
one function, we also project this restriction on the respective macro tree
transducers. In the literature more general instances are studied which allow
mutual recursion. Our transformations could also be defined for this case, but
only with a considerable presentational overhead we seek to avoid here. The
intermediate stages and final outputs of our transformation technique will be
specialized modular tree transducers. We only introduce the required special
cases rather than the general concept, again to simplify the presentation. Of
course, the proofs in the literature about termination of the reduction rela-
tions induced by the tree transducer models under consideration carry over to
our special cases. In contrast to (some of) the literature, we include an initial
call in the definition of tree transducers which has the form of a right-hand
side. Example 8 will illustrate the different classes of tree transducers, as well
as the syntactic restrictions which are additionally introduced in the following
definition.

Definition 7 (special mtts and modtts, and restrictions on them)
Let p ∈ P .

− A pair (m, r) with m ∈ p, |Fm| = 1, and r ∈ RHS (Fm, Cp, X1, Y0) is called
a one-state macro tree transducer of p (for short 1-mtt of p) if for every
c ∈ C(k)

p we have rhsp,f,c ∈ RHS ({f}, Cp, Xk, Yn), where Fm = {f (n+1)}.

Thus, the single function f defined in module m may call itself in a
primitive-recursive way, but it does not call any functions from other mod-
ules. Moreover, the initial call r is a term built from f , constructors, and
the variable x1 as first argument of all subterms rooted with f .

− A triple (m1, m2, r) with m1, m2 ∈ p and |Fm1 | = 1 is called non-accumulative
modular tree transducer of p (for short nmodtt of p) if:

(1) Fm1 = F (1)
m1

and Fm2 = F (n+1)
m2

for some n ∈
�
,

(2) for f ∈ Fm1 and every c ∈ C(k)
p : rhsp,f,c ∈ RHS (Fm1 , Cp∪Fm2 , Xk, Y0),

(3) for every g ∈ Fm2 and c ∈ C(k)
p with k > 0 we have

rhsp,g,c = c (g1 x1 y1 · · · yn) · · · (gk xk y1 · · ·yn)

for some (not necessarily pairwise distinct) g1, . . . , gk ∈ Fm2 ,
(4) for every g ∈ Fm2 and c ∈ C(0)

p we have rhsp,g,c ∈ {c} ∪ Yn,
(5) r ∈ RHS (Fm1 , Cp ∪ Fm2 , X1, Y0).

Thus, the single function f defined in module m1 is unary. In its right-
hand sides, it may call itself primitive-recursively and it may call the func-
tions defined in module m2, all of which have the same rank, with arbitrary
arguments. The function definitions in m2 have a special form in that non-
nullary constructors c in the input are reproduced in the output and their
subtrees are traversed in order with unchanged context arguments, whereas
nullary constructors c in the input are either also reproduced or replaced
by one of the context arguments. The initial call r is as for 1-mtts, but it
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may also contain the functions defined in m2.

− An nmodtt (m1, m2, r) of p with |Fm2 | = 1 is called a substitution modular
tree transducer of p (for short smodtt of p) if there are pairwise distinct
π1, . . . , πn ∈ C(0)

p , where the single function in Fm2 has rank n + 1, such
that:

(1) m2 is the sub-module induced by Cp − {π1, . . . , πn} and π1, . . . , πn.
(2) r ∈ RHS (Fm1 , Cp − {π1, . . . , πn} ∪ {sub}, X1, Y0).

Thus, the single function definition in m2 now has the even more spe-
cialized form of a substitution function, and the initial call r may not
contain the corresponding substitution constructors.

− A 1-mtt (m, r) of p is called nullary constructor distinct (for short ncd) if
there are pairwise distinct c1, . . . , cn ∈ C(0)

p such that r = (f x1 c1 . . . cn),
where Fm = {f}, and c1, . . . , cn do not occur in right-hand sides of the
function definition in m.

An smodtt (m1, m2, r) of p is called ncd if r = (sub (f x1) c1 . . . cn)
with pairwise distinct c1, . . . , cn ∈ C(0)

p −{π1, . . . , πn} that do not occur in
right-hand sides of the definition of f in m1.

− An nmodtt (m1, m2, r) of p is called initial value free (for short ivf) if
r = (f x1), where Fm1 = {f}.

Example 8 (Example 3 continued) Consider the programs pacc and pnon

from the introduction, and their modules macc,lev , mnon ,lev ′ , and mnon ,sub as
identified in Example 3. Then:

− (macc,lev , racc) with initial call racc = (lev x1 0 [ ]) is a 1-mtt of pacc that is
ncd.

− Our basic transformation, to be presented in Section 3.1, consists of the
two steps “decomposition” and “constructor replacement”. Decomposition
transforms pacc into a program pdec ∈ P containing the following two
modules mdec,lev ′ and mdec,sub:

lev ′ (S x1) = sub (lev ′ x1) (S (S π1)) (π1 : π2)

lev ′ 0 = π2

sub (x1 : x2) y1 y2 = (sub x1 y1 y2) : (sub x2 y1 y2) sub [ ] y1 y2 = [ ]

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub π1 y1 y2 = y1

sub 0 y1 y2 = 0 sub π2 y1 y2 = y2

Here, (mdec,lev ′, mdec,sub , rdec) with initial call rdec = (sub (lev ′ x1) 0 [ ]) is
an smodtt (and hence also an nmodtt) of pdec that is ncd, but not ivf.
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− (mnon ,lev ′, mnon ,sub , rnon) with initial call rnon = (lev ′ x1) is an smodtt (with
n = 2, π1 = 0, and π2 = [ ]) of pnon that is ivf.

3 Deaccumulation

To improve verifiability, we transform accumulative programs into non-accu-
mulative programs by transforming 1-mtts into ivf nmodtts. The defined func-
tions of the resulting programs have no context arguments at all or they have
context arguments that are not accumulating. Moreover, the resulting initial
calls have no (initial values in) context argument positions. In Section 3.1, we
present a first deaccumulation technique for 1-mtts that are ncd. Section 3.2
introduces a deaccumulation technique which can also handle many 1-mtts
that are not ncd.

3.1 Basic Deaccumulation

Conceptually, the transformation proceeds in two steps: “decomposition” (Sec-
tion 3.1.1) and “constructor replacement” (Section 3.1.2). For the extension
presented in Section 3.2 we will integrate the two steps into a single one.

3.1.1 Decomposition

In [16,18,19] it was shown that every mtt (with possibly several functions
of arbitrary ranks) can be decomposed into a top-down tree transducer (an
mtt with unary functions only [15,49,53]) plus a substitution device. In this
paper we use a modification of this result, integrating the constructions of
Lemmas 21 and 23 in [37]. The key idea is to simulate an (n+1)-ary function
f by a new unary function f ′. To this end, all context arguments are deleted
and only the recursion argument is maintained. Since f ′ does not know the
actual values of its context arguments, it uses a new constructor πj whenever
f uses its j-th (formal) context argument. For this purpose, every occurrence
of yj in the right-hand sides of equations for f is replaced by πj. The current
(actual) context arguments are integrated into the calculation by replacing
every term of the form (f xi · · ·) in a right-hand side or in the initial call by
(sub (f ′ xi) · · ·) for an appropriate substitution function. As explained before,
(sub t s1 · · · sn) replaces every πj in the first argument t of sub by the j-th
context argument sj. The transformation of right-hand sides described above
will be formalized by the function dec in Transformation 10.

The essence of this transformation can also be stated in terms of f alone: a
computation of f with arbitrary context arguments can always be simulated
by a computation of f with the particular context arguments π1, . . . , πn as
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placeholders, which are only afterwards substituted with the appropriate val-
ues. Since the computation of f in this simulation is performed with such
fixed placeholders, it can just as well be performed by a unary function. The
following lemma is proved in Appendix D using Lemma 1(3) and Lemma 5.

Lemma 9 (key to the decomposition transformation) Let p ∈ P and
(m, r) be a 1-mtt of p, where Fm = {f (n+1)}. Further, let p′ ∈ P with Cp′ =

Cp∪{π
(0)
1 , . . . , π(0)

n } for pairwise distinct π1, . . . , πn /∈ Cp, and sub ∈ F
(n+1)
p′ . Let

p′ contain (at least) the sub-module induced by Cp and π1, . . . , πn, and a module
m′ with all defining equations from m and additional equations of the form
“f πj y1 · · ·yn = . . .” that define f for the new constructors π1, . . . , πn such
that (m′, r) is a 1-mtt of p′. Then for every t ∈ TCp

and s1, . . . , sn ∈ TCp′∪Fp′
:

nfp′(f t s1 · · · sn) = nfp′(sub (f t π1 · · ·πn) s1 · · · sn).

The following transformation and lemma formalize the above intuitions. More-
over, we will show that the ncd property is carried over from the original to the
decomposed tree transducer. Note that the transformation retains the defining
equations of f from the original program. This is necessary because f may
be called from other modules. When giving examples, we do not show such
retained function definitions.
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Transformation 10 (decomposition) Let p ∈ P and (m, r) be a 1-mtt
of p, where Fm = {f (n+1)}. We construct a program p′ ∈ P which results
from p by adding the modules m1 and m2, defined below. Then, (m1, m2, r

′)
is an smodtt of p′, where r′ is also defined below. Let f ′ ∈ (F−Fp)

(1), sub ∈
(F −Fp)

(n+1) with f ′ 6= sub, and pairwise distinct π1, . . . , πn ∈ (C−Cp)
(0).

(1) For every c ∈ C(k)
p and every equation f (c x1 · · ·xk) y1 · · · yn = rhsp,f,c

in m, the module m1 contains f ′ (c x1 · · ·xk) = dec(rhsp,f,c).

(2) m2 is the sub-module induced by Cp and π1, . . . , πn.

(3) r′ = dec(r),

where

dec : RHS ({f}, Cp, X, Yn) −→ RHS ({f ′}, Cp ∪ {π1, . . . , πn} ∪ {sub}, X, Y0)

dec(f xi r1 · · · rn) = sub (f ′ xi) dec(r1) · · · dec(rn) ,

for all xi ∈ X, r1, . . . , rn ∈ RHS ({f}, Cp, X, Yn)

dec(c r1 · · · ra) = c dec(r1) · · · dec(ra) ,

for all c ∈ C(a)
p , r1, . . . , ra ∈ RHS ({f}, Cp, X, Yn)

dec(yj) = πj , for all j ∈ [n].

Since Cp′ = Cp ∪ {π1, . . . , πn}, the module m1 must contain dummy
equations that define f ′ for the new constructors π1, . . . , πn. We choose
f ′ πj = πj for every j ∈ [n]. Similar dummy equations must also be added
to all modules in p when taking them over to p′.

Example 11 (decomposition for the introductory example) Consider
the program pacc from the introduction and its module macc,lev as identified
in Example 3. Let racc = (lev x1 0 [ ]). Decomposition transforms the ncd 1-
mtt (macc,lev , racc) of pacc into the ncd smodtt (mdec,lev ′, mdec,sub , rdec) of pdec as
given in Example 8.

The following lemma is proved in Appendix D using the principle of simulta-
neous induction (cf., e.g., [18,22,56]) and Lemma 9.

Lemma 12 (semantic correctness of the decomposition)For p, (m, r),
p′, and (m1, m2, r

′) as in Transformation 10, for every t ∈ TCp
:

nfp(r[x1
� − t]) = nfp′(r′[x1

� − t]).

Moreover, if (m, r) is ncd, then so is (m1, m2, r
′).

However, we have not yet reached our goal to improve the verifiability of
programs.
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Example 13 (initial values are still problematic for verification)
Let (mdec,lev ′ , mdec,sub , rdec) be the smodtt of pdec from Example 8 which was
created by decomposition in Example 11. We resume the first proof attempt
from the introduction. Since the initial call has changed from (lev x1 0 [ ]) to
(sub (lev ′ x1) 0 [ ]), we have to prove

sub (lev ′ x1) 0 [ ] = lev2 x1

by induction. Again, the automatic proof fails, because in the induction step
(x1 7→ (S x1)) the induction hypothesis cannot be successfully applied to prove
the equality of (sub (lev ′ (S x1)) 0 [ ]) and (lev 2 (S x1)). The problem is that
the context arguments of (sub (lev ′ x1) (S (S π1)) (π1 : π2)), which originates

as subterm from rule application to (sub (lev ′ (S x1)) 0 [ ]), do not fit to the
context arguments of the term (sub (lev ′ x1) 0 [ ]) in the induction hypothesis.

3.1.2 Basic Constructor Replacement

We solve the problem observed above by avoiding applications of substitution
functions (with specific context arguments like 0 and [ ] in Example 13) in
initial calls. Then the initial call always has the form f ′ x1 for a unary function
f ′. Hence, induction hypotheses can be applied without paying attention to
context arguments. The idea, illustrated on Example 13, is to replace the
substitution constructors π1 and π2 by 0 and [ ] from the initial call. Thus, the
initial values of sub’s context arguments are encoded into the equations of the
program and the substitution in the initial call becomes superfluous.

We restrict ourselves to 1-mtts that are ncd. Then, after decomposition the ini-
tial calls have the form (sub (f ′ x1) c1 . . . cn), where c1, . . . , cn are nullary and
pairwise distinct. Thus, when replacing each πj by cj, there is a unique corre-
spondence between the c1, . . . , cn and the substitution constructors π1, . . . , πn.
(In the next section we will deal with the case of identical c1, . . . , cn.) After
replacing each πj by cj, the constructors c1, . . . , cn show two different faces: If
a cj occurs within a first argument of sub, then it acts like the former substi-
tution constructor πj, i.e., it will be substituted by the j-th context argument
of sub. Thus, sub now has the defining equation sub cj y1 · · · yn = yj. Only oc-
currences of a cj outside of sub’s first argument are left unchanged, i.e., there
the constructor cj is interpreted as its original value. To make sure that there
is no confusion between these two roles of cj, we again use the ncd-condition.
It ensures that before the constructor replacement, cj did not occur in right-
hand sides of f ′’s definition. Hence, the only occurrence of cj which does not
stand for the substitution constructor πj is as context argument of sub in the
initial call, where it is harmless. Actually, this whole substitution in the initial
call can be omitted, because the call (sub (f ′ x1) c1 . . . cn) would now just
mean to replace every cj in (f ′ x1) by cj (cf. also Lemma 6(1)). Simplifying
the initial call accordingly makes the resulting smodtt initial value free (ivf).
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In the next section we will extend the basic idea in order to allow the (identi-
cal) constructors c1, . . . , cn to occur also in the right-hand sides of the original
1-mtt. But first we present the formalization for the simpler case discussed
above.

Transformation 14 (basic constructor replacement) Let p′ ∈ P
and (m1, m2, r

′) be an smodtt of p′ as constructed in Transformation 10.
Moreover, let (m1, m2, r

′) be ncd, i.e., r′ = (sub (f ′ x1) c1 · · · cn) with pair-

wise distinct c1, . . . , cn ∈ C
(0)
p′ −{π1, . . . , πn} that do not occur in right-hand

sides of the definition of f ′ in m1. We construct a program p′′ ∈ P which
results from p′ by replacing m1 and m2 by the modules m′

1 and m′
2, defined

below. Then, (m′
1, m

′
2, r

′′) is an smodtt of p′′ that is ivf, where r′′ is also
defined below.

(1) For every c ∈ (Cp′ − {π1, . . . , πn})
(k) and equation f ′ (c x1 · · ·xk) =

rhsp′,f ′,c in m1, the module m′
1 contains the equation f ′ (c x1 · · ·xk) =

rhsp′,f ′,c[πj
� − cj | j ∈ [n]].

(2) m′
2 is the sub-module induced by Cp′ − {π1, . . . , πn, c1, . . . , cn} and

c1, . . . , cn.

(3) r′′ = (f ′ x1).

The dummy equations for the π1, . . . , πn included in the other modules of
p′ can now be dropped, so that Cp′′ = Cp′ − {π1, . . . , πn}.

Example 15 (constructor replacement for introductory example)
Let (mdec,lev ′ , mdec,sub , rdec) be the ncd smodtt of pdec from Example 8 which
was created by decomposition in Example 11. Basic constructor replacement
transforms it into the ivf smodtt (mnon ,lev ′ , mnon ,sub , rnon) of pnon as identified
in Example 8. This resulting smodtt is exactly the program version for which
the introduction demonstrated that automatic verification is easily possible.

The following lemma is proved in Appendix D using the principle of simulta-
neous induction, all three statements of Lemma 1, and Lemma 5.

Lemma 16 (semantic correctness of basic constructor replacement)
For p′, (m1, m2, r

′), p′′, and (m′
1, m

′
2, r

′′) as in Transformation 14, for every
t ∈ TCp′′

:

nfp′(r′[x1
� − t]) = nfp′′(r′′[x1

� − t]).

By combining Lemmas 12 and 16, we easily get the following theorem about
the compound transformation.
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Theorem 17 (semantic correctness of basic deaccumulation) Let
p ∈ P and (m, r) be a 1-mtt of p that is ncd. Let p′ and (m1, m2, r

′)
be the program and the smodtt constructed from p and (m, r) by Trans-
formation 10. The smodtt is ncd. Further, let p′′ and (m′

1, m
′
2, r

′′) be
the program and the ivf smodtt constructed from p′ and (m1, m2, r

′) by
Transformation 14. For every t ∈ TCp

:

nfp(r[x1
� − t]) = nfp′′(r′′[x1

� − t]).

Hence, for every 1-mtt that is ncd we can construct a semantically equivalent
smodtt that uses no initial values and no accumulators. Thus, the resulting
smodtt is well suited for verification.

3.2 Advanced Deaccumulation

The results of Section 3.1 were already given in the preliminary version of
this paper [24]. However, in Appendix D we also present the full correctness
proofs, which were omitted from [24].

Here we improve upon these results and develop an extension for 1-mtts vi-
olating the condition ncd. Thus, we now permit initial calls (f x1 c1 · · · cn)
where the nullary constructors c1, . . . , cn do no longer have to be pairwise
distinct and where they may also occur in right-hand sides of f ’s definition.
To ease the presentation, in the following we restrict ourselves to the case
where c1 = · · · = cn. Note that the general case, in which there is no restric-
tion on the nullary constructors in the initial call, is only technically, but not
conceptually more complicated. This is due to the fact that we will use a sys-
tem of “substitution-like” functions to distinguish between different meanings
of the same constructor (i.e., they distinguish whether a constructor is used
as a placeholder for some context argument, and for which, or whether the
constructor should indeed have its original meaning). In the general case, pa-
rameter positions in the initial call with identical constructors can be grouped
together and one can define and combine systems of substitution-like functions
for the different groups.

To demonstrate the problems with deaccumulation for functions and initial
calls as above, but also to motivate our approach to overcome these problems,
we first consider two examples.

Example 18 (identical constructors in the initial call) Assume that
the original 1-mtt, intended to compute the sum of the first x1 natural numbers,
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consists of the module

msnat ,sum : sum (S x1) y1 y2 = sum x1 (S y1) (y1 + y2)

sum 0 y1 y2 = y2

and the initial call rsnat = (sum x1 0 0), where “snat” stands for “sum of
natural numbers”. Due to the similarity in structure to the introductory exam-
ple, analogous verification problems occur when trying to reason inductively
about this specification. Attempting to improve the provability, we would first
perform the decomposition transformation, which delivers an smodtt consisting
of the function definitions

sum ′ (S x1) = sub (sum ′ x1) (S π1) (π1 + π2)

sum ′ 0 = π2

sub (x1 + x2) y1 y2 = (sub x1 y1 y2) + (sub x2 y1 y2) sub π1 y1 y2 = y1

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub π2 y1 y2 = y2

sub 0 y1 y2 = 0

and the initial call (sub (sum ′ x1) 0 0). The symbol + is treated as an ordi-
nary binary constructor here. This is safe because clearly, if one can verify a
conjecture (without negation) by treating + as a constructor (i.e., by using no
information about it), then the conjecture also holds if + is a function defined
by some equations elsewhere.

Note that still the same constructor 0 is the initial value for both context
arguments. Now we perform the usual (but näıve, since it leads to a non-
determinism) replacement of the substitution constructors π1 and π2 by the
corresponding values 0 and 0 from the initial call. In addition to the already
existing equation sub 0 y1 y2 = 0, this leads to two more (different) equations
with this left-hand side:

sub 0 y1 y2 = y1

sub 0 y1 y2 = y2

This kind of nondeterminism clearly conflicts with our aim of a semantics-
preserving transformation of programs.

The idea for overcoming this problem is based on an analysis of the decomposed
program. Note that, outside its definition, the sub-function is only used with a
call to sum ′ as first argument. Hence, the substitution only has to work properly
for the results computed by sum ′ (i.e., for the “output trees” of sum ′). Figure 1
shows (the first elements in) the sequence of these output trees for the above
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example, with increasing height. There, π1 occurs only in left subtrees of a +-
symbol, whereas π2 never occurs in such positions. This information about the
contexts in which the different substitution constructors π1 and π2 may occur
can be used as a guide for performing the necessary substitution task, even
after the difference between π1 and π2 has been blurred by replacing both by 0.

π2
,

+

π1 π2

,

+

S

π1

+

π1 π2

,

+

S

S

π1

+

S

π1

+

π1 π2

, · · ·

Fig. 1. sum ′ 0, sum ′ (S 0), sum ′ (S (S 0)), sum ′ (S (S (S 0))), . . .

To employ the “context information”, we define two different “substitution-
like” functions. The function sub1 corresponds to positions in left subtrees of
a +-symbol and therefore, it interprets the symbol 0 like the substitution con-
structor π1. Analogously, sub2 corresponds to the other positions and interprets
the symbol 0 like the substitution constructor π2. Thus, we replace the above
definitions of sum ′ and sub by the following (partial) ones:

sum ′ (S x1) = sub2 (sum ′ x1) (S 0) (0 + 0)

sum ′ 0 = 0

sub2 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub2 x2 y1 y2) sub1 0 y1 y2 = y1

sub1 (S x1) y1 y2 = S (sub1 x1 y1 y2) sub2 0 y1 y2 = y2

and the initial call is replaced by (sub2 (sum ′ x1) 0 0). If t is a tree as in
Figure 1, but where π1 and π2 are replaced by 0, then starting with sub2 at
the root of t will lead to the same substitutions at leaf nodes as would have
been performed by sub. Therefore, evaluation of (sub2 (sum ′ x1) 0 0) with
sum ′ as above will yield the same result as evaluation of (sub (sum ′ x1) 0 0)
with the former definition of sum ′, for every instantiation of x1. Moreover,
(sub2 (sum ′ x1) 0 0) can be simplified to (sum ′ x1) because a call to sub2

substitutes every 0 in its recursion argument by either its first or its second
context argument, which leads to an identity operation if both context argu-
ments are themselves initialized with 0. Thus, finally, we have a program that
is semantically equivalent to the original one but uses no initial values. It
solves the verification problems for the original sum-function in the same way
as demonstrated for pacc and racc vs. pnon and rnon in the introduction (cf.
Appendix C).

The previous example still relies on the fact that the nullary constructor 0 from
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the initial call does not occur in the right-hand sides of defining equations for
sum, and hence also not in the output of sum ′ after decomposition. This would
no longer be the case if, for example, we wanted to express the incrementation
of y1 with an explicit addition rather than an application of the successor
symbol, that is, if we were to replace the first equation of msnat ,sum with the
following one:

sum (S x1) y1 y2 = sum x1 (y1 + (S 0)) (y1 + y2).

To discuss our strategy for such a situation, we first consider a simpler example
in the following. Nevertheless, this example is considerably more interesting
in terms of the obtained substitution-like functions. However, we will return
to the above variation of msnat ,sum in Example 29.

Example 19 (initial value occurring in original right-hand sides)
Consider the 1-mtt consisting of the module

mstring ,f : f (A x1) y1 = f x1 (A (A y1))

f (B x1) y1 = f x1 (A E)

f E y1 = y1

and the initial call (f x1 E). If one regards trees as strings, then f computes the
function with f ((A|B)∗ B An E) y1 = A2·n+1 E and f (An E) y1 = A2·n y1.
Decomposition results in an smodtt consisting of the function definitions

f ′ (A x1) = sub (f ′ x1) (A (A π1))

f ′ (B x1) = sub (f ′ x1) (A E)

f ′ E = π1

sub (A x1) y1 = A (sub x1 y1) sub E y1 = E

sub (B x1) y1 = B (sub x1 y1) sub π1 y1 = y1

and the initial call (sub (f ′ x1) E). The usual näıve replacement of π1 by the
corresponding value E from the initial call would lead to the sub-equation

sub E y1 = y1.

Note that the original equation sub E y1 = E with the same left-hand side
cannot be dropped since E may occur in the output of the function f ′ above (if
f ′ is applied to an input in which B occurs). Again, the problem is tack-
led by analyzing the output trees of f ′, as shown in Figure 2. We obtain
f ′ ((A|B)∗ B An E) = A2·n+1 E and f ′ (An E) = A2·n π1. Thus, the output
always consists of a (possibly empty) string of A-symbols followed by either E
or π1, depending on whether the number of A-symbols is odd or even.
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Fig. 2. f ′ E, f ′ (A E), f ′ (B E), f ′ (A (A E)), f ′ (B (A E)), f ′ (A (B E)),
f ′ (B (B E)), f ′ (A (A (A E))), f ′ (B (A (A E))), f ′ (A (B (A E))),
f ′ (B (B (A E)))

After replacing π1 by E, this information can be employed by using two substi-
tution-like functions that “count” the number of A-symbols. The function sub1

corresponds to positions below an even number of A-symbols and sub0 corre-
sponds to positions below an odd number of A-symbols. Thus, depending on
sub0 or sub1, an E found at the end is to be interpreted as an actual E or
as a π1. More precisely, we replace the above definitions of f ′ and sub by the
following (partial) ones:

f ′ (A x1) = sub1 (f ′ x1) (A (A E))

f ′ (B x1) = sub1 (f ′ x1) (A E)

f ′ E = E

sub0 (A x1) y1 = A (sub1 x1 y1) sub0 E y1 = E

sub1 (A x1) y1 = A (sub0 x1 y1) sub1 E y1 = y1

and the initial call is replaced by (sub1 (f ′ x1) E). The latter can be simplified
to (f ′ x1), because nfp(sub1 t E) = t holds for every tree t over {A, E} (as-
suming p is the underlying program). Thus, we again have obtained a program
that is equivalent to the original one but uses no initial values. This example
demonstrates that substitution-like functions can not only distinguish between
different argument positions of some symbol (as in Example 18), but they can
also distinguish between positions according to the number of symbols occurring
above them.

In the previous two examples, the definitions of the substitution-like functions
used to overcome the limitations of basic constructor replacement were ob-
tained by an ad-hoc analysis of the program after decomposition. Moreover,
we did not formally prove that they serve their purpose for every input tree.
In order to turn the above ideas into an automatic, semantics-preserving pro-

24



gram transformation, we should of course follow a more systematic approach
and also provide a correctness proof.

As a first step, it seems reasonable to specify what exactly we mean by
substitution-like functions. Intuitively, we want a group of mutually recur-
sive functions that reproduce the shape of an input tree provided as recursion
argument, leave the (non-nullary) labels of internal nodes unchanged, and at
leaf nodes decide to either also leave the label unchanged or to replace the
leaf with some context argument carried through unchanged from the root.
That is, we want exactly the kind of functions that are allowed in the sec-
ond module of an nmodtt (cf. Definition 7). But how many of them do we
need? If the function defined in the original 1-mtt has n context parameters,
then the smodtt obtained after decomposition uses n substitution construc-
tors. To distinguish them even after each of them has been replaced by the
same nullary constructor from the initial call, at least n “incarnations” of sub
should be used, as in Example 18. If additionally we want to handle the case
that the initial value may also occur in right-hand sides of the original 1-mtt,
as in Example 19, we need a further sub0-function that leaves the nullary con-
structor in question unchanged. While in principle one could use arbitrarily
many mutually recursive substitution-like functions, we restrict ourselves to
the n + 1 functions motivated above. This also reduces the search space when
trying to find suitable substitution-like functions. Having fixed the number
of substitution-like functions and their roles regarding the treatment of the
nullary constructor acting as initial value, it remains to specify the ways in
which they call each other when applied to non-nullary constructors in the re-
cursion argument. The degrees of freedom we have in doing so can be captured
as in the following definition.

Definition 20 (candidate and induced sub-like module) Let p ∈ P and
n ∈

�
. A candidate for p of rank n + 1 is a mapping

K : {(u, c, i) | u ∈ [0, n], c ∈ C(k)
p , i ∈ [k]} −→ [0, n].

For every π0 ∈ C(0)
p , the sub-like module induced by K and π0 consists of

definitions for pairwise distinct functions sub0, . . . , subn ∈ (F−Fp)
(n+1), where

for every u ∈ [0, n] the following equations are included:

subu π0 y1 · · · yn =











π0 if u = 0

yu otherwise

subu (c x1 · · ·xk) y1 · · · yn = c (subK(u,c,1) x1 y1 · · · yn) · · ·

(subK(u,c,k) xk y1 · · · yn) ,

for all c ∈ (Cp − {π0})
(k).

Example 21 (representing a candidate for Example 18) Let p be a
program with Cp = {+(2), S(1), 0(0)}. The following table specifies a candidate
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K for p of rank 3, where the value of K(u, c, i) is found in column u of row
(c, i):

K 0 1 2

(+, 1) 0 2 1

(+, 2) 0 1 2

(S, 1) 0 1 1

The sub-like module induced by K and π0 = 0 contains, among others, the
defining equations for sub1 and sub2 given in Example 18. In particular, the
boldface entries in the above table correspond to the equations for recursion
arguments built with + and S in Example 18. The non-boldface entries corre-
spond to the following equations (e.g., the entries K(0, +, 1) = 0 and K(0, +, 2)
= 0 induce the two calls of sub0 in the right-hand side of the first equation):

sub0 (x1 + x2) y1 y2 = (sub0 x1 y1 y2) + (sub0 x2 y1 y2)

sub0 (S x1) y1 y2 = S (sub0 x1 y1 y2)

sub1 (x1 + x2) y1 y2 = (sub2 x1 y1 y2) + (sub1 x2 y1 y2)

sub2 (S x1) y1 y2 = S (sub1 x1 y1 y2)

Moreover, by definition we have

sub0 0 y1 y2 = 0.

Note that for a given program there are only finitely many candidates of a given
rank. Hence, we can systematically check all candidates K to find one that
induces an appropriate replacement for the sub-module in the decomposed
smodtt, in the sense that this new sub-like module can take over the work
of the actual substitution function even after all occurrences of π1, . . . , πn

in the definition of the function f ′ from the decomposed smodtt have been
replaced by the nullary constructor acting as initial value, called π0. For a
given candidate, this means to determine whether one of the functions in the
induced sub-like module, say subu, has the property that whenever it is applied
to an output tree computed by the function f ′ from the decomposed smodtt,
positions labeled with πv can only be reached by the subv-function, for every
v ∈ [0, n]. This is both a sufficient and necessary condition to ensure that
after replacing π1, . . . , πn by π0 in the definition of f ′, subu performs the same
substitutions which were previously done by sub.

Example 22 (checking a candidate for an output tree of sum ′)
Consider the third output tree in Figure 1 of sum ′ from the decomposed smodtt
in Example 18. Further, consider the sub-like module induced by the candidate
K in Example 21. Figure 3 shows the actions of sub0, sub1, and sub2, respec-
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tively, on the output tree in question. For readability, the context arguments
carried through unchanged from the root are not depicted.
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Fig. 3. Actions of sub0, sub1, and sub2 on sum ′ (S (S 0)).

As one can see, neither sub0 nor sub1 would be an appropriate choice for subu,
because they violate the requirement that π1 is only reached by sub1 and that
π2 is only reached by sub2. The function sub2, on the other hand, might be
an appropriate choice to use as replacement for sub. But to be sure, we would
have to perform the above check for every output tree of sum ′, not just for a
single one.

Checking the behavior of a sub-like module for all (potentially infinitely many)
output trees seems to be a hopeless endeavor at first. However, there are only
finitely many possible outcomes of the analysis for any tree: for each subu

and each πv one has to determine the subset of those sub0, . . . , subn that can
reach πv if computation at the root is started with subu. Since there are 2n+1

subsets of {sub0, . . . , subn} and since for every subu and πv with u, v ∈ [0, n]
one subset is calculated, we obtain (2n+1)(n+1)·(n+1) possible outcomes of the
analysis. In order to effectively compute the finitely many outcomes for the
infinitely many inputs to f ′, we abstract from each output tree computed by
f ′ to the corresponding outcome of the analysis.

In order to base our analysis directly on the original 1-mtt with the function f
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rather than on the decomposed smodtt with the function f ′, we use the state-
ment (∗) from the proof of Lemma 12 in Appendix D that for every t ∈ TCp

,
(f ′ t) computes the same output as (f t π1 · · ·πn). In addition, we use that
the π1, . . . , πn are different from π0 and that none of them is ever produced
by f itself. Therefore, instead of analyzing which of the sub0, . . . , subn reach a
πv (with v ∈ [0, n]) when evaluating (subu (f t π1 · · ·πn) · · ·), one can equiv-
alently analyze which of them reach π0 or yv (with v ∈ [n]) when evaluating
(subu (f t y1 · · ·yn) · · ·). This refines our task to determining the set of all
“reachability functions” G : [0, n] × [0, n] −→ P([0, n]). Here, a function G is
a reachability function if there is a t ∈ TCp

such that G(u, v) describes those
subu′ which reach yv when evaluating (subu (f t y1 · · · yn) · · ·). More precisely,
for every u ∈ [0, n] we must have:

− for v ∈ [n], G(u, v) contains exactly those u′ ∈ [0, n] where the v-th context
argument yv is reached by subu′ when evaluating (subu (f t y1 · · · yn) · · ·),
and

− G(u, 0) contains exactly those u′ ∈ [0, n] where π0 is reached by subu′

when evaluating (subu (f t y1 · · · yn) · · ·).

The idea now is to compute the set of all these reachability functions G for
trees of increasing height. Let Gh denote the set of all reachability functions G
for trees of height ≤ h. Clearly, we have G0 = � . In order to compute Gh+1, note
that the output produced by evaluating (f t y1 · · ·yn) with height(t) = h+1 is
determined by evaluating an instance of rhsp,f,c, where c is the root symbol of t.
Further note that in every recursive call of f in rhsp,f,c, f ’s first argument will
be instantiated by some tree of height ≤ h. So to compute Gh+1, we perform the
above “reachability analysis” on all right-hand sides rhsp,f,c and for recursive
calls in an rhsp,f,c, we draw on information from Gh. More precisely, if c has
rank k, we consider every choice of functions G1, . . . , Gk from Gh to provide
reachability information for calls of the form (f x1 · · ·), . . . , (f xk · · ·).

Formally, we use a function rchG1,...,Gk
. Given a right-hand side r̄ and a pair

of values u, v ∈ [0, n], it describes those functions among sub0, . . . , subn which
reach yv (if v 6= 0) resp. π0 (if v = 0) when evaluating an instance of
(subu r̄ · · ·). In this instance, the variables x1, . . . , xk in f ’s recursion ar-
guments may only be instantiated by trees whose corresponding reachability
functions are G1, . . . , Gk, respectively. Thus, for every recursive call (f xi · · ·)
in r̄, we assume that Gi describes the result of the reachability analysis for xi.
Then Gh+1 can be computed by collecting rchG1,...,Gk

(rhsp,f,c) for all c ∈ C(k)
p

and all choices for G1, . . . , Gk ∈ Gh. The definition of rchG1,...,Gk
(r̄)(u, v) (for-

malized in Definition 23 below) is by induction on the structure of r̄. We start
with the base cases.

If r̄ = π0, then in instances of (subu π0 · · ·), π0 can only be reached by subu it-
self and hence, rchG1,...,Gk

(π0)(u, 0) = {u}. Moreover, none of the context argu-
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ments y1, . . . , yn of f can be reached by any subu′ and hence, rchG1,...,Gk
(π0)(u,

v) = � for every v ∈ [n].

If r̄ = yj ∈ Yn, then in instances of (subu yj · · ·), yj can only be reached by subu

itself, while neither π0 nor any of the y1, . . . , yn other than yj can be reached
with any subu′. (Note that only variables in f ’s recursion arguments may be
instantiated, so yj stays unchanged.) So we obtain rchG1,...,Gk

(yj)(u, j) = {u}
and rchG1,...,Gk

(yj)(u, v) = � for every v ∈ [0, n] − {j}.

In the first recursive case, let r̄ = (c r1 · · · ra) for a constructor c ∈ C(a)
p other

than π0. As mentioned, rchG1,...,Gk
(c r1 · · · ra)(u, v) should describe those func-

tions among sub0, . . . , subn which reach yv (or π0, if v = 0) when evaluating an
instance of (subu (c r1 · · · ra) · · ·). Due to the definition of the sub-like module
induced by K, the first evaluation step yields (a corresponding instance of)

c (subK(u,c,1) r1 · · ·) · · · (subK(u,c,a) ra · · ·).

Thus, by simply collecting the results of the reachability analysis for r1, . . . , ra,
rchG1,...,Gk

(c r1 · · · ra)(u, v) is defined as

rchG1,...,Gk
(r1)(K(u, c, 1), v) ∪ · · · ∪ rchG1,...,Gk

(ra)(K(u, c, a), v).

In the other recursive case, we have r̄ = (f xi r1 · · · rn). Our goal is to describe
those functions among sub0, . . . , subn which reach yv (or π0, if v = 0) when
evaluating an instance of (subu (f xi r1 · · · rn) · · ·), assuming that xi is instan-
tiated by a tree t′ whose reachability function is Gi. To properly collect, in a
similar way as in the previous case, the reachability information recursively
determined for r1, . . . , rn, we first need to know which of the sub0, . . . , subn

will reach each rl when evaluating (subu (f t′ r1 · · · rn) · · ·). This, of course,
depends on the tree t′ that xi is instantiated with. However, we do not need to
know that actual tree. Rather, the function Gi corresponding to xi, as carried
along by rchG1,...,Gk

, provides all necessary information. If, for example, that
function Gi maps (u, 1) to a set containing u1, then we know that subu1 reaches
r1, and hence (among others) we have to include rchG1,...,Gk

(r1)(u1, v). In a sim-
ilar way, we have to proceed for r2, . . . , rn. So rchG1,...,Gk

(f xi r1 · · · rn)(u, v)
must include the union of all rchG1,...,Gk

(rl)(ul, v) with l ∈ [n] and ul ∈ Gi(u, l).
Further elements are only needed in the case v = 0, when we have to deter-
mine all functions among sub0, . . . , subn which can reach π0 while evaluating
(subu (f t′ r1 · · · rn) · · ·). In addition to those π0 which are contributed by the
context arguments r1, . . . , rn, we then also need to account for those occur-
rences of π0 that would already be produced by the call (f t′ y1 · · ·yn). The
necessary reachability information is again simply drawn from the function
Gi.

Note that the indexing of the rch-function with G1, . . . , Gk ensures that several
recursive calls of f with the same recursion argument xi in the same right-hand
side always use the same Gi.
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Definition 23 (successful candidate)
Let p ∈ P and (m, f x1 π0 · · ·π0) be a 1-mtt of p, where Fm = {f (n+1)} and
π0 ∈ C(0)

p . Let K be a candidate for p of rank n + 1. For every h ∈
�

we
define a set Gh of functions of type [0, n] × [0, n] −→ P([0, n]) as follows:

G0 = �

Gh+1 =
⋃

c∈C
(k)
p

{rchG1,...,Gk
(rhsp,f,c) | G1, . . . , Gk ∈ Gh} ,

where for every k ∈
�
, r̄ ∈ RHS ({f}, Cp, Xk, Yn), and functions

G1, . . . , Gk of the above type, the function rchG1,...,Gk
(r̄) of that type is

obtained by case analysis on r̄. With yj ∈ Yn, c ∈ (Cp − {π0})
(a), xi ∈ Xk,

and rl ∈ RHS ({f}, Cp, Xk, Yn) for l ∈
�
, it maps arguments u, v ∈ [0, n]

to a result in P([0, n]) as follows:

rchG1,...,Gk
(π0)(u, v) =











{u} if v = 0

� otherwise

rchG1,...,Gk
(yj)(u, v) =











{u} if v = j

� otherwise

rchG1,...,Gk
(c r1 · · · ra)(u, v) =

⋃

l∈[a]
rchG1,...,Gk

(rl)(K(u, c, l), v)

rchG1,...,Gk
(f xi r1 · · · rn)(u, v) =

(

⋃

l∈[n]

⋃

u′∈Gi(u,l)
rchG1,...,Gk

(rl)(u
′, v)

)

∪











Gi(u, 0) if v = 0

� otherwise.

For some u ∈ [0, n] we say that the candidate K is successful for
(m, f x1 π0 · · ·π0) with subu if for every G ∈

⋃

h∈ �
Gh and v ∈ [0, n]:

G(u, v) ⊆ {v}.

Note that each (except the first) set in the sequence � ,G1,G2, . . . is computed
in exactly the same way only from the previous one. This means that if some
Gh and Gh+1 are equal, then every further set in the sequence is also equal to
them. Moreover, it is easy to see that � ⊆ G1 ⊆ G2 ⊆ · · · because the operation
computing Gh+1 from Gh preserves set inclusion. Since there are only finitely
many functions of type [0, n]×[0, n] −→ P([0, n]), this implies that the fixpoint
Gh = Gh+1 is definitely reached. Then, we have actually computed the infinite
union

⋃

h∈ �
Gh in finitely many iterations. Hence, the success or failure of a

candidate can be decided effectively.

Example 24 (establishing success of the candidate from Ex. 21)
Let psnat be a program with Cpsnat

= {+(2), S(1), 0(0)} and let K be the candidate

30



from Example 21. Assume that psnat contains the module msnat ,sum from Exam-
ple 18. For completeness, msnat ,sum is extended by an equation which handles
the case when sum is applied to a +-term, e.g.

sum (x1 + x2) y1 y2 = y2.

Then, (msnat ,sum , rsnat) with rsnat = (sum x1 0 0) is a 1-mtt of psnat .

We have π0 = 0. Since G0 = � , we obtain

G1 =
⋃

c∈C
(0)
psnat

{rch(rhspsnat ,sum ,c)} = {rch (y2)}.

Using a representation of functions of type {0, 1, 2}×{0, 1, 2} −→ P({0, 1, 2})
by tables, similarly to Example 21, we get

G1 =







































0 1 2

0 rch (y2)(0, 0) rch (y2)(1, 0) rch (y2)(2, 0)

1 rch (y2)(0, 1) rch (y2)(1, 1) rch (y2)(2, 1)

2 rch (y2)(0, 2) rch (y2)(1, 2) rch (y2)(2, 2)







































=







































0 1 2

0 � � �

1 � � �

2 {0} {1} {2}







































= {G}.

The fact that the single function G in G1 returns {0} for the input (0, 2)
means that sub0 is the only function which can reach y2 when evaluating the
term (sub0 y2 · · ·).

In the next iteration, we have

G2 = {rch(rhspsnat ,sum ,0)}

∪ {rchG1
(rhspsnat ,sum,S) | G1 ∈ G1}

∪ {rchG1,G2
(rhspsnat ,sum ,+) | G1, G2 ∈ G1}

= G1 ∪ {rchG(sum x1 (S y1) (y1 + y2)), rchG,G(y2)}.

Obviously, rchG,G(y2) = G. So it remains to calculate rchG(sum x1 (S y1) (y1+
y2)). We only show the calculation of a single entry in the table representing
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that function:

rchG(sum x1 (S y1) (y1 + y2))(2, 1) =
⋃

u′∈G(2,1)
rchG(S y1)(u

′, 1)

∪
⋃

u′∈G(2,2)
rchG(y1 + y2)(u

′, 1)

= � ∪ rchG(y1 + y2)(2, 1)

= rchG(y1)(K(2, +, 1), 1)

∪ rchG(y2)(K(2, +, 2), 1)

= {K(2, +, 1)} ∪ � = {1}.

This means that sub1 is the only function which can reach y1 when evaluating
(sub2 (sum x1 (S y1) (y1 + y2)) · · ·) with x1 instantiated by a tree of height
≤ 1.

Calculating also the other entries leads to the following:

G2 = G1 ∪







































0 1 2

0 � � �

1 {0} {2} {1}

2 {0} {1} {2}







































.

The next iterations give

G3 = G2 ∪







































0 1 2

0 � � �

1 {0} {1, 2} {1}

2 {0} {1} {2}







































and G4 = G3. Thus, we have reached a fixpoint. Checking the three functions
produced so far, it is now easy to see that K is successful for (msnat ,sum , rsnat)
with sub2 (but neither with sub0 nor with sub1). The reason is that for every
G ∈ G3 and v ∈ {0, 1, 2} we have G(2, v) ⊆ {v}.

In which sense the sub-like module induced by a successful candidate performs
the required substitutions is made precise in the following key lemma. The
proof in Appendix D is the technically most challenging one in this paper.

Lemma 25 (key to the advanced deaccumulation transformation)
Let p ∈ P , (m, r) be a 1-mtt of p, where r = (f x1 π0 · · ·π0) with Fm = {f (n+1)}
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and π0 ∈ C(0)
p . Further, let K be a candidate for p of rank n+1 and p′ ∈ P be

a program containing (at least) the module m and the sub-like module induced
by K and π0. For every u ∈ [0, n] such that K is successful for (m, r) with
subu, for every t ∈ TCp

and s1, . . . , sn ∈ TCp∪Fp′
:

nfp′(f t s1 · · · sn) = nfp′(subu (f t π0 · · ·π0) s1 · · · sn).

The previous lemma carries the essence of the new transformation to be pro-
posed now, similarly to the role that Lemma 9 played for decomposition.
Indeed, Transformation 26 bears strong resemblance to Transformation 10,
extending even to their correctness proofs.

Transformation 26 (advanced deaccumulation) Let p ∈ P and
(m, r) be a 1-mtt of p, where r = (f x1 π0 · · ·π0) with Fm = {f (n+1)}
and π0 ∈ C(0)

p . Let K be a candidate for p of rank n + 1, such that K is
successful for (m, r) with some subu ∈ {sub0, . . . , subn}. We construct a
program p′ ∈ P which results from p by adding the modules m1 and m2,
defined below. Then, (m1, m2, r

′) is an ivf nmodtt of p′, where r′ is also
defined below. Let f ′ ∈ (F −Fp)

(1) and sub0, . . . , subn ∈ (F −Fp)
(n+1) such

that f ′, sub0, . . . , subn are pairwise distinct.

(1) For every c ∈ C(k)
p and every equation f (c x1 · · ·xk) y1 · · · yn = rhsp,f,c

in m, the module m1 contains f ′ (c x1 · · ·xk) = adv(rhsp,f,c), where

adv : RHS ({f}, Cp, Xk, Yn) −→ RHS ({f ′}, Cp ∪ {subu}, Xk, Y0)

adv(f xi r1 · · · rn) = subu (f ′ xi) adv(r1) · · · adv(rn) ,

for all i ∈ [k], r1, . . . , rn ∈ RHS ({f}, Cp, Xk, Yn)

adv(c′ r1 · · · ra) = c′ adv(r1) · · · adv(ra) ,

for all c′ ∈ C(a)
p , r1, . . . , ra ∈ RHS ({f}, Cp, Xk, Yn)

adv(yj) = π0 , for all j ∈ [n].

(2) m2 is the sub-like module induced by K and π0.

(3) r′ = (f ′ x1).

The following theorem is proved by essentially “recycling” the proof of Lem-
ma 12, except for using Lemma 25 instead of Lemma 9. For the statements
proved in the simultaneous induction, see Appendix D.

Theorem 27 (semantic correctness of advanced deaccumulation)
For p, (m, r), p′, and (m1, m2, r

′) as in Transformation 26, for every
t ∈ TCp

:

nfp(r[x1
� − t]) = nfp′(r′[x1

� − t]).
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To experiment with advanced deaccumulation, we have implemented the anal-
ysis from Definition 23 in Haskell. The implementation generates all candidates
and for each of them it performs the fixpoint computation to decide its success
or failure. The outcome for the input programs discussed at the beginning of
Section 3.2 is reported in the following.

Example 28 (advanced deaccumulation for Example 18) Let psnat be
a program with Cpsnat

= {+(2), S(1), 0(0)}. Assume that psnat contains the mod-
ule msnat ,sum from Example 18, for completeness’ sake again extended by the
equation

sum (x1 + x2) y1 y2 = y2.

Among the 33∗3 = 19683 candidates for psnat of rank 3, our implementation
finds exactly 729 successful candidates for the 1-mtt (msnat ,sum , sum x1 0 0)
of psnat . Each of them is successful with (and only with) sub2. Moreover, they
all agree on the boldface entries in the table given in Example 21. Indeed, the
729 = 36 successful candidates arise exactly from all possible choices for the
non-boldface entries in that table. Choosing (randomly) the particular candi-
date K given in Example 21, and performing advanced deaccumulation based
on it, the transformed program contains an ivf nmodtt featuring the final set
of equations given in Example 18, the additional equation

sum ′ (x1 + x2) = 0 ,

the equations for sub0, sub1, and sub2 given in Example 21, and the initial call
(sum ′ x1).

Example 29 (advanced deaccumulation for variation of Ex. 18)
Let psnat ′ be a program with Cpsnat′

= {+(2), S(1), 0(0)}, containing the following
module, cf. the discussion after Example 18:

msnat ′,sum : sum (S x1) y1 y2 = sum x1 (y1 + (S 0)) (y1 + y2)

sum 0 y1 y2 = y2

sum (x1 + x2) y1 y2 = y2

Among the 33∗3 = 19683 candidates for psnat ′ of rank 3, our implementation
finds exactly 243 successful candidates for the 1-mtt (msnat ′,sum , sum x1 0 0) of
psnat ′ . Each of them is successful with (and only with) sub2, and is obtained by
arbitrarily filling the empty positions in one of the following tables with values
from {0, 1, 2}:

0 1 2

(+, 1) 1 1

(+, 2) 0 2

(S, 1) 0

0 1 2

(+, 1) 1 1

(+, 2) 1 2

(S, 1) 0

0 1 2

(+, 1) 1 1

(+, 2) 2 2

(S, 1) 0
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Choosing the successful candidate corresponding to the first table filled up with
0-entries, and performing advanced deaccumulation based on it, the trans-
formed program contains an ivf nmodtt featuring the following equations:

sum ′ (S x1) = sub2 (sum ′ x1) (0 + (S 0)) (0 + 0)

sum ′ 0 = 0

sum ′ (x1 + x2) = 0

sub2 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub2 x2 y1 y2) sub0 0 y1 y2 = 0

sub1 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub0 x2 y1 y2) sub1 0 y1 y2 = y1

sub0 (S x1) y1 y2 = S (sub0 x1 y1 y2) sub2 0 y1 y2 = y2

sub0 (x1 + x2) y1 y2 = (sub0 x1 y1 y2) + (sub0 x2 y1 y2)

sub1 (S x1) y1 y2 = S (sub0 x1 y1 y2)

sub2 (S x1) y1 y2 = S (sub0 x1 y1 y2)

and the initial call (sum ′ x1).

Example 30 (advanced deaccumulation for Example 19) Let pstring be
a program with Cpstring

= {A(1), B(1), E(0)}. Assume that pstring contains the
module mstring ,f from Example 19. Among the 22∗2 = 16 candidates for pstring

of rank 2, our implementation finds exactly the following four successful can-
didates for the 1-mtt (mstring ,f , f x1 E) of pstring :

0 1

(A, 1) 1 0

(B, 1) 0 0

0 1

(A, 1) 1 0

(B, 1) 0 1

0 1

(A, 1) 1 0

(B, 1) 1 0

0 1

(A, 1) 1 0

(B, 1) 1 1

Each of them is successful with (and only with) sub1. Choosing the first suc-
cessful candidate and performing advanced deaccumulation based on it, the
transformed program contains an ivf nmodtt featuring the final set of equa-
tions given in Example 19, the equations

sub0 (B x1) y1 = B (sub0 x1 y1)

sub1 (B x1) y1 = B (sub0 x1 y1) ,

and the initial call (f ′ x1).

Thus, Transformation 26 successfully and systematically performs the deaccu-
mulation tasks that could only be solved with an ad-hoc analysis at the begin-
ning of Section 3.2. Of course, advanced deaccumulation does not necessarily
succeed for every input function: it fails if the original 1-mtt admits no sub-like
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module that can perform the required substitutions after the π0, . . . , πn have
been equalized.

Example 31 (possible failure of advanced deaccumulation) Consider
a program pfail to compute dx1

2
e, consisting of the module

mfail ,div : div (S x1) y1 y2 = div x1 (S y2) y1

div 0 y1 y2 = y1

with initial call (div x1 0 0). Among the 33∗1 = 27 candidates for pfail of
rank 3, our implementation does not find a single successful one for the 1-mtt
(mfail ,div , div x1 0 0) of pfail . The intuitive reason is that the proper placement
of context arguments in the output of div cannot be determined solely from
the shape of that output. More precisely, when called with the substitution
constructors π1 and π2 as context arguments, div may produce the output
(S π2), for input (S 0), as well as the output (S π1), for input (S (S 0)).
These outputs have identical shape, but differ in the substitution constructor
found at the leaf. Hence, in contrast to Examples 18 and 19 (and the variation
of Example 18 considered in Example 29), here it is impossible to provide
substitution-like functions that could properly decide, e.g., whether the leaf of
(S 0) is to be interpreted as an actual 0, as a π1, or as a π2.

4 Related Work

Program transformation is a well-established field in software engineering and
compiler construction (see, e.g., [4,11,45,46]). There has also been a con-
siderable amount of work on introducing accumulating arguments (see, e.g.,
[5,6,27,28,37,55,60]). While most of these transformations aim at increasing
efficiency, we have explored a novel application area for program transfor-
mations by applying them in order to increase verifiability. This goal often
runs counter to the classical aim of increasing efficiency, since a more effi-
cient program is usually harder to verify. In particular, while composition
techniques [18,21,35,37,40,59] from the theory of tree transducers can be ap-
plied to improve the efficiency of functional programs [36,38,56,58], we have
demonstrated that also the corresponding decomposition techniques are not
only of theoretical interest. Indeed, “inverting” existing transformation tech-
niques seems to be a useful starting point in general to find transformations
which increase verifiability. However, these inverted transformations may still
have to be refined significantly in order to actually solve verification prob-
lems, as seen in our deaccumulation technique, where decomposition had to
be combined with appropriate constructor replacement techniques.

Program transformations that improve verifiability have rarely been inves-
tigated before. A first step into this direction was taken in [23]. There, two
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transformations were presented that can remove accumulators. They are based
on associativity and commutativity properties of auxiliary functions like + oc-
curring in accumulating arguments. The advantage of the approach in [23] is
that it does not require the strict syntactic restrictions of 1-mtts. In particu-
lar, it does not require that functions from other modules may not be called
in right-hand sides. Because of that restriction, in the present paper, we have
to treat all auxiliary functions like + as constructors and exclude the use
of any information about these functions during the transformation. On the
other hand, the technique of [23] can essentially only remove one accumulating
argument (e.g., in contrast to our method, it cannot eliminate both accumula-
tors of pacc). Moreover, the approach in [23] heavily relies on knowledge about
auxiliary functions like +. Hence, it is not applicable if the contexts of accu-
mulating arguments on the right-hand sides of equations are not associative
or commutative. Thus, in contrast to our technique, it fails on examples like
the following program pexp :

exp (S x1) y1 = exp x1 (exp x1 y1)

exp 0 y1 = S y1

The initial call is (exp x1 0). We want to prove

exp x1 0 = e x1 ,

where (e (Sn 0)) computes (S2n

0), see below. Here, (Sz1 0)+(Sz2 0) is assumed
to compute (Sz1+z2 0).

e (S x1) = (e x1) + (e x1)

e 0 = S 0

Since exp is a 1-mtt that is ncd, basic deaccumulation delivers the program:

exp ′ (S x1) = sub (exp′ x1) (sub (exp′ x1) 0) sub (S x1) y1 = S (sub x1 y1)

exp ′ 0 = S 0 sub 0 y1 = y1

and the initial call (exp ′ x1), which are better suited for induction provers
because there are no accumulating arguments anymore. For instance, instead
of proving the above claim for the original program (which would require an
ad-hoc generalization), now the statement

exp ′ x1 = e x1

can be proved automatically. We only show the induction step (x1 7→ (S x1)).
Note that the statements about substitution functions in Lemma 6 are often
helpful for the verification of transformed programs (cf. also the examples in
Appendices A and B). These statements require no extra proof effort, since
they can be generated automatically during program transformation. Further
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generic statements about substitution functions, depending only on the set
of constructors but not on the accumulative function to be transformed, and
how they can reduce verification effort, were discussed in [58].

exp ′ (S x1)

= sub (exp′ x1) (sub (exp′ x1) 0)

= sub (e x1) (sub (e x1) 0) (2 ∗ IH )

= sub (e x1) (e x1) (Lemma 6(1))

= (e x1) + (e x1) (Lemma 6(3) and the assumption on +)

= e (S x1)

The above example also demonstrates that, in contrast to [23], our technique
can handle nested recursion. Indeed, deaccumulation is useful for functional
programs in general (cf. also Appendix A, where the original program con-
tains a recursive call with surrounding context) — not just for tail-recursive
functions resulting from translating imperative programs.

5 Conclusions and Directions for Future Work

Conjectures about imperative programs and accumulative functional programs
are hard to verify with induction theorem provers. The reason is that their
proofs often require sophisticated generalizations which are difficult to find
automatically. Therefore, we have introduced an automatic technique that
transforms accumulative functions (for example, but not only, obtained by
translating imperative programs) into non-accumulative ones, whose verifica-
tion is usually significantly easier with existing proof tools.

While in many examples generalizations can be avoided by our technique, it
does not render generalization techniques superfluous. There are accumula-
tive functions where our transformations are not applicable, and even if they
are, there are still conjectures that can only be proved via a suitable gen-
eralization. However, even then deaccumulation is advantageous because the
generalizations for the transformed functions are usually much easier than the
ones required for the original accumulative functions (cf. Appendix A).

An obvious direction for future work is to develop a transformation that sub-
sumes both our basic and advanced deaccumulation techniques. Currently,
basic deaccumulation requires the nullary constructors acting as initial values
to be pairwise distinct and not to occur in right-hand sides of the relevant
function definition. In contrast, advanced deaccumulation requires them to
be all equal and poses no restriction on their occurrence in right-hand sides.
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Instead, one might want to handle the general case that the initial values are
arbitrary nullary constructors, where some (but not necessarily all) of them
may be equal, and there is no restriction on right-hand sides. This is possible
with a program analysis very much in the spirit of Definition 23, but com-
plicated by more technicalities. Solely for the sake of accessibility of the key
ideas, we restricted ourselves to the case of initial values being all equal here.

An interesting topic for future work is to couple the transformations directly
with an induction theorem prover. To this end, we are working on a corre-
sponding extension of the verification tool AProVE [25]. Moreover, also the cur-
rent implementation of the presented fixpoint computation in Haskell certainly
leaves room for improvement, even though it already uses some implementa-
tion tricks like integrating the success condition into the iterative computation
to allow an early abort for non-successful candidates. Fortunately, the search
space does not necessarily have to be explored in full. At least for the 1-mtt
from Example 18 and its variation, each of the successful candidates reported
in Examples 28 and 29 turns out to be equally suitable to automatically solve
verification problems similar to that from the introduction (cf. Appendix C).
Hence, the search process can be stopped once the first successful candidate
is found. On the other hand, if there is not a single successful candidate for
some 1-mtt, then a complete exploration is still necessary to detect this.

To improve the asymptotic complexity of the fixpoint computation, it is pos-
sible to simplify the domain for abstract interpretation (as implicitly used
in Definition 23). For example, instead of a set of reachability functions, it
would be possible to maintain only a single “superposed” function throughout
the iteration process, and/or instead of arbitrary subsets of {0, . . . , n}, one
could allow only empty and singleton sets as function values, signaling non-
success as soon as a set with at least two elements is produced. While these
approximations might lead to some successful candidates being overlooked,
correctness of those candidates being recognized as successful would still be
guaranteed. And at least for the 1-mtts from Examples 18 and 19 (and the
mentioned variation of Example 18), it turns out that successful candidates
can be found even after the proposed modifications to the analysis process.

To increase the applicability of our approach, it could be extended to more
general forms of algorithms. An obvious choice would be to handle mutu-
ally recursive functions, i.e., general mtts rather than 1-mtts only. For basic
deaccumulation, such a generalization was already given in [50], along with an
implementation. For advanced deaccumulation, it also seems to be unproblem-
atic, using different sets of reachability functions for the different functions in
the mtt to be transformed in order to assure maximal accuracy in the fixpoint
computation.

For simplicity, we have assumed an untyped language throughout. When in-
troducing types, one would have to generate several substitution functions for
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the different types of arguments, even in the case of basic deaccumulation. An
extension beyond mtts seems to be possible as well. For example, the require-
ment of flat patterns on left-hand sides may be relaxed. Further extensions
include transformations based on a decomposition that only removes those
context arguments from a function that are modified in recursive calls. Fi-
nally, it would also be interesting to see whether it is possible to incorporate
the transformations of [23] into our approach.

Acknowledgment. We would like to thank the anonymous referees for their
valuable comments which helped us to improve the presentation of our results.

Appendices

In the next three appendices, we illustrate the advantages of our contribu-
tions with additional examples. Appendices A and B show that the classical
approach of finding suitable generalizations is extremely hard for conjectures
containing several occurrences of an accumulative function. Here, deaccumula-
tion helps to simplify the proof tasks substantially. (After the deaccumulation,
the proof works without generalizations in Appendix B and in Appendix A,
the required generalization is now very easy to find.) While Appendices A
and B illustrate the use of the basic deaccumulation technique, Appendix C
demonstrates the advantage of the advanced deaccumulation technique for
verification tasks. Finally, Appendix D contains full proofs.

A Example: Splitting Monadic Trees

The program

split (A x1) y1 = A (split x1 y1)

split (B x1) y1 = split x1 (B y1)

split N y1 = y1

with initial call (split x1 N) maps a monadic tree with n1 and n2 occurrences
of the unary constructors A and B, respectively, to the tree (An1 (Bn2 N)) by
accumulating the B’s in the context argument of split . By basic deaccumula-
tion it is transformed into the program

split ′ (A x1) = A (sub (split ′ x1) N) sub (A x1) y1 = A (sub x1 y1)

split ′ (B x1) = sub (split ′ x1) (B N) sub (B x1) y1 = B (sub x1 y1)

split ′ N = N sub N y1 = y1

40



with initial call (split ′ x1). If we want to prove the idempotence of the splitting
operation, then the proof for the original program requires a generalization
from

split (split x1 N) N = split x1 N

to

split (split x1 (b x2)) (b x3) = split x1 (b (x2 + x3)) ,

where (b n) computes (Bn N). Such a generalization is difficult to find. On
the other hand,

split ′ (split ′ x1) = split ′ x1

can be proved automatically. In the first step case (x1 7→ (A x1)), Lemma 6(1)
is used to infer the equality of (sub (split ′ x1) N) and (split ′ x1). In the second
step case (x1 7→ (B x1)), a straightforward generalization step is required by
identifying two common subexpressions in a proof subgoal. More precisely,
by applying the induction hypothesis, the induction conclusion is transformed
into the proof obligation

split ′ (sub (split ′ x1) (B N)) = sub (split ′ (split ′ x1)) (B N).

Now, the two underlined occurrences of (split ′ x1) are generalized to a fresh
variable x, and then the proof works by induction on x.

B Example: Reversing Monadic Trees

Consider the program

rev (A x1) y1 = rev x1 (A y1)

rev (B x1) y1 = rev x1 (B y1)

rev N y1 = y1

with initial call (rev x1 N). By basic deaccumulation, it is transformed into
the program

rev ′ (A x1) = sub (rev ′ x1) (A N) sub (A x1) y1 = A (sub x1 y1)

rev ′ (B x1) = sub (rev ′ x1) (B N) sub (B x1) y1 = B (sub x1 y1)

rev ′ N = N sub N y1 = y1

with initial call (rev ′ x1). Taking into account that sub is just the concate-
nation function on monadic trees, the above programs correspond to the ef-
ficient and the inefficient reverse function, which have linear and quadratic
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time-complexity in the size of the input tree, respectively. Thus, this example
shows that the aim of our technique runs counter to the aim of many classical
program transformations, i.e., the efficiency is decreased, but the suitability
for verification is improved: If we want to show that the reverse of two con-
catenated lists is the concatenation of the reversed lists in exchanged order,
then the proof of

rev (sub x1 x2) N = sub (rev x2 N) (rev x1 N)

again requires considerable generalization effort, whereas

rev ′ (sub x1 x2) = sub (rev ′ x2) (rev ′ x1)

can be proved by a straightforward induction on x1, exploiting statements (1)
and (2) of Lemma 6.

C Example: Summing up Natural Numbers

In Examples 18 and 28, advanced deaccumulation was used to transform the
program

sum (S x1) y1 y2 = sum x1 (S y1) (y1 + y2)

sum 0 y1 y2 = y2

with initial call (sum x1 0 0) into the program

sum ′ (S x1) = sub2 (sum ′ x1) (S 0) (0 + 0)

sum ′ 0 = 0

sub2 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub2 x2 y1 y2) sub1 0 y1 y2 = y1

sub1 (S x1) y1 y2 = S (sub1 x1 y1 y2) sub2 0 y1 y2 = y2

with initial call (sum ′ x1), omitting some superfluous equations here. Our
goal is to verify the equivalence of the original program and the following
alternative specification of summing up natural numbers:

sum2 (S x1) = x1 + (sum2 x1)

sum2 0 = 0

The automatic proof of

sum x1 0 0 = sum2 x1
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fails in the induction step (x1 7→ (S x1)). For the deaccumulated program,
however, the statement

sum ′ x1 = sum2 x1

can be proved without any problems. We only give the induction step (x1 7→
(S x1)), omitting the simple base case (x1 = 0). For the left-hand side of the
equation, we obtain

sum ′ (S x1)

= sub2 (sum ′ x1) (S 0) (0 + 0)

= sub2 (sum2 x1) (S 0) (0 + 0) (IH )

and for the right-hand side, we have

sum2 (S x1) = x1 + (sum2 x1).

So to finish the proof, we have to show the conjecture

sub2 (sum2 x1) (S 0) (0 + 0) = x1 + (sum2 x1).

We again use induction, omitting the simple base case. In the step case, for
the left-hand side we obtain

sub2 (sum2 (S x1)) (S 0) (0 + 0)

= sub2 (x1 + (sum2 x1)) (S 0) (0 + 0)

= (sub1 x1 (S 0) (0 + 0)) + (sub2 (sum2 x1) (S 0) (0 + 0))

= (sub1 x1 (S 0) (0 + 0)) + (x1 + (sum2 x1)) (IH )

and for the right-hand side, we have

(S x1) + (sum2 (S x1)) = (S x1) + (x1 + (sum2 x1)).

Since the second summands of the two resulting expressions are identical, it
remains to show the conjecture

sub1 x1 (S 0) (0 + 0) = S x1.

Here, in the step case, we obtain

sub1 (S x1) (S 0) (0 + 0)

= S (sub1 x1 (S 0) (0 + 0))

= S (S x1) (IH ),

which (together with the straightforward base case) proves the conjecture.
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D Proofs

First, we prove an auxiliary lemma, which also serves to illustrate the principle
of proof by simultaneous induction (cf., e.g., [18,22,56]).

Lemma 32 (auxiliary, actual vs. formal parameters) Let p ∈ P and
(m, r) be a 1-mtt of p, where Fm = {f (n+1)}. For every t ∈ TCp

and s1, . . . , sn ∈
TCp∪Fp

(Yn):

nfp(f t s1 · · · sn) = nfp(f t y1 · · ·yn)[yj
� − nfp(sj) | j ∈ [n]].

PROOF. We prove the following two statements by simultaneous induction,
where the first coincides with the statement of the lemma:

(∗) For every t ∈ TCp
and s1, . . . , sn ∈ TCp∪Fp

(Yn):

nfp(f t s1 · · · sn) = nfp(f t y1 · · · yn)[yj
� − nfp(sj) | j ∈ [n]].

(∗∗) For every k ∈
�
, t1, . . . , tk ∈ TCp

, s1, . . . , sn ∈ TCp∪Fp
(Yn), and r̄ ∈

RHS ({f}, Cp, Xk, Yn):

nfp(r̄[xi, yj
� − ti, sj | i ∈ [k], j ∈ [n]])

= nfp(r̄[xi
� − ti | i ∈ [k]])[yj

� − nfp(sj) | j ∈ [n]].

To prove (∗) for t = (c t1 · · · tk) with c ∈ C(k)
p and t1, . . . , tk ∈ TCp

under
the assumption that (∗∗) holds for k and t1, . . . , tk, we instantiate r̄ in (∗∗) to
rhsp,f,c. To prove (∗∗) for k ∈

�
and t1, . . . , tk ∈ TCp

under the assumption that
(∗) holds for each of the t1, . . . , tk, we perform an induction on the structure
of r̄, for fixed s1, . . . , sn ∈ TCp∪Fp

(Yn). The cases r̄ ∈ Yn and r̄ = (c r1 · · · ra)
for some c ∈ C(a)

p and r1, . . . , ra ∈ RHS ({f}, Cp, Xk, Yn) are straightforward.
The validity in the remaining case is proved as follows.

Case r̄ = (f xi′ r1 · · · rn) for some xi′ ∈ Xk and r1, . . . , rn ∈ RHS ({f}, Cp,
Xk, Yn):

nfp((f xi′ r1 · · · rn)[xi, yj
� − ti, sj | i ∈ [k], j ∈ [n]])

= (by substitution, (∗) for ti′ , and the induction hypotheses for r1, . . . , rn)

nfp(f ti′ y1 · · · yn)[yj′

� − nfp(rj′[xi
� − ti | i ∈ [k]])[yj

� − nfp(sj) | j ∈ [n]]

| j ′ ∈ [n]]

= (by Lemma 1(2))

nfp(f ti′ y1 · · · yn)[yj′

� − nfp(rj′[xi
� − ti | i ∈ [k]]) | j ′ ∈ [n]]

[yj
� − nfp(sj) | j ∈ [n]]

= (by substitution and (∗) for ti′)
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nfp((f xi′ r1 · · · rn)[xi
� − ti | i ∈ [k]])[yj

� − nfp(sj) | j ∈ [n]] 2

PROOF of Lemma 9. The lemma is established by the following calculation:

nfp′(f t s1 · · · sn)
= (by Lemma 32)
nfp′(f t y1 · · · yn)[yj

� − nfp′(sj) | j ∈ [n]]
= (by Lemma 1(3), using that

nfp′(f t y1 · · · yn) = nfp(f t y1 · · · yn) ∈ TCp
(Yn)

does not contain any of the π1, . . . , πn)
nfp′(f t y1 · · · yn)[yj

� − πj | j ∈ [n]][πj
� − nfp′(sj) | j ∈ [n]]

= (by Lemma 32)
nfp′(f t π1 · · ·πn)[πj

� − nfp′(sj) | j ∈ [n]]
= (by Lemma 5)
nfp′(sub (f t π1 · · ·πn) s1 · · · sn) 2

PROOF of Lemma 12. We prove the following two statements by simulta-
neous induction:

(∗) For every t ∈ TCp
: nfp′(f t π1 · · ·πn) = nfp′(f ′ t).

(∗∗) For every k ∈
�
, t1, . . . , tk ∈ TCp

, and r̄ ∈ RHS ({f}, Cp, Xk, Yn):

nfp′(r̄[xi, yj
� − ti, πj | i ∈ [k], j ∈ [n]]) = nfp′(dec(r̄)[xi

� − ti | i ∈ [k]]).

The first statement of the lemma then follows from (∗∗) with k = 1, t1 = t, and
r̄ = r, taking into account that nfp(r[x1

� − t]) = nfp′(r[x1, yj
� − t, πj | j ∈ [n]])

due to the facts that r ∈ RHS ({f}, Cp, X1, Y0) contains no yj for any j ∈ [n],
and that the equations defining f in module m of p were taken over to p′.
Regarding the second statement of the lemma, note that if (m, r) is ncd, then

there are pairwise distinct c1, . . . , cn ∈ C(0)
p = C

(0)
p′ − {π1, . . . , πn} such that

r = (f x1 c1 · · · cn) and c1, . . . , cn do not occur in right-hand sides of the
function definition in m. Thus, in this case r′ = (sub (f ′ x1) c1 · · · cn) and by
the definition of the dec-function and by the form of the dummy equations
that we add for f ′ at the new constructors π1, . . . , πn, it is clear that c1, . . . , cn

do not occur in right-hand sides of the function definition in m1.

Now we give the proof of (∗) and (∗∗). To prove (∗) for t = (c t1 · · · tk) with
c ∈ C(k)

p and t1, . . . , tk ∈ TCp
under the assumption that (∗∗) holds for k

and t1, . . . , tk, we instantiate r̄ in (∗∗) to rhsp′,f,c and use that rhsp′,f ′,c =
dec(rhsp′,f,c) by construction. To prove (∗∗) for k ∈

�
and t1, . . . , tk ∈ TCp

under the assumption that (∗) holds for each of the t1, . . . , tk, we perform an
induction on the structure of r̄. The cases r̄ ∈ Yn and r̄ = (c r1 · · · ra) for
some c ∈ C(a)

p and r1, . . . , ra ∈ RHS ({f}, Cp, Xk, Yn) are straightforward. The
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validity in the remaining case is proved as follows.

Case r̄ = (f xi′ r1 · · · rn) for some xi′ ∈ Xk and r1, . . . , rn ∈ RHS ({f}, Cp,
Xk, Yn):

nfp′((f xi′ r1 · · · rn)[xi, yj
� − ti, πj | i ∈ [k], j ∈ [n]])

= (by substitution and Lemma 9)

nfp′(sub (f ti′ π1 · · ·πn) r1[xi, yj
� − ti, πj | i ∈ [k], j ∈ [n]]

· · ·

rn[xi, yj
� − ti, πj | i ∈ [k], j ∈ [n]])

= (by (∗) for ti′ and the induction hypotheses for the r1, . . . , rn)
nfp′(sub (f ′ ti′) dec(r1)[xi

� − ti | i ∈ [k]] · · · dec(rn)[xi
� − ti | i ∈ [k]])

= (by definition of dec and substitution)
nfp′(dec(f xi′ r1 · · · rn)[xi

� − ti | i ∈ [k]]) 2

PROOF of Lemma 16. We prove the following two statements by simulta-
neous induction:

(∗) For every t ∈ TCp′′
: nfp′(f ′ t) = nfp′′(f ′ t)[cj

� − πj | j ∈ [n]].

(∗∗) For every k ∈
�

and t1, . . . , tk ∈ TCp′′
, for every r̄ ∈ RHS ({f ′}, Cp′ −

{c1, . . . , cn}∪{sub}, Xk, Y0) that is in the image of dec from Transforma-
tion 10:

nfp′(r̄[xi
� − ti | i ∈ [k]])

= nfp′′(r̄[xi, πj
� − ti, cj | i ∈ [k], j ∈ [n]])[cj

� − πj | j ∈ [n]].

The lemma is then established by the following calculation for every t ∈ TCp′′
:

nfp′(r′[x1
� − t])

= (by substitution)
nfp′(sub (f ′ t) c1 · · · cn)

= (by Lemma 5)
nfp′(f ′ t)[πj

� − cj | j ∈ [n]]
= (by (∗))
nfp′′(f ′ t)[cj

� − πj | j ∈ [n]][πj
� − cj | j ∈ [n]]

= (by Lemma 1(3), using that nfp′′(f ′ t) ∈ TCp′′

does not contain any of the π1, . . . , πn)
nfp′′(f ′ t)[cj

� − cj | j ∈ [n]]
= (by Lemma 1(1))
nfp′′(f ′ t)

= (by substitution)
nfp′′(r′′[x1

� − t])
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To prove (∗) for t = (c t1 · · · tk) with c ∈ C
(k)
p′′ and t1, . . . , tk ∈ TCp′′

under
the assumption that (∗∗) holds for k and t1, . . . , tk, we instantiate r̄ in (∗∗) to
rhsp′,f ′,c and use that rhsp′′,f ′,c = rhsp′,f ′,c[πj

� − cj | j ∈ [n]] by construction. To
prove (∗∗) for k ∈

�
and t1, . . . , tk ∈ TCp′′

under the assumption that (∗) holds
for each of the t1, . . . , tk, we perform an induction on the structure of r̄. The
case r̄ ∈ {π1, . . . , πn} is straightforward, as is the case r̄ = (c r1 · · · ra) for some
c ∈ (Cp′ − {π1, . . . , πn, c1, . . . , cn})

(a) and some r1, . . . , ra ∈ RHS ({f ′}, Cp′ −
{c1, . . . , cn}∪{sub}, Xk, Y0) that are in the image of dec. Since r̄ is restricted
to be in the image of dec, the only remaining case is given (and proved) as
follows.

Case r̄ = (sub (f ′ xi′) r1 · · · rn) for some xi′ ∈ Xk and r1, . . . , rn ∈ RHS ({f ′},
Cp′ − {c1, . . . , cn}∪{sub}, Xk, Y0) that are in the image of dec:

nfp′((sub (f ′ xi′) r1 · · · rn)[xi
� − ti | i ∈ [k]])

= (by substitution and Lemma 5)
nfp′(f ′ ti′)[πj

� − nfp′(rj[xi
� − ti | i ∈ [k]]) | j ∈ [n]]

= (by (∗) for ti′ and the induction hypotheses for the r1, . . . , rn)

nfp′′(f ′ ti′)[cj
� − πj | j ∈ [n]]

[πj
� − nfp′′(rj[xi, πj′

� − ti, cj′ | i ∈ [k], j ′ ∈ [n]])[cj′

� − πj′ | j ′ ∈ [n]]

| j ∈ [n]]

= (by Lemma 1(3), using that nfp′′(f ′ ti′) ∈ TCp′′

does not contain any of the π1, . . . , πn)

nfp′′(f ′ ti′)[cj
� − nfp′′(rj[xi, πj′

� − ti, cj′ | i ∈ [k], j ′ ∈ [n]])[cj′

� − πj′ | j ′ ∈ [n]]

| j ∈ [n]]

= (by Lemma 1(2))

nfp′′(f ′ ti′)[cj
� − nfp′′(rj[xi, πj′

� − ti, cj′ | i ∈ [k], j ′ ∈ [n]]) | j ∈ [n]]

[cj′

� − πj′ | j ′ ∈ [n]]

= (by substitution and Lemma 5)

nfp′′((sub (f ′ xi′) r1 · · · rn)[xi, πj′

� − ti, cj′ | i ∈ [k], j ′ ∈ [n]])

[cj′

� − πj′ | j ′ ∈ [n]] 2

Definition 33 (nondeterministic tree substitution) Let Σ be a ranked
alphabet and V , V ′ be sets of variables, where Σ ∩ (V ∪ V ′) = � . Let n ∈

�

and let α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct, where {α1, . . . , αn} ⊇ V .
Then, for sets T1, . . . , Tn ⊆ TΣ(V ′), the nondeterministic tree substitution

� [α1, . . . , αn
� �− T1, . . . , Tn] (or � [αi

� �− Ti | i ∈ [n]]) is a function mapping
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each tree from TΣ(V ) to a set of trees from TΣ(V ′). It is defined as follows:

αj[αi
� �− Ti | i ∈ [n]]= Tj , for all j ∈ [n]

(σ t1 · · · tk)[αi � �− Ti | i ∈ [n]] = {σ s1 · · · sk | ∀j ∈ [k]. sj ∈ tj[αi � �− Ti | i ∈ [n]]} ,

for all σ ∈ (Σ − {α1, .., αn})
(k), t1, .., tk ∈ TΣ(V ).

Note that substitution by � [αi
� �− Ti | i ∈ [n]] is independently nondeterministic

for different occurrences of the same αi. For example, (σ x1 x1)[x1
� �− {β, γ}]

does not only contain (σ β β) and (σ γ γ), but also (σ β γ) and (σ γ β).

Lemma 34 (properties of nondeterministic tree substitutions) Let Σ
be a ranked alphabet, V be a set of variables disjoint from Σ, n ∈

�
, and

α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct, where V ⊆ {α1, . . . , αn}. For every
t ∈ TΣ(V ), T ⊆ TΣ, finite set J , and ti, t

′
i ∈ TΣ(V ) and Ti, T

′
i , Ti,j ⊆ TΣ for

every i ∈ [n] and j ∈ J :

(1) t[αi
� �− {ti} | i ∈ [n]] = {t[αi

� − ti | i ∈ [n]]},

(2) t[αi
� − ti | i ∈ [n]][β, αi′

� �− T, Ti′ | i′ ∈ [n]]

= t[β, αi
� �− T, ti[β, αi′

� �− T, Ti′ | i′ ∈ [n]] | i ∈ [n]]

for every β ∈ Σ(0) − {α1, . . . , αn},

(3) t[αi
� �− Ti | i ∈ [n]] ⊆ t[αi

� �− T ′
i | i ∈ [n]] if Ti ⊆ T ′

i for every i ∈ [n], and

(4)
⋃

j∈J
t[αi

� �− Ti,j | i ∈ [n]] ⊆ t[αi
� �−

⋃

j∈J
Ti,j | i ∈ [n]].

PROOF. Statements (1), (2), and (3) have straightforward proofs by induc-
tion on the structure of t. Statement (4) follows easily from statement (3) (by
Ti,j ⊆

⋃

j∈J

Ti,j). 2

PROOF of Lemma 25. First, consider Definition 33 and Lemma 34 above.
For fixed s1, . . . , sn ∈ TCp∪Fp′

, we will prove that for every h ∈
�

and t ∈ TCp

with height(t) ≤ h there is a G ∈ Gh (where Gh is defined as in Definition 23,
based on K and π0) such that for every v ∈ [0, n] and θ1, . . . , θn ∈ TCp∪{f}:

nfp′(subv (f t θ1 · · · θn) s1 · · · sn)

∈ nfp′(f t y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ G(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ G(v, j)} | j ∈ [n]].

(D.1)

Instantiating v to u, setting θ1, . . . , θn = π0, . . . , π0, and using that if K is
successful for (m, r) with subu, then for every G ∈

⋃

h∈ �
Gh and j ∈ [0, n],
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G(u, j) ⊆ {j}, we obtain for every t ∈ TCp
:

nfp′(subu (f t π0 · · ·π0) s1 · · · sn)

∈ nfp′(f t y1 · · · yn)[π0
� �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ I0},

yj
� �− {nfp′(subv′ π0 s1 · · · sn) | v′ ∈ Ij} | j ∈ [n]]

for some I0, . . . , In with Ij ⊆ {j} for every j ∈ [0, n]. Using [n] ∩ I0 = � and
applying Lemma 34(3), this implies:

nfp′(subu (f t π0 · · ·π0) s1 · · · sn)

∈ nfp′(f t y1 · · · yn)[π0
� �− {π0},

yj
� �− {nfp′(subj π0 s1 · · · sn)} | j ∈ [n]].

Using the equations which define sub1, . . . , subn on the value π0 in the sub-like
module induced by K and π0, together with Lemma 34(1) we obtain

nfp′(subu (f t π0 · · · π0) s1 · · · sn) ∈ {nfp′(f t y1 · · · yn)[π0 � − π0,

yj � − nfp′(sj) | j ∈ [n]]} ,

from which the statement of the lemma follows by Lemma 32.

Now we prove (D.1) by induction on h. For h = 0 there is nothing to prove
because there are no trees of height 0 or smaller. For the induction step (h 7→
h + 1) it suffices to show that for every c ∈ C (k)

p and t1, . . . , tk ∈ TCp
with

height(ti) ≤ h for every i ∈ [k], there is a G ∈ Gh+1 such that for every
v ∈ [0, n] and θ1, . . . , θn ∈ TCp∪{f}:

nfp′(subv (f (c t1 · · · tk) θ1 · · · θn) s1 · · · sn)

∈ nfp′(f (c t1 · · · tk) y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ G(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ G(v, j)}

| j ∈ [n]] ,

(D.2)

where by the induction hypothesis for h we may assume that there are G1, . . . ,
Gk ∈ Gh such that for every i ∈ [k], v ∈ [0, n], and θ′1, . . . , θ

′
n ∈ TCp∪{f}:

nfp′(subv (f ti θ′1 · · · θ
′
n) s1 · · · sn)

∈ nfp′(f ti y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},

yj � �− {nfp′(subv′ θ′j s1 · · · sn) | v′ ∈ Gi(v, j)} | j ∈ [n]].

(D.3)

By Definition 23, Gh+1 contains the function G = rchG1,...,Gk
(rhsp,f,c) for the

particular G1, . . . , Gk assumed for (D.3). Hence, using that rhsp′,f,c = rhsp,f,c,
to establish (D.2) it suffices to show that for every r̄ ∈ RHS ({f}, Cp, Xk, Yn),
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v ∈ [0, n], and θ1, . . . , θn ∈ TCp∪{f}:

nfp′(subv r̄[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)

∈ nfp′(r̄[xi � − ti | i ∈ [k]])[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(r̄)(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(r̄)(v, j)}

| j ∈ [n]].

The proof is by induction on the structure of r̄ as follows.

Case r̄ = π0:

nfp′(subv π0[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
= (using the equation for subv at π0 in the

sub-like module induced by K and π0)






π0 if v = 0

nfp′(sv) otherwise

∈ (by substitution and rchG1,...,Gk
(π0)(v, 0) = {v})

nfp′(π0[xi � − ti | i ∈ [k]])[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(π0)(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(π0)(v, j)}

| j ∈ [n]]

Case r̄ = yj′ ∈ Yn:

nfp′(subv yj′ [xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
∈ (by substitution and rchG1,...,Gk

(yj′)(v, j′) = {v})

nfp′(yj′ [xi � − ti | i ∈ [k]])[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(yj′)(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(yj′)(v, j)}

| j ∈ [n]]

Case r̄ = (c r1 · · · ra) for some c ∈ (Cp−{π0})
(a) and r1, . . . , ra ∈ RHS ({f}, Cp,

Xk, Yn):

nfp′(subv (c r1 · · · ra)[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
= (using the equation for subv at c in the

sub-like module induced by K and π0)

c nfp′(subK(v,c,1) r1[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn) · · ·

nfp′(subK(v,c,a) ra[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)

∈ (see below)

nfp′((c r1 · · · ra)[xi � − ti | i ∈ [k]])

[π0 � �− {π0} ∪
⋃

l∈[a]

{nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(rl)(K(v, c, l), 0)},

yj � �−
⋃

l∈[a]

{nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(rl)(K(v, c, l), j)} | j ∈ [n]]

= (by definition of rchG1,...,Gk
(c r1 · · · ra))
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nfp′((c r1 · · · ra)[xi � − ti | i ∈ [k]])

[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(c r1 · · · ra)(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(c r1 · · · ra)(v, j)} | j ∈ [n]]

The above gap can be closed if for every l′ ∈ [a] we can establish:

nfp′(subK(v,c,l′) rl′ [xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)

∈ nfp′(rl′ [xi � − ti | i ∈ [k]])

[π0 � �−{π0} ∪
⋃

l∈[a]

{nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(rl)(K(v, c, l), 0)},

yj � �−
⋃

l∈[a]

{nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(rl)(K(v, c, l), j)} | j ∈ [n]].

But this is a consequence of the induction hypothesis for rl′ and Lemma 34(3).

Case r̄ = (f xi r1 · · · rn) for some xi ∈ Xk and some r1, . . . , rn∈RHS ({f}, Cp,
Xk, Yn):

nfp′(subv (f xi r1 · · · rn)[xi′ , yj′ � − ti′ , θj′ | i′ ∈ [k], j′ ∈ [n]] s1 · · · sn)
∈ (by substitution and by the induction hypothesis (D.3) on page 49)

nfp′(f ti y1 · · · yn)

[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},

yj � �− {nfp′(subv′ rj [xi′ , yj′ � − ti′ , θj′ | i′ ∈ [k], j′ ∈ [n]] s1 · · · sn) | v′ ∈ Gi(v, j)}

| j ∈ [n]]

⊆ (by the induction hypotheses for the r1, . . . , rn and Lemma 34(3))

nfp′(f ti y1 · · · yn)

[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},

yj � �−
⋃

v′∈Gi(v,j)

nfp′(rj[xi′ � − ti′ | i′ ∈ [k]])

[π0 � �− {π0} ∪ {nfp′(sv′′) | v′′ ∈ [n] ∩ rchG1,...,Gk
(rj)(v

′, 0)},

yj′ � �− {nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rj)(v

′, j′)}

| j′ ∈ [n]] | j ∈ [n]]

⊆ (by Lemma 34(4) and Lemma 34(3), twice)
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nfp′(f ti y1 · · · yn)

[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},

yj � �− nfp′(rj [xi′ � − ti′ | i′ ∈ [k]])

[π0 � �− {π0} ∪
⋃

v′∈Gi(v,j)

{nfp′(sv′′) | v′′ ∈ [n] ∩ rchG1,...,Gk
(rj)(v

′, 0)},

yj′ � �−
⋃

v′∈Gi(v,j)

{nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rj)(v

′, j′)}

| j′ ∈ [n]] | j ∈ [n]]

⊆ (by Lemma 34(3), twice)

nfp′(f ti y1 · · · yn)

[π0 � �− {π0} ∪
{

nfp′(sv′′) | v′′ ∈ [n] ∩
(

Gi(v, 0) ∪
⋃

l∈[n]

⋃

v′∈Gi(v,l)

rchG1,...,Gk
(rl)(v

′, 0)
)}

,

yj � �− nfp′(rj [xi′ � − ti′ | i′ ∈ [k]])

[π0 � �− {π0} ∪
{

nfp′(sv′′) | v′′ ∈ [n] ∩
(

Gi(v, 0) ∪
⋃

l∈[n]

⋃

v′∈Gi(v,l)

rchG1,...,Gk
(rl)(v

′, 0)
)}

,

yj′ � �−
⋃

l∈[n]

⋃

v′∈Gi(v,l)

{nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rl)(v

′, j′)}

| j′ ∈ [n]] | j ∈ [n]]

= (by Lemma 34(2))

nfp′(f ti y1 · · · yn)

[yj � − nfp′(rj[xi′ � − ti′ | i′ ∈ [k]]) | j ∈ [n]]

[π0 � �− {π0} ∪
{

nfp′(sv′′) | v′′ ∈ [n] ∩
(

Gi(v, 0) ∪
⋃

l∈[n]

⋃

v′∈Gi(v,l)

rchG1,...,Gk
(rl)(v

′, 0)
)}

,

yj′ � �−
⋃

l∈[n]

⋃

v′∈Gi(v,l)

{nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rl)(v

′, j′)} | j′ ∈ [n]]

= (by substitution, Lemma 32, and definition of rchG1,...,Gk
(f xi r1 · · · rn))

nfp′((f xi r1 · · · rn)[xi′ � − ti′ | i′ ∈ [k]])

[π0 � �− {π0} ∪ {nfp′(sv′′) | v′′ ∈ [n] ∩ rchG1,...,Gk
(f xi r1 · · · rn)(v, 0)},

yj′ � �− {nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(f xi r1 · · · rn)(v, j′)}

| j′ ∈ [n]] 2

PROOF of Theorem 27 By copying the simultaneous induction from the
proof of Lemma 12, except for using Lemma 25 instead of Lemma 9, we can
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prove the following two statements:

(∗) For every t ∈ TCp
: nfp′(f t π0 · · ·π0) = nfp′(f ′ t).

(∗∗) For every k ∈
�
, t1, . . . , tk ∈ TCp

, and r̄ ∈ RHS ({f}, Cp, Xk, Yn):

nfp′(r̄[xi, yj
� − ti, π0 | i ∈ [k], j ∈ [n]]) = nfp′(adv(r̄)[xi

� − ti | i ∈ [k]]).

The theorem then follows from (∗) since r = (f x1 π0 · · ·π0) and r′ = (f ′ x1).
Here one has to take into account that nfp(f t π0 · · ·π0) = nfp′(f t π0 · · ·π0)
due to the fact that the module m of p, defining f , was taken over to p′. 2
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