
Fakultät Informatik

Institut für Theoretische Informatik

Lehrstuhl für Grundlagen der Programmierung

Masterarbeit

Transition-based Generation from

Abstract Meaning Representations

eingereicht von: Timo Schick
timo.schick@tu-dresden.de

eingereicht am: 04. Juli 2017

Verantw. Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig, ohne fremde Hilfe
und ohne Benutzung anderer als der von mir angegebenen Quellen angefer-
tigt zu haben. Alle aus fremden Quellen direkt oder indirekt übernommenen
Gedanken sind als solche gekennzeichnet. Die Arbeit wurde noch keiner Prü-
fungsbehörde in gleicher oder ähnlicher Form vorgelegt.

Dresden, den 04.07.2017

Timo Schick

Aufgabenstellung für die Masterarbeit
„Generierung von Abstract Meaning Representations“

Technische Universität Dresden
Fakultät Informatik

Student: Timo Schick
Geburtsdatum: 4. Oktober 1993
Matrikelnummer: 3905977
Studiengang: Master Informatik
Immatrikulationsjahr: 2015

Studienleistung: Master-Arbeit
Beginn am: 6. März 2017
Einzureichen am: 14. August 2017

Verantw. Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler

Semantische Repräsentationen natürlichsprachiger Sätze sind für viele Teilbereiche der
Sprachverarbeitung interessant; beispielsweise können sie zur Verbesserung der Mensch-
Computer-Interaktion, zur Informationsextraktion oder zur maschinellen Übersetzung
genutzt werden. Um einen einheitlichen Rahmen für solche semantischen Repräsentationen
zu schaffen, wurde von Banarescu u. a. [Ban+13] eine Darstellung als gerichteter Graph
eingeführt: sogenannte Abstract Meaning Representations (AMRs).

Bedeutende Aufgabenstellungen im Umgang mit AMRs sind insbesondere das Erzeugen
solcher AMRs aus natürlichsprachigen Sätzen (Parsing), sowie der umgekehrte Prozess, die
Generierung natürlichsprachiger Sätze aus AMRs. Diese Generierung kann beispielsweise
in der Mensch-Computer-Interaktion eingesetzt werden, um vorliegende Informationen in
einen Satz zu transformieren. Außerdem kann die Kombination eines Parsers und eines
Generators zur Übersetzung natürlichsprachiger Sätze verwendet werden [Jon+12].

Der AMR-Parser CAMR [Wan+15] nutzt ein Transitionssystem, um die Dependency
Structure eines Satzes in einen AMR-Graphen zu konvertieren. Aufgrund der guten
Resultate, die CAMR erzielt, ist es naheliegend, diese Idee versuchsweise auch auf die
Generierung zu übertragen, also einen AMR-Graphen transitionsbasiert in eine – nicht
zwangsläufig dem zugehörigen Dependency Tree gleiche – Baumstruktur zu überführen
und das Yield dieser Baumstruktur als generierten Satz zu betrachten.

1 / 4

Aufgabe Es soll untersucht werden, ob durch eine “Umkehrung” der Transitionen im
AMR-Parser CAMR ein Transition System zur Natural Language Generation aus AMR
konstruiert werden kann.
Zuvor wird eine syntaktische Rekonstruktion durchgeführt; die dadurch erhaltenen
syntaktischen Informationen werden genutzt, um Transitionen zu bewerten.

Syntaktische Rekonstruktion Es sollen folgende syntaktische Informationen, sofern
möglich, rekonstruiert werden:

• POS-Tag (wird das Konzept als Substantiv, Adjektiv, Verb, Gerund, …realisiert?)

• für Verben: Genus Verbi (passiv / aktiv), Zeitform

• für Substantive: Numerus (singular / plural), Determination (the / a / -)

Die Rekonstruktion syntaktischer Informationen erfolgt top-down, um bereits rekonstru-
ierte Informationen über Elternknoten mit einbeziehen zu können. Bei Uneindeutigkeit
werden mehrere Ergebnisse in Schritt 2 berücksichtigt.

Transition System Für das Transition System werden mindestens folgende Klassen
von Aktionen benötigt:

• DELETE-NODE organization :name NATO → NATO
• MERGE good :degree more → better
• SWAP possible-01 :domain (see-01 :ARG0 he)

→ see-01 :domain-of possible-01 :ARG0 he
• INSERT-PARENT live :location Singapore

→ live :ins (in :location Singapore)
• INSERT-CHILD car → car :ins the
• REALIZE-NODE possible-01 → can
• REORDER-CHILDREN
• DELETE-REENTRANCE

Um gute Resultate zu erzielen, soll ein 𝑛-gram Language Model integriert werden.
Daher erfolgt die Verarbeitung mittels Transition System bottom-up, sodass das Language
Model immer auf die bereits erzeugten Teilsätze angewandt werden kann.

Post-Processing Weil das Resultat des Transition Systems ein Baum ist, sind immer
noch Informationen über semantische Beziehungen vorhanden. Diese sowie das yield des
Baums können genutzt werden, um die Realisierung einzelner Knoten (evtl. iterativ) zu
verfeinern.

2 / 4

Form. Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss
in sich abgeschlossen sein und alle nötigen Definitionen und Referenzen enthalten. Die
Urheberschaft von Inhalten – auch die eigene – muss klar erkennbar sein. Fremde
Inhalte, z.B. Algorithmen, Konstruktionen, Definitionen, Ideen, etc., müssen durch genaue
Verweise auf die entsprechende Literatur kenntlich gemacht werden. Lange wörtliche
Zitate sollen vermieden werden. Gegebenenfalls muss erläutert werden, inwieweit und zu
welchem Zweck fremde Inhalte modifiziert wurden. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit geführt werden. Die Darstellung
aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Für jeden wichtigen
Begriff sollen Erläuterungen und Beispiele angegeben werden, ebenso für die Abläufe
der beschriebenen Verfahren. Wo es angemessen ist, sollen Illustrationen die Darstellung
vervollständigen. Bei Diagrammen, die Phänomene von Experimenten beschreiben, muss
deutlich erläutert werden, welche Werte auf den einzelnen Achsen aufgetragen sind, und
beschrieben werden, welche Abhängigkeit unter den Werten der verschiedenen Achsen
dargestellt ist.

Für die Implementierung soll eine ausführliche Dokumentation erfolgen, die sich
angemessen auf den Quelltext und die schriftliche Ausarbeitung verteilt. Dabei muss die
Funktionsfähigkeit des Programms glaubhaft gemacht und durch geeignete Beispielläufe
dokumentiert werden.

Einer späteren Veröffentlichung der Implementierung unter einer Open-Source-Lizenz
stimmt der Student zu. Der Student verpflichtet sich, ihm im Rahmen dieser Arbeit zu-
gänglich gemachte Daten und Software (einschließlich Quellcode) lediglich zur Erledigung
der Aufgaben zu verwenden und ansonsten vertraulich zu behandeln.

Dresden, 3. Februar 2017

Unterschrift von Heiko Vogler Unterschrift von Timo Schick

3 / 4

Literatur

[Ban+13] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer und Nathan
Schneider. „Abstract Meaning Representation for Sembanking“. In: Proc. 7th
Linguistic Annotation Workshop, ACL Workshop. 2013.

[Jon+12] Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann und Kevin
Knight. „Semantics-Based Machine Translation with Hyperedge Replace-
ment Grammars“. In: Proc. 24th Intl. Conf. on Computational Linguistics
(COLING 2012). 2012.

[Wan+15] Chuan Wang, Nianwen Xue, Sameer Pradhan und Sameer Pradhan. „A
Transition-based Algorithm for AMR Parsing.“ In: HLT-NAACL. 2015,
S. 366–375.

4 / 4

Abstract

This work addresses the task of generating English sentences from Abstract
Meaning Representation (AMR) graphs. To cope with this task, we trans-
form each input AMR graph into a structure similar to a dependency tree
and annotate it with syntactic information by applying various predefined ac-
tions to it. Subsequently, a sentence is obtained from this tree structure by
visiting its nodes in a specific order. We train maximum entropy models to
estimate the probability of each individual action and devise an algorithm
that efficiently approximates the best sequence of actions to be applied. Our
generator achieves a Bleu score of 27.4 on the LDC2014T12 test set.

Contents

1 Introduction 1

2 Related Work 3

3 Preliminaries 5
3.1 Basic Notation . 5
3.2 Labeled Ordered Graphs . 7
3.3 Abstract Meaning Representation . 9

3.3.1 Generation and Parsing . 12
3.3.2 Corpora . 14

3.4 Dependency Trees . 15
3.5 Bigraphs . 16
3.6 Transition Systems . 17
3.7 Language Modeling . 18
3.8 Maximum Entropy Modeling . 20

4 Transition-based Generation from AMR 23
4.1 Syntactic Annotations . 23
4.2 Transition System . 25

4.2.1 Modeling . 35
4.2.2 Decoding . 37
4.2.3 Complexity Analysis . 46

4.3 Training . 48
4.3.1 Preparations . 49
4.3.2 Syntactic Annotations . 50
4.3.3 Transitions . 56

4.4 Postprocessing . 67
4.5 Hyperparameter Optimization . 68

5 Implementation 71
5.1 Transition Constraints . 71
5.2 Default Realizations . 73
5.3 Packages . 75

5.3.1 main . 75
5.3.2 dag . 78
5.3.3 gen . 78
5.3.4 ml . 79
5.3.5 misc . 80

5.4 External Libraries . 80

6 Experiments 81

7 Conclusion 89

References 91

Appendices 95
A List of Symbols . 95
B Readme File . 96

1 Introduction

Semantic representations of natural language are of great interest for various aspects
of natural language processing (NLP). For example, semantic representations may be
useful for challenging tasks such as information extraction (Palmer et al., 2005), question
answering (Shen and Lapata, 2007), natural language generation (Langkilde and Knight,
1998) and machine translation (Jones et al., 2012).

To provide a coherent framework for semantic representations, Banarescu et al. (2013)
introduced Abstract Meaning Representation (AMR), a semantic representation language
that encodes the meanings of natural language sentences as directed acyclic graphs with
labels assigned to both vertices and edges. Within this formalism, vertices represent
so-called concepts and edges encode relations between them. As AMR abstracts away
various kinds of information, each graph typically corresponds to not just one, but a
number of different sentences. An exemplary AMR graph can be seen in Figure 1a; sev-
eral sentences corresponding to this graph are listed in Figure 1b. For AMR to be useful
in solving the above-mentioned tasks, one must of course be able to convert sentences
into AMR graphs and vice versa. Therefore, two important domain-specific problems
are (text-to-AMR) parsing, the task of finding the graph corresponding to a given natu-
ral language sentence, and (AMR-to-text) generation, the inverse task of finding a good
natural language realization for a given AMR graph. To give a simple example of how
solutions to these tasks may be beneficial for NLP, a parser and a generator can easily
be combined into a machine translation system (Jones et al., 2012).

While many approaches have been proposed for the text-to-AMR parsing task (see
Flanigan et al., 2014; Peng et al., 2015; Pust et al., 2015; Wang et al., 2015; Puzikov
et al., 2016; Zhou et al., 2016; Buys and Blunsom, 2017; van Noord and Bos, 2017;
Konstas et al., 2017), the number of currently published AMR-to-text generators is
comparably low (see Flanigan et al., 2016; Pourdamghani et al., 2016; Song et al., 2016,
2017; Konstas et al., 2017).

In this work, we tackle the problem of natural language generation from AMR by
successively transforming input AMR graphs into structures that resemble dependency
trees. To this end, we define a set of actions (transitions) such as the deletion, merging
and swapping of edges and vertices. After applying these transitions to the input, we
turn the obtained tree structure into a sentence by visiting its vertices in a specific
order. We embed the different kinds of required actions into a transition system, a
formal framework that, in the context of NLP, is often used for dependency parsing (see
Nivre, 2008). To predict the correct sequence of transitions to be applied for each input,
we train maximum entropy models (Berger et al., 1996) from a corpus of AMR graphs
and corresponding realizations. As is done in all previous works on this topic, we restrict
ourselves to generating English sentences; we do so simply because no reasonably large
corpus for any other natural language is available to date. However, we are confident
that our results can be transferred to many other languages with some effort.

Our transition-based approach is to a large extent inspired by the likewise transition-
based parser CAMR (Wang et al., 2015). In fact, this parser may be seen as the direct
inverse of our system: While we turn AMR graphs into ordered trees which, in turn, are

1

possible

close-01

boy

eye

−

domain polarity

ARG0

ARG1

part-of

(a)

• It is not possible for the boy to close
his eyes.

• The boy is unable to close his own eyes.

• The boys couldn’t close their eyes.

• There was no possibility for the boy to
close his eyes.

(b)

Figure 1: Visualization of an AMR graph and corresponding sentences

converted into sentences, the parser by Wang et al. (2015) generates dependency trees
from sentences and subsequently transforms these trees into AMR graphs. Accordingly,
several transitions used by CAMR have a direct counterpart in our generator.

In a way, the task performed by our system is simpler than its inverse. This is because
we are not required to transform input AMR graphs into actual dependency trees; any
tree is sufficient as long as the sentence obtained from it is a good realization of the
input. For this very reason, there is also no need for us to assign dependency labels
as they have no representation in the generated sentence. In other respects, however,
the transformation from AMR graphs to suitable trees is much more challenging than
going the opposite way. For example, we have to somehow cope with the fact that AMR
graphs, in contrast to dependency trees, are unordered. Furthermore, AMR abstracts
away tense, number and voice as well as function words such as articles, pronouns and
prepositions; all this information must somehow be retrieved. Finally, the inclusion
of a language model into our generation pipeline – which is indispensable to obtain
competitive results – makes it very difficult to efficiently determine the best sequence of
transitions for a given input.

We address these challenges in various ways. For instance, we devise a set of special
transitions to establish an order on the vertices of our input. We try to compensate for
lacking syntactic information by training several maximum entropy models to estimate
this very information; this idea is formalized by introducing the concept of syntactic
annotations. To actually implement our system, we develop a novel generation algorithm
that incorporates a language model but is still sufficiently efficient.

We proceed as follows: After giving a succinct overview of previous work on AMR-
to-text generation and related tasks in Section 2, we discuss basic notation and other
preliminaries such as the AMR formalism, transition systems and maximum entropy
models in Section 3. We introduce our generator in Section 4, which constitutes the
core of this work. This section includes a detailed definition of all required transitions
as well as a thorough derivation of our generation algorithm and an explanation of the
required training procedure. In Section 5, we discuss our Java-based implementation
of the generator. Results obtained with this implementation are reported in Section 6
where we also compare our generator with other approaches. We conclude with a concise
summary of our work and an outlook on future research topics in Section 7.

2

2 Related Work

In this section, we give a short overview of previous work on AMR-related tasks, but we
restrict ourselves to only such work that is closely related to the generation of natural
language sentences from AMR. For a general introduction to AMR, we refer to Section 3.3
of this work and to Banarescu et al. (2013).

Alignments Both generation and parsing methods are often trained using an AMR
corpus, a large set of AMR graphs and corresponding reference sentences. For such
training procedures, it is useful to somehow link vertices of each AMR graph G to
corresponding words of its reference sentence s. These links are commonly referred to
as an alignment ; several methods have been proposed for automatically generating such
alignments.

The methods described by Jones et al. (2012) and Pourdamghani et al. (2014) both
bijectively convert an AMR graph G into a string sG through a simple breadth first
search and depth first search, respectively.1 Then, a string-to-string alignment between
sG and s is obtained using one of the models described in Brown et al. (1993); these
models originate from the field of machine translation and are commonly referred to
as IBM Models. The obtained alignment can then easily be converted into the desired
format by retransforming sG into G.

A fundamentally different approach is proposed by Flanigan et al. (2014), where a set
of alignment rules is defined by hand; these rules are then greedily applied in a specified
order.2 An example of such a rule is the Minus Polarity Tokens rule, which aligns the
words “no”, “not” and “non” to vertices with the label “−”; this label is used in AMR
to indicate negative polarity. The set of all rules used by this rule-based aligner can be
found in Flanigan et al. (2014).

Parsing Many approaches for parsing English sentences into AMR graphs have been
proposed. However, as the subject of this work is generation, we consider here only
the transition-based parser CAMR introduced by Wang et al. (2015).3 We consider
this specific parser because several of its transitions are either equal or inverse to the
transitions used by our generator. The idea behind CAMR is to make use of the fact that
AMR graphs and dependency trees share some structural similarities. Therefore, given
a sentence s, CAMR relies on some dependency parser to first generate the dependency
tree Ds corresponding to s. Subsequently, several transitions are applied to Ds in order
to successively turn it into the desired AMR graph G. These transitions include, for
example, deleting and renaming both vertices and edges, swapping vertices or merging
them into a single one as well as adding new edges. After each application of a transition,
the transition to be applied next is determined using a linear classifier which, in turn, is
trained with the aid of the alignment method described in Flanigan et al. (2014).

1The aligner by Pourdamghani et al. (2014) is available at isi.edu/~damghani/papers/Aligner.zip;
the aligner by Jones et al. (2012) is not publicly available.

2The aligner by Flanigan et al. (2016) is available at github.com/jflanigan/jamr.
3The CAMR parser by Wang et al. (2015) is available at github.com/c-amr/camr.

3

Generation The first system for generating English strings from AMR graphs was
published by Flanigan et al. (2016).4 The core idea of this system is to convert AMR
graphs into trees and to train a special kind of tree-to-string transducer (see Huang
et al., 2006) on these trees. To obtain rules for the transducer, the greedy rule-based
aligner of Flanigan et al. (2014) is used and several rule extraction mechanisms are tried
out. An obvious problem with this approach is that the conversion of an AMR graph
into a tree in general requires us to remove edges from it; the information encoded by
these edges is therefore lost.

Song et al. (2016) treat AMR generation as a variant of the traveling salesman problem
(TSP).5 Input AMR graphs are first partitioned into several disjoint subgraphs and
for each subgraph, a corresponding English phrase is determined using a set of rules
extracted from a training set. Afterwards, an order among all subgraphs is specified.
To this end, a traveling cost for visiting one subgraph after another is learned and the
cost of each order is set to the sum of all traveling costs of adjacent subgraphs. For the
final output, the order with the lowest score is determined using a TSP solver and the
extracted phrases are concatenated in this very order.

The core idea of Pourdamghani et al. (2016) is to convert AMR graphs into strings, a
process referred to as linearization, and then train a string-to-string translation model
on the so-obtained pairs of linearized AMR graphs and corresponding sentences. For
the linearization process, a simple depth first search is performed. However, since there
is no order among vertices of an AMR graph, siblings can be visited in any order. As
it may be helpful for the string-to-string translation model if the linearized AMR graph
resembles English word order, a linear classifier is trained to decide for each pair of
sibling vertices (v1, v2) whether v1 should be visited before v2 or vice versa. The actual
string-to-string translation is then performed using a phrase-based model implemented
in Moses (Koehn et al., 2007).

Another approach that requires AMR graphs to be linearized is proposed by Konstas
et al. (2017). Their generator uses a sequence-to-sequence model built upon a long short-
term memory (LSTM) neural network architecture. As this architecture requires a large
set of training data to achieve good results, Konstas et al. (2017) use a text-to-AMR
parser to automatically annotate millions of unlabeled sentences before training their
system; the so-obtained AMR graphs are then used as additional training data.

Yet another approach is to tackle the problem of AMR generation using synchronous
node replacement grammars (Song et al., 2017). A synchronous node replacement gram-
mar is a rewriting formalism primarily defined by a set of rules that simultaneously
produce graph fragments and phrases. Through repeated application of such rules,
AMR graphs and corresponding sentences can be obtained; a sequence of rule applica-
tions is called a derivation. Given an AMR graph G, the approach of Song et al. (2017)
is to assign scores to all possible derivations which produce G and to take the sentence
produced by the highest-scoring such derivation as the output of the generator.

4The generator by Flanigan et al. (2016) is available at github.com/jflanigan/jamr/tree/Generator.
5The generator by Song et al. (2016) is available at github.com/xiaochang13/AMR-generation.

4

3 Preliminaries

3.1 Basic Notation

Set theory Let A and B be sets. We write a ∈ A if an object a is an element of A. The
cardinality of A is denoted by |A|. If A is a subset of B, we write A ⊆ B and A ⊂ B if
A 6= B. The Cartesian product of A and B, their union, intersection and difference are
written A × B, A ∪ B, A ∩ B and A \ B, respectively. For n ∈ N, the n-fold Cartesian
product of A with itself is written An. The power set of A is denoted by P(A). We
denote the empty set as ∅, the set {0, 1, 2, . . .} of natural numbers as N and N \ {0} as
N+. In an analogous manner, we write the set of integers as Z, the set of real numbers
as R, the set of nonnegative reals as R+

0 and the set of positive reals as R+. For n ∈ N,
[n] denotes the set {1, 2, . . . , n} and [n]0 denotes [n] ∪ {0}.

Binary relations Let A, B and C be sets. A binary relation between A and B is a
set R ⊆ A × B. If A = B, we call R a binary relation on A. We sometimes denote
(a, b) ∈ R as aR b. The inverse of a relation R ⊆ A×B, denoted by R−1, is the relation
{(b, a) | (a, b) ∈ R} ⊆ B × A. The domain of R is the set dom(R) = {a ∈ A | ∃b ∈ B :
(a, b) ∈ R}. For relations R1 ⊆ A×B and R2 ⊆ B × C, their composition is defined as

R1R2 = {(a, c) ∈ A× C | ∃b ∈ B : (a, b) ∈ R1 ∧ (b, c) ∈ R2} .

In the following, let R be a binary relation on A and let A′ ⊆ A. R is called irreflexive
if for all a ∈ A, (a, a) /∈ R and transitive if for all a, b, c ∈ A, (a, b) ∈ R ∧ (b, c) ∈ R ⇒
(a, c) ∈ R. The transitive closure of R, denoted by R+, is the smallest relation on A
such that R ⊆ R+ and R+ is transitive. We call a relation that is both irreflexive and
transitive a strict order. R is a total order on A′ if R is a strict order and for all a, b ∈ A′,
(a, b) ∈ R or (b, a) ∈ R. If A′ is a finite set with n elements and R is a total order on A′,
the A′-sequence induced by R is the uniquely determined sequence (a1, . . . , an) where for
all i ∈ [n− 1], (ai, ai+1) ∈ R ∩A′ ×A′.

Functions Let A, B and C be sets. We call a binary relation f between A and B a
partial function from A to B and write f : A 7→ B if for all a ∈ A, there is at most one
b ∈ B such that (a, b) ∈ f ; we also denote b by f(a). If dom(f) = A, we call f a (total)
function and write f : A→ B. We call f : A→ B a bijective function or bijection if for
all b ∈ B, there is exactly one a ∈ A such that f(a) = b. For f : A 7→ B, a ∈ A and
b ∈ B, the function f [a 7→ b] : dom(f) ∪ {a} → B is defined by

f [a 7→ b](x) =

{
b if x = a

f(x) otherwise

for all x ∈ dom(f) ∪ {a}. Let f : A 7→ B, a1, . . . , an ∈ A, b1, . . . , bn ∈ B, n ∈ N. We
write f [a1 7→ b1, . . . , an 7→ bn] as a shorthand for (. . . (f [a1 7→ b1]) . . .)[an 7→ bn]. For
f : A 7→ (B 7→ C), a1, . . . , an ∈ A, b1, . . . , bn ∈ B, c1, . . . , cn ∈ C, we write

f [a1(b1) 7→ c1, . . . , an(bn) 7→ cn]

5

as a shorthand for f [a1 7→ f(a1)[b1 7→ c1], . . . , an 7→ f(an)[bn 7→ cn]].
For g : A→ R and op ∈ {min,max}, arg opx∈A g(x) usually denotes the set

Sop = {x ∈ A | @x′ ∈ A : g(x′) ♦ g(x)} where ♦ =

{
> if op = max

< if op = min .

However, we are often just interested in one arbitrary x ∈ Sop. We therefore identify
arg opx∈A g(x) with some element of the set Sop for the rest of this work.

Formal languages An alphabet Σ is a nonempty set of distinguishable symbols.6 A
string over Σ is a finite sequence of symbols from Σ; Σ∗ denotes the set of all such
strings. The concatenation of two strings a, b ∈ Σ∗ is written a · b or ab. We abbreviate
the n-fold concatenation of the same symbol a ∈ Σ by an. Let w = (w1, . . . , wn) be
a string over some alphabet Σ with wi ∈ Σ for all i ∈ [n]. We denote wi also by
w(i). We sometimes write w1 . . . wn as an abbreviation for (w1, . . . , wn). If we are only
interested in the first m ≤ n symbols of w, we also denote w as w1:w2: . . . :wm:w′ with
w′ = (wm+1, . . . , wm). The length of w is written |w|, ε denotes the empty string. For
Σ′ ⊆ Σ, we define w \ Σ′ to be the sequence w′1 · . . . · w′n with

w′i =

{
wi if wi /∈ Σ′

ε otherwise

for all i ∈ [n], i.e. w \ Σ′ is obtained from w by removing from it all wi ∈ Σ′.
An alphabet frequently used throughout this work is the set of all English words,

hereafter denoted by ΣE. We define ΣE to contain not only all English words and word
forms, but also punctuation marks, numbers and special characters. Notwithstanding
the above definitions, we always separate symbols from ΣE by spaces. That is, we write
“the house” rather than “(the,house)” or “the · house”.

Probability theory Let Ω be a countable set. A probability measure on Ω is a function
P : P(Ω)→ [0, 1] such that P (Ω) = 1 and

P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)

for every countable sequence A1, A2, . . . of pairwise disjoint sets Ai ⊆ Ω (i.e. Ai∩Aj = ∅
for all i, j ∈ N with i 6= j). For ω ∈ Ω and A,B ⊆ Ω, we abbreviate P ({ω}) by P (ω)
and P (A ∩B) by P (A,B).

Let A,B ⊆ Ω. For P (B) 6= 0, the conditional probability of A given B is defined as

P (A | B) = P (A,B) · P (B)−1 .

For some C ⊆ Ω with P (C) 6= 0, we say that A and B are conditionally independent
given C if P (A,B | C) = P (A | C) · P (B | C). Let n ∈ N, Ai ⊆ Ω for i ∈ [n] and

6While alphabets are commonly defined as finite sets, we explicitly allow them to be of infinite size.

6

(Bi | i ∈ I) be a countable partition of Ω. We will make frequent use of the following
two identities:

P (A1, . . . , An) = P (A1, . . . , An−1) · P (An | A1, . . . , An−1) (General product rule)

P (A) =
∑

i∈I
P (A,Bi) (Law of total probability)

Let X be a countable set. A random variable is a function X : Ω→ X. For x ∈ X, we
use X = x as an abbreviation for the set {ω ∈ Ω | X(ω) = x}. Thus,

P (X = x) =
∑

ω∈Ω: X(ω)=x

P (ω) .

Throughout this work, we drop random variables X from our notation whenever they
are clear from the context, i.e. we simply write P (x) instead of P (X = x).

Let X and Y be countable sets. A probability distribution of X is a function p : X →
[0, 1] such that

∑
x∈X p(x) = 1. A conditional probability distribution of X given Y is

a function q : Y → (X → [0, 1]) such that for all y ∈ Y ,
∑

x∈X q(z)(x) = 1. We denote
q(z)(x) also by q(x | z).

3.2 Labeled Ordered Graphs

Definition 3.1 (Labeled ordered graph) Let LE and LV be two sets (edge labels and
vertex labels). A (labeled ordered) (LE , LV)-graph is a tuple G = (V,E, L,≺) where
V 6= ∅ is a finite set of vertices (or nodes), E ⊆ V × LE × V is a finite set of labeled
edges, L : V → LV is a vertex labeling and ≺ ⊆ V × V is a strict order. 4

If we are not interested in the particular sets of edge and vertex labels, we refer to a
(LE , LV)-graph simply as graph. In the following, let G = (V,E, L,≺) be a graph. For
each v ∈ V , L(v) is called the label of v and for each e = (v1, l, v2) ∈ E, l is called the
label of e. We define a walk in G to be a sequence of vertices w = (v0, . . . , vn), n ∈ N+

such that for all i ∈ [n], there is some li ∈ LE with (vi−1, li, vi) ∈ E. A cycle is a walk
(v0, . . . , vn) where v0 = vn and vi 6= vj for all other i, j ∈ [n]0 with i 6= j. We call G
cyclic if it contains at least one cycle and acyclic otherwise. For each node v ∈ V , we
denote by

inG(v) = {e ∈ E | ∃v′ ∈ V, l ∈ LE : e = (v′, l, v)}
outG(v) = {e ∈ E | ∃v′ ∈ V, l ∈ LE : e = (v, l, v′)}

the set of its incoming edges and outgoing edges, respectively. Correspondingly,

paG(v) = {v′ ∈ V | ∃l ∈ LE : (v′, l, v) ∈ E}
chG(v) = {v′ ∈ V | ∃l ∈ LE : (v, l, v′) ∈ E}

denote the set of v’s parents and children. If G is acyclic, the sets of successors and
predecessors of v are defined recursively as

succG(v) = chG(v) ∪
⋃

v′∈chG(v)

succG(v′) predG(v) = paG(v) ∪
⋃

v′∈paG(v)

predG(v′) .

7

1 : a

2 : a

3 : b

4 : c 5 : b

6 : c

α
β

α

α
β β

α

Figure 2: Graphical representation of the graph G0 = (V0, E0, L0,≺0) as described in Exam-
ple 3.3. Each node v ∈ V0 is inscribed with v :L0(v). G0|2 is framed by dashed lines.

From the above notations, we sometimes drop the subscript if the corresponding graph
is clear from the context; for example, we often simply write pa(v) and ch(v) instead of
paG(v) and chG(v). We call v ∈ V a root of G if paG(v) = ∅. If V contains exactly one
root, G is called a rooted graph; we denote this vertex by root(G). G is called a tree if
it is rooted, acyclic and |inG(v)| = 1 for all v ∈ V \ {root(G)}. We say that G is totally
ordered if for all v ∈ V , ≺ is a total order on chG(v) ∪ {v}.

Throughout this work, we often represent a graph G = (V,E,L,≺) graphically. In
such a visualization, each vertex v ∈ V is represented by an ellipse inscribed either with
L(v) or v :L(v). Each edge (v1, l, v2) ∈ E is represented by an arrow line connecting the
graphical representations of v1 and v2; this line is inscribed with l. We do not depict the
order ≺ in this visualization, but whenever ≺ is of relevance, we explicitly specify it.

Definition 3.2 (v-Subgraph) Let G = (V,E, L,≺) be an acyclic graph. For v ∈ V ,
the v-subgraph of G, denoted by G|v, is the graph (V ′, E′, L′,≺′) where

V ′ = succ(v) ∪ {v} E′ = {(v1, l, v2) ∈ E | v1, v2 ∈ V ′}
L′ = {(v, l) ∈ L | v ∈ V ′} ≺′ = {(v1, v2) ∈≺ | v1, v2 ∈ V ′} . 4

Example 3.3 Let LE = {α, β} be a set of edge labels and LV = {a, b, c} be a set of
vertex labels. The (LE , LV)-graph G0 = (V0, E0, L0,≺0) where

V0 = {1, 2, 3, 4, 5, 6}
E0 = {(1, α, 2), (1, β, 3), (3, α, 2), (2, α, 4), (2, β, 4), (2, β, 5), (6, α, 5)}
L0 = {(1, a), (2, a), (3, b), (4, c), (5, b), (6, c)}
≺0 = {(v1, v2) ∈ V0 × V0 | v1 <N v2}

is acyclic and totally ordered, but not rooted. The 2-subgraph of G0 is the rooted graph
G0|2 = ({2, 4, 5}, {(2, α, 4), (2, β, 4), (2, β, 5)}, {(2, a), (4, c), (5, b)}, {(2, 4), (2, 5), (4, 5)}).
A graphical representation of both G0 and G0|2 can be found in Figure 2. 4

8

Definition 3.4 (Yield) Let G = (V,E,L,≺) be an acyclic and totally ordered graph.
Furthermore, let Σ be an alphabet, V ′ be a set with V ⊆ V ′ and ρ : V ′ → Σ∗. The
function yield(G,ρ) : V → Σ∗ is defined for each v ∈ V as

yield(G,ρ)(v) := yield(G,ρ)(c1)·. . .·yield(G,ρ)(ck)·ρ(v)·yield(G,ρ)(ck+1)·. . .·yield(G,ρ)(c|ch(v)|)

where (c1, . . . , ck, v, ck+1, . . . , c|ch(v)|), k ∈ [|ch(v)|]0 is the (ch(v)∪{v})-sequence induced
by ≺. If G is rooted, we write yieldρ(G) as a shorthand for yield(G,ρ)(root(G)). 4

Let G = (V,E,L,≺) and ρ be defined as above. We observe that for all u, v, w ∈ V , if
u is a successor of v and the term ρ(w) occurs in yieldρ(G) between the terms ρ(u) and
ρ(v), then w must also be a successor of v; in analogy to a similar property studied in
the context of dependency trees (see Nivre, 2008), we refer to this property of yield as
projectivity.

Example 3.5 Let Σ0 = {x, y, z} and let ρ0 = {(1, x), (2, y), (3, x), (4, z), (5, x), (6, y)}.
We consider the graph G0 = (V0, E0, L0,≺0) defined in Example 3.3. All of the following
statements are true:

yield(G0,ρ0)(2) = ρ0(2) · ρ0(4) · ρ0(5) = yzx

yield(G0,ρ0)(3) = yield(G0,ρ0)(2) · ρ0(3) = yzx · x
yield(G0,ρ0)(1) = ρ0(1) · yield(G0,ρ0)(2) · yield(G0,ρ0)(3) = x · yzx · yzxx
yield(G0,L0)(6) = L0(5) · L0(6) = bc . 4

Definition 3.6 (Bottom-up traversal) Let G = (V,E, L,≺) be an acyclic graph. We
call a sequence of vertices s ∈ V ∗ a bottom-up traversal of G if there is some total order l
on V such that for all v ∈ V and v′ ∈ chG(v) it holds that v′lv and s is the V -sequence
induced by l. 4

Example 3.7 We consider once more the graph G0 = (V0, E0, L0,≺0) defined in Ex-
ample 3.3. The sequences

s1 = (4, 5, 6, 2, 3, 1) s2 = (4, 5, 2, 3, 1, 6) s3 = (5, 4, 2, 6, 3, 1)

are bottom-up traversals of G0. In contrast, (4, 5, 6, 3, 2, 1) is not a bottom-up traversal
of G0 because the corresponding order l = {(4, 5), (5, 6), (6, 3), (3, 2), (2, 1)}+ does not
contain the tuple (2, 3) although 2 ∈ chG0(3). 4

3.3 Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a semantic representation language that
encodes the meaning of a sentence as a rooted, acyclic graph (Banarescu et al., 2013).
To this end, AMR makes use of PropBank framesets (Kingsbury and Palmer, 2002;
Palmer et al., 2005). A PropBank frameset mainly consists of

1. a frameset id (“want-01”, “see-01”, “develop-02”, . . .) which in turn consists of a
verb and a number; the latter is used to differentiate between several meanings of
the same verb and also referred to as the sense tag of the frameset id;

9

want-01 sleep-01 develop-02

ARG0: wanter ARG0: sleeper ARG0: creator
ARG1: thing wanted ARG1: cognate object ARG1: thing created
ARG2: beneficiary ARG2: source
ARG3: in-exchange-for ARG3: benefactive
ARG4: from

Table 1: PropBank framesets corresponding to the concepts want-01, sleep-01 and develop-02,
extracted from propbank.github.io. For each frameset, the specific meanings of the corre-
sponding semantic roles are briefly described.

2. a list of associated semantic roles (ARG0 – ARG5). These roles have no intrin-
sic meaning but are defined on a verb-by-verb basis; for many verbs, only some
semantic roles are defined. The meanings of all semantic roles specified for the
frameset ids “want-01”, “see-01” and “develop-02” can be seen in Table 1.

The key components of an AMR graph are concepts, represented by the set of possible
vertex labels, instances of these concepts, represented by actual vertices, and relations
between these instances, represented by edges. For example, an edge e = (v0,ARG0, v1)
connecting two nodes v0 and v1 with labels “sleep-01” and “boy”, respectively, would
indicate that an instance of the concept “boy”, i.e. an actual boy, is the zeroth argument
of an instance of the frameset “sleep-01”, or in other words, he is the person who is
sleeping. A simple graph consisting only of the nodes v0 and v1 and the edge e can thus
be seen as a semantic representation of the phrase “a boy sleeps”.

The set of all AMR concepts, hereafter denoted by LC, consists of English words,
numbers, names, PropBank framesets and so-called special keywords. The latter include
logical conjunctions (“and”, “or”, ...), grammatical mood indicators (“interrogative”,
“imperative”, ...), polarity (“−”, “+”), quantities (“monetary-quantity”, “distance-
quantity”, ...) and special entity types (“rate-entity”, “date-entity”, ...). For further
details on the meaning of these keywords and a complete list thereof, we refer to AMR
Specification 1.2.2.7

Following Banarescu et al. (2013), we can roughly divide the set of possible relation
labels, hereafter denoted by LR, into five categories:

1. PropBank semantic roles (ARG0 – ARG5), also referred to as core roles;

2. General semantic relations (location, cause, purpose, manner, topic, time, dura-
tion, direction, instrument, accompanier, age, frequency, name, . . .);

3. Relations for quantities (quant, unit, scale, . . .);

4. Relations for date-entities (day, month, year, weekday, century, era, quarter, sea-
son, timezone, . . .);

5. Relations for enumerations and listings (OPi, i ∈ N).

7AMR Specification 1.2.2 can be found at amr.isi.edu/language.html.

10

woman

attract-01

ARG0-of

an attractive woman
the attractive women

there is an attractive woman
the woman who attracts

(a)

think-01

I this −

ARG0 ARG1 polarity

this is not what I think
this is not my thought

this was not a thought of mine
these were not my thoughts

(b)

live-01

he city

ARG0 location

he lives in a city
he is living in the city

his life in the city
he lived in the city

(c)

Figure 3: Graphical representation of three exemplary AMR graphs; each vertex is inscribed
with its label. Below each AMR graph, some of its realizations are shown.

For each relation r from this list, the corresponding inverse relation, denoted by r-of, is
also included in LR; it is sometimes necessary to exchange a relation by its inverse in
order to make the corresponding AMR graph rooted. We define for all r ∈ LR:

r−1 =

{
r′ if r = r′-of for some r′ ∈ LR

r-of otherwise.

To give an example, ARG0−1 equals ARG0-of and purpose-of−1 equals purpose. For a
complete list of all possible relation labels, we again refer to AMR Specification 1.2.2.

Definition 3.8 (AMR graph) An AMR graph is a rooted, acyclic (LR, LC)-graph
G = (V,E, L,≺) with ≺= ∅.8 The set of all AMR graphs is denoted by GAMR. 4

Given an AMR graph G, we call every sentence whose meaning is represented by G a
realization of G. An important goal of AMR is to assign the same graph to semantically
equal sentences, even if they differ syntactically. To this end, words are mapped to Prop-
Bank framesets whenever possible; this applies not only to verbs, but also to other parts
of speech (POS) such as nouns and adjectives. Examples of this are shown in the three
AMR graphs depicted in Figure 3 where the words “attractive”, “thought” and “life”
are represented by the framesets “attract-01”, “think-01” and “live-01”, respectively.

Parts of speech are by no means the only information that is not represented in AMR
graphs. As can be seen in Figure 3c, prepositions such as “in”, “to” and “for” have no
direct representation in AMR but are instead encoded through relation labels such as
“location”, “direction” and “purpose”. Other limitations of AMR include that in general,
neither definiteness nor grammatical number (see Figure 3a) nor tense (Figure 3b and 3c)
of a sentence can directly be represented by its AMR graph. However, it is possible to
explicitly include some of this information through special relations and concepts. To
give an example, the grammatical number of a noun may be indicated by using the

8Note that this definition differs slightly from the format introduced by Banarescu et al. (2013) where
only leaf nodes have labels assigned.

11

1 : want-01

2 : person

3 : sleep-01

4 : develop-02

ARG0
ARG1

ARG0

ARG0-of

Figure 4: Graphical representation of the AMR graph G1 introduced in Example 3.9

relation “quant” in combination with either a numerical value or an English word like
“many”, “few” or “some”.

Example 3.9 The meaning of the sentence “The developer wants to sleep” can be
represented by the AMR graph G1 = ({1, 2, 3, 4}, E1, L1, ∅) with

E1 = {(1,ARG0, 2), (1,ARG1, 3), (3,ARG0, 2), (2,ARG0-of, 4)}
L1 = {(1,want-01), (2, person), (3, sleep-01), (4,develop-02)} .

A graphical representation of G1 can be seen in Figure 4. The required PropBank
framesets along with their roles are shown in Table 1. Note that the noun “developer” is
represented by a combination of the English word “person” and the PropBank frameset
“develop-02”. Unlike the examples shown in Figure 3, G1 is not a tree as the node labeled
“person” is the zeroth argument to instances of both “want-01” and “sleep-01“. 4

3.3.1 Generation and Parsing

Common tasks with regard to AMR involve parsing, the problem of finding the AMR
graph corresponding to a sentence, and the inverse problem of generation, i.e. finding a
good natural-language realization of a given AMR graph.

Definition 3.10 (Generator) A function g : GAMR → Σ∗E is called a generator. Given
a generator g and an AMR graph G ∈ GAMR, we call g(G) the sentence generated from
G by g or the realization of G according to g. 4

Definition 3.11 (Parser) A function p : Σ∗E → GAMR is called a parser. Given a
parser p and a sentence w ∈ Σ∗E, we call p(w) the parse of w according to p. 4

While according to the above definition, any function that maps English sentences to
AMR graphs is called a parser, one would ideally like to find a parser that assigns to each
English sentence w the AMR graph Ĝ that best represents its meaning. As determining
this unique AMR graph given an English sentence is an exceedingly difficult task, one is
also interested in finding parsers that assign to each sentence w an AMR graph G that
is at least roughly equal to Ĝ. In order to be able to evaluate the quality of a parser, Cai
and Knight (2013) define the semantic match (Smatch) metric which, given one or more

12

pairs of graphs (Ĝi, Gi), i ∈ [n] for some n ∈ N, measures how similar all related graphs
Ĝi and Gi are and aggregates these similarity values to a cumulative score ranging from
0 to 1. Given a sequence C = (G1, w1), . . . , (Gn, wn) of AMR graphs and corresponding
sentences, Smatch can be used to automatically compare AMR parsers by calculating

score(p) = Smatch((G1, p(w1)), . . . , (Gn, p(wn)))

for each parser p and comparing the scores of all parsers. Details on how exactly the
Smatch score can be calculated are beyond the scope of this work; we refer to Cai and
Knight (2013) for an in-depth explanation.

Of course, the very same need for an evaluation metric arises when dealing with
generation from AMR graphs: We require some way to measure the quality of generators
in order to make comparisons between them. However, it is considerably more complex
to evaluate a generator than a parser because given an AMR graph G, there is not
necessarily just a single sentence ŵ that corresponds to G; as the examples in Figure 3
show, there may be several equally good realizations of G.

The most common approach to the problem of evaluating generators is to make use of
the bilingual evaluation understudy (Bleu) score (Papineni et al., 2002) that originates
from the field of machine translation. Given a candidate sentence w and a reference
sentence ŵ, the basic idea of Bleu is to count the number of matching n-grams (i.e.
contiguous phrases consisting of n words) between w and ŵ.9 This number is then
divided by the total number of n-grams in the candidate sentence w. Typically, this
computation is done not just for one but for several values of n and the results are
averaged subsequently; a common choice is n = 1, .. ., 4. Some modifications such as
clipping the count of candidate n-gram matches must be made in order to make the
resulting score more meaningful; we will, however, not discuss these modifications here
and refer to Papineni et al. (2002) for further details.

Just as Smatch, Bleu can be extended to compute a cumulative score ranging from
0 to 1 and measuring the pairwise similarity of each sentence pair (ŵi, wi), i ∈ [n]
contained within a sequence of n ∈ N sentence pairs. This allows us to compare a set of
generators given a sequence C = (G1, w1), . . . , (Gn, wn) of AMR graphs Gi ∈ GAMR and
corresponding realizations wi ∈ Σ∗E by calculating

score(g) = Bleu((w1, g(G1)), . . . , (wn, G(wn)))

for each generator g. A common modification to the above definition of Bleu is to scale
the result by some factor s ∈ N+, resulting in the total score ranging from 0 to s; the
usual choice in the context of AMR generation is s = 100. Also, wi and g(Gi) are often
not directly used to compute the Bleu score but are converted to lower case beforehand.
We refer to the so-obtained score as the case insensitive Bleu score.

Especially in the scenario of AMR generation where given a graph G, there are often
many – and equally good – realizations that may differ significantly with regards to

9The Bleu score is actually designed to support several reference sentences ŵ1, . . . , ŵk. While this might
sound useful to our application scenario, all currently published AMR corpora unfortunately feature
only a single realization per graph (see Section 3.3.2).

13

the choice of words and syntactic structure, even scores well below the maximum do
not necessarily imply that a generator performs poorly. Consider, for example, the
lowercased sentence pair

ŵ = the boys couldn’t close their eyes

w = it is not possible for the boy to close his eyes

where ŵ serves as a reference sentence and w is the output of a generator. Although
both sentences are equally good realizations of the AMR graph shown in Figure 1a, they
have only three common unigrams (“the”, “close”, “eyes”) and not a single common
n-gram for n ∈ {2, 3, 4}, resulting in a very low score. As this example demonstrates,
the Bleu score of a single generator would scarcely be meaningful. Nevertheless, it is an
established baseline for relative judgments in comparison with other generators.

3.3.2 Corpora

As we have seen in the previous section, the evaluation of parsers and generators using
Smatch or Bleu requires a sequence of AMR graphs along with reference realizations;
we refer to such a sequence as an AMR corpus.

Definition 3.12 (AMR corpus) A sequence C = ((G1, w1), . . . , (Gn, wn)), n ∈ N where
Gi ∈ GAMR and wi ∈ Σ∗E for all i ∈ [n] is called an AMR corpus. We refer to n as the
size of C and to each tuple (Gi, wi), i ∈ [n] as an element of C. 4

We often refer to an AMR corpus simply as corpus. Of course, AMR corpora are
not only useful for evaluation of parsers and generators, but as well for training them.
However, it is essential to not use the same data for both training and evaluation because
obviously, we want a generator to perform well not only for inputs that it has already
seen during training, but also for previously unknown graphs. Therefore, corpora are
usually divided into several disjoint subcorpora: a sequence of training data used to train
the parser or generator, a sequence of development data used e.g. for hyperparameter
optimization, and a sequence of test data on which the quality of the chosen approach
can be evaluated.

As AMR is a relatively new research topic, both the number of corpora and the num-
ber of graphs contained within these corpora is rather low compared to the number of
available data for syntactic annotations like constituency trees and dependency trees.
Importantly, all currently released AMR corpora consist only of AMR graphs with ex-
actly one reference sentence per graph. Also, there is no information included with
regards to how vertices and edges of the contained AMR graphs correspond to words of
their realizations, i.e. no alignment between graphs and reference sentences is given.

An overview of some AMR corpora is given in Table 2. As its name suggests, the
corpus The Little Price contains AMR graphs encoding the meaning of each sentence in
the novel of the same name by Antoine de Saint-Exupéry. The Bio AMR corpus consists
mostly of semantic annotations for cancer-related research papers. Both corpora released
by the Linguistic Data Consortium (LDC), LDC2014T12 and LDC2015E86, contain

14

Corpus Total Size Size (Train / Dev / Test) Availability

The Little Prince v1.6 1, 562 1, 274 / 145 / 142 general releasea

Bio AMR v0.8 6, 452 5, 452 / 500 / 500 general releasea

LDC2014T12 13, 051 10, 313 / 1, 368 / 1, 371 general releaseb

LDC2015E86 19, 572 16, 833 / 1, 368 / 1, 371 not publicly availablec

Table 2: Overview of currently released AMR corpora. For each corpus, the total number of
contained AMR graphs is listed along with the sizes of the training, development and test sets.

aThe general releases of both The Little Prince v1.6 and Bio AMR v0.8 are available at amr.isi.edu/
download.html.

bThe general release of LDC2014T12 is available at catalog.ldc.upenn.edu/LDC2014T12.
cThe release of LDC2015E86 is limited to participants of DeepExplorationandFilteringofText (DEFT).

AMR graphs for English sentences obtained from various newswires, discussion forums
and television transcripts.10 The latter corpus is an extension of the former, containing
the same development and test data but several additional AMR graphs for training.

3.4 Dependency Trees

An established way to model the syntactic structure of a sentence is through so-called
dependencies between its words (Tesnière, 1959; Nivre, 2008). A dependency consists
of a head, a dependent and a relation between them. While both the head and the
dependent of a dependency are simply words of the analyzed sentence, their relation is
usually described by a label taken from some set LD of dependency labels.11 To give an
example, consider once more the sentence “The developer wants to sleep”. The fact that
“developer” is the nominal subject corresponding to the verb “wants” can be modeled
through a dependency with head “wants”, dependent “developer” and label “nsubj”.

The main verb of a sentence is typically chosen to be its head, i.e. it is the only word
that is not a dependent of any other word. As dependency relations are asymmetric and
every word is the dependent of at most one head, the set of all dependencies within a
sentence w can be viewed as a tree whose nodes correspond to the sentence’s words and
whose root is the main verb of w.

Definition 3.13 (Dependency tree) A (LD,ΣE)-graph G = (V,E, L,≺) is called a
dependency tree if it is a totally ordered tree. The set of all dependency trees is denoted
by GDEP. 4

Let w ∈ Σ∗E be a sentence and G = (V,E, L,≺) be a dependency tree. We call G a
dependency tree for w if there is some bijection b : V → [|w|] such that for all v, v′ ∈ V
and i ∈ [|w|], it holds that b(v) = i⇒ L(v) = w(i) and v ≺ v′ ⇔ b(v) < b(v′).

10Further details on the genres and contents of the listed corpora can be found at amr.isi.edu/

download.html.
11A list of all dependency labels used throughout this work along with their meanings can be found at

universaldependencies.org/u/dep.

15

Example 3.14 We consider the graph G2 = ({1, 2, 3, 4, 5}, E2, L2,≺2) where

E2 = {(1,nsubj, 2), (1, xcomp, 3), (2, det, 4), (3,mark, 5)}
L2 = {(1,wants), (2,developer), (3, sleep), (4,The), (5, to)}
≺2 = {(4, 2), (2, 1), (1, 5), (5, 3)}+ .

As can easily be seen, G2 is a dependency tree for the sentence “The developer wants to
sleep”; the corresponding bijection is b = {(1, 3), (2, 2), (3, 5), (4, 1), (5, 4)}. A graphical
representation of G2 can be seen in the lower half of Figure 5. 4

3.5 Bigraphs

Definition 3.15 (Aligned bigraph) Let Σ be an alphabet and let LE , LV be sets. An
(aligned) bigraph over (Σ, LE , LV) is a tuple B = (G1, G2, w,A1, A2) where

1. G1 = (V1, E1, L1,≺1) and G2 = (V2, E2, L2,≺2) are graphs with edge labels from
LE and vertex labels from LV ;

2. w = w1 . . . wn ∈ Σ∗ is a string over Σ with length n ∈ N;

3. A1 ⊆ V1 × [n] and A2 ⊆ V2 × [n] are alignments that connect vertices of G1 and
G2 with symbols of w. 4

If we are not interested in the particular sets Σ, LE and LV , we refer to a bigraph
over (Σ, LE , LV) simply as bigraph. Let B = (G1, G2, w,A1, A2) be an aligned bigraph
and Gi = (Vi, Ei, Li,≺i) for i ∈ {1, 2}. For v ∈ Vi, i ∈ {1, 2}, we denote by Ai(v) the
set {j ∈ [|w|] | (v, j) ∈ Ai} of all indices of symbols to which v is aligned. If v is only
aligned to a single symbol with index j ∈ [|w|], we sometimes identify {j} with j. That
is, we view Ai(v) as being the actual number j rather than the singleton set {j}. We
define two mappings π1

B : V1 → P(V2) and π2
B : V2 → P(V1) with

π1
B(v1) = {v2 ∈ V2 | (v1, v2) ∈ A1A

−1
2 }

π2
B(v2) = {v1 ∈ V1 | (v1, v2) ∈ A1A

−1
2 }

such that π1
B assigns to each vertex v of G1 all vertices of G2 that are aligned to at least

one symbol of w to which v is also aligned; vice versa, π2
B assigns to each vertex of G2

all vertices of G1 connected to it through some common alignment.

Example 3.16 Let G1 and G2 be defined as in Example 3.9 and 3.14, respectively.
We consider the bigraph B = (G1, G2, w,A1, A2) over (ΣE, LR ∪ LD, LC ∪ ΣE) where

w = The developer wants to sleep

A1 = {(1, 3), (2, 2), (3, 5), (4, 2)} A2 = {(1, 3), (2, 2), (3, 5), (4, 1), (5, 4)} .

A graphical representation of B is shown in Figure 5. The following statements are true:

π1
B(2) = {2} π2

B(2) = {2, 4} π2
B(5) = ∅ . 4

16

1 : want-01

2 : person

3 : sleep-01

4 : develop-02

ARG0
ARG1

ARG0

ARG0-of

The developer wants to sleep

4 : The 5 : to

2 : developer 3 : sleep

1 : wants

nsubj xcomp

det mark

G1

w

G2

Figure 5: Graphical representation of the bigraph B = (G1, G2, w,A1, A2) defined in Exam-
ple 3.16. For i ∈ {1, 2}, each node v of Gi is inscribed with v :Li(v); each alignment (u, j) ∈ Ai

is represented by a dashed arrow line connecting u and w(j).

Definition 3.17 (Span) Let B = (G1, G2, w,A1, A2) be a bigraph, i ∈ {1, 2} and let
Gi = (Vi, Ei, Li,≺i) be an acyclic graph. The function spaniB : Vi 7→ P({1, . . . , |w|}) is
defined inductively for all v ∈ Vi as

spaniB(v) = Ai(v) ∪
⋃

v′∈chGi
(v)

spaniB(v′) . 4

Example 3.18 We consider once more the bigraph B = (G1, G2, w,A1, A2) shown in
Figure 5. The following holds true:

span1
B(1) = {3} ∪ span1

B(2) ∪ span1
B(3) = {2, 3, 5}

span2
B(3) = {5} ∪ span2

B(5) = {4, 5} . 4

3.6 Transition Systems

The key idea of this work is to define several actions – such as the deletion, merging and
reordering of edges and vertices – to transform an AMR graph G into a tree structure.
This structure is then turned into a realization of G through application of the yield
function introduced in Definition 3.4. To embed the different kinds of required actions
into a unified framework, we use the notation of transition systems as introduced in

17

Nivre (2008), but we extend the definition found therein by allowing polymorphic input
and output and introducing the concept of a finalization function.

Definition 3.19 (Transition system) Let I and O be sets (input space and output
space). A transition system for (I,O) is a tuple S = (C, T,Ct, cs, cf) where

1. C is a set of configurations (also called states);

2. T is a set of transitions, each of which is a partial function t : C 7→ C;

3. Ct ⊆ C is a set of terminal configurations;

4. cs : I → C is an initialization function that maps each input from the set I to an
initial configuration;

5. cf : C 7→ O is a finalization function that maps some configurations to an output
from the set O.

Let S = (C, T,Ct, cs, cf) be a transition system for (I,O) and let I ∈ I be some input.
A partial transition sequence for I in S is a sequence of transitions (t1, . . . , tn) ∈ T ∗,
n ∈ N+ where

ti−1(. . . t1(cs(I)) . . .) ∈ dom(ti)

for all i ∈ [n]. Let τ = (t1, . . . , tn) be a partial transition sequence for I in S. We denote
by τ(I) the configuration obtained from applying the transitions t1, . . . , tn to cs(I), i.e.

τ(I) = tn(. . . t1(cs(I)) . . .) .

If τ(I) ∈ Ct ∩ dom(cf), we call (t1, . . . , tn) a terminating transition sequence or simply
a transition sequence. The output of a terminating transition sequence τ with input I is
then defined as out(τ, I) = cf (τ(I)). The set of all terminating transition sequences for
I in S is denoted by T (S, I). 4

3.7 Language Modeling

A common way to improve results in natural language generation from AMR graphs
is to judge each candidate realization based on two criteria: Firstly, how well does it
transfer the meaning encoded by the graph? Secondly, how well does it fit into the target
language? Of course, the second question can be answered regardless of the underlying
graph. This is typically done using a language model that assigns a probability to each
sentence of the target language.

Definition 3.20 (Language model) Let Σ be an alphabet. A function p : Σ∗ → [0, 1]
is called a Σ-language model if it is a probability distribution of Σ∗. 4

Let Σ be some alphabet, w = (w1, . . . , wm), m ∈ N be a string over Σ and let
P (w1, . . . , wn) denote the probability of observing this very string. The general product
rule allows us to write

P (w1, . . . , wm) = P (w1) · P (w2 | w1) · . . . · P (wm | w1, . . . , wm−1) .

18

A simplifying assumption often made is that the probability of a symbol wi, i ∈ [n]
occurring in w does not depend on all previously occurring symbols w1 to wi−1, but
only on a fixed number n ∈ N of previous symbols. As the first n − 1 symbols in
a sequence w do not have n previous symbols, we simply insert n − 1 start symbols
(denoted by 〈s〉) at the very left of the sequence. Under this assumption, we can rewrite

P (w1, . . . , wm) =
m∏
i=1

P (wi | wi−n, . . . , wi−1)

where wi = 〈s〉 for i ≤ 0. A language model implementing this assumption is called
an n-gram language model. The conditional probability P (wi | wi−n, . . . , wi−1) is often
approximated by a conditional probability distribution p of Σ given Σn estimated from
a natural language corpus C = (w1, . . . , wk) ∈ (Σ∗)k, k ∈ N as

p(wi | wi−n, . . . , wi−1) =
countC((wi−n, . . . , wi−1, wi))

countC((wi−n, . . . , wi−1))

where for all w ∈ Σ∗, countC(w) denotes the number of occurrences of w as a substring
within all strings in C. However, this simple approach suffers from the fact that when-
ever some sequence (wi−n, . . . , wi−1, wi) does not occur at all in C, the corresponding
estimated value of p(wi | wi−n, . . . , wi−1) and the probability assigned to all strings
containing this sequence is equal to zero; thus, a language model trained this way is
not able to handle previously unseen symbols or sequences thereof. To overcome this
problem, several smoothing methods can be applied; the underlying idea is to subtract a
small amount δ from all observed n-gram counts and to distribute it among unobserved
sequences.

Example 3.21 Let C = (the man sleeps, the man and the boy, a man) ∈ (Σ∗E)3 be an
English corpus. The conditional probability p(man | the) estimated from C is

p(man | the) =
countC(the man)

countC(the)
=

2

3
. 4

A natural language corpus commonly used to train n-gram models for the English
language is Gigaword, which consists of several million sentences obtained from various
English newswire sources. As of now, five versions of Gigaword have been released,
the first one being Gigaword v1 (LDC2003T05) and the newest one being Gigaword v5
(LDC2011T07).12

The language model used in Section 6 of this work is a 3-gram language model trained
on Gigaword v1. For smoothing, we make use of a method commonly known as Kneser-
Ney smoothing. The details of this method are beyond the scope of this work; we refer
to Kneser and Ney (1995).

12The general releases of Gigaword v1 (LDC2003T05) and Gigaword v5 (LDC2011T07) are available at
catalog.ldc.upenn.edu/ldc2003t05 and catalog.ldc.upenn.edu/ldc2011t07, respectively.

19

3.8 Maximum Entropy Modeling

Maximum entropy modeling is a concept that can be used to estimate conditional prob-
abilities given a set of training data (Berger et al., 1996). We will make frequent use of
maximum entropy models when defining our transition system in Section 4; for exam-
ple, given a configuration c and a transition t, we will use maximum entropy models to
estimate P (t | c), the probability that t is the correct transition to be applied next.

For the remainder of this section, let Y be a finite set of possible outputs and let X be
a set of contexts. We will show how for all y ∈ Y and x ∈ X , a maximum entropy model
estimates the conditional probability of y being the correct output given context x. To
this end, we use the definitions of features and maximum entropy models introduced in
Berger et al. (1996) with some slight adjustments to our special use case.

Definition 3.22 (Feature function) A function f : X × Y → R is called a feature
function or, in short, a feature. 4

Let f = (f1, . . . , fn) be a finite sequence of features fi : X × Y → R. The reason for
introducing the concept of features is that we would like to reduce each pair (x, y) ∈ X×Y
of arbitrary complexity to a real-valued vector f(x, y) = (f1(x, y), . . . , fn(x, y)) ∈ Rn. A
maximum entropy model then estimates the probability of y given x only from f(x, y);
all information contained within x and y but not represented in f(x, y) is discarded.

Example 3.23 Let X = GAMR and Y = {q, s} where given an AMR graph G, the
output q indicates that G represents a question and s indicates that G represents a
statement. A reasonable choice of feature functions could be f = (f q1 , f

s
1 , f

q
2 , f

s
2) where

fy1 ((V,E,L,≺), y′) =

{
1 if y = y′ ∧ ∃v ∈ V : L(v) = interrogative

0 otherwise

fy2 ((V,E,L,≺), y′) =

{
|V | if y = y′

0 otherwise

for all y, y′ ∈ Y and (V,E,L,≺) ∈ GAMR. That is, we try to decide upon whether G
represents a question or a statement by considering only whether it contains a vertex
with label “interrogative” and how many vertices it contains in total. 4

Definition 3.24 (Maximum entropy model) A maximum entropy model for Y and X
is a conditional probability distribution p of Y given X where

p(y | x) =
1

Zλ(x)
exp

(
n∑
i=1

λifi(x, y)

)
with f = (f1, . . . fn) being a finite sequence of features, λ = (λ1, . . . , λn) being a sequence
of real-valued parameters λi ∈ R for i ∈ [n] and

Zλ(x) =
∑
y∈Y

exp

(
n∑
i=1

λifi(x, y)

)
being a normalizing factor to ensure that p is indeed a probability distribution. 4

20

For a detailed derivation of the above definition and a discussion of the assumptions
required so that P (y | x) can be estimated by p(y | x), we refer to Berger et al. (1996).
When the sets Y and X are clear from the context, we refer to a maximum entropy model
for Y and X simply as a maximum entropy model. While the sequence of features f to
be used by a maximum entropy model must be specified by hand, the optimal parameter
vector λ can automatically be determined given a sequence of training data for which
the true output is known, i.e. a sequence C = (x1, y1), . . . , (xm, ym) ∈ (X × Y)∗. The
log likelihood of parameter λ given C can be calculated as

L(λ | C) = log

m∏
j=1

p(yj | xj) =

m∑
j=1

n∑
i=1

λifi(xj , yj)−
m∑
j=1

logZλ(xj)

and the optimal parameter vector

λ̂ = arg max
λ∈Rn

L(λ | C)

can be obtained through several numerical methods such as the Improved Iterative Scal-
ing (IIS) algorithm (Della Pietra et al., 1997). As the details of this process – which is
also referred to as training of the model – are not relevant for the design of our generator,
we again refer to Berger et al. (1996) for further details.

For the rest of this section, we discuss some convenient methods to turn various
functions into features or feature vectors. While none of the following definitions is
required for maximum entropy modeling, they simplify the notation of features used
throughout this work considerably.

It is often useful to construct features by combining some information extracted only
from X with just a single output y ∈ Y. We therefore introduce a concise notation for
features constructed in such a way. To this end, let f : X 7→ R and let Y = (y1, . . . , yn)
be some enumeration of Y. We denote by fY the sequence (fy1 , . . . fyn) where each fyi ,
i ∈ [n] is a feature function with

fyi(x, y) =

{
f(x) if y = yi

0 otherwise.

As the actual order within fY is irrelevant as long as it is used consistently, we denote
by fY the sequence of features obtained in the above way from some arbitrary but fixed
enumeration of Y.

Example 3.25 We consider once again the features f q2 and f s2 introduced in Exam-
ple 3.23. For f : GAMR → R, defined for each G = (V,E, L,≺) ∈ GAMR by f(G) = |V |,
it holds that f (q,s) = (f q2 , f

s
2). 4

Definition 3.26 (Indicator feature function) Let S be an arbitrary set. We refer to a
function s : X → P(S) where s(x) is finite for all x ∈ X as an indicator feature function
or, in short, an indicator feature. 4

21

Given a sequence (x1, . . . , xn) ∈ X n of training data, each indicator feature s : X →
P(S) can be turned into a sequence of features as follows: Let {s1, . . . , sm} =

⋃n
i=1 s(xi).

We first construct the ancillary sequence fs1 , . . . , fsm where

fsi(x) =

{
1 if si ∈ s(x)

0 otherwise

for all i ∈ [m]. On this basis, we construct the sequence of features f = fYs1 · . . . · f
Y
sm .

Definition 3.27 (Indicator feature composition) Let S1 and S2 be sets and let s1 : X →
P(S1) and s2 : X → P(S2) be indicator feature functions. The composition of s1 and s2

is the indicator feature function s1 ◦ s2 : X → P(S1 × S2) with

(s1 ◦ s2)(x) = {(a, b) ∈ S1 × S2 | a ∈ s1(x) ∧ b ∈ s2(x)} . 4

Example 3.28 Let G = (V,E,L,≺) be an AMR graph. For a maximum entropy
model to predict transitions, a reasonable set of contexts could be X = GAMR×V where
for each tuple (G′, v) ∈ X , G′ is the graph obtained from G so far through previously
applied transitions and v is the vertex to which we want to apply the next transition.
Two interesting indicator features might be s1 : X → P(LC) and s2 : X → P(LC) where
given G′ = (V,E′, L′,≺′) and v ∈ V ,

s1((G′, v)) = {L′(c) | c ∈ chG′(v)} s2((G′, v)) = {L′(p) | p ∈ paG′(v)} .

In other words, s1 and s2 assign to a context (G′, v) the set of all labels assigned to
children and parents of v in G′, respectively. The composition of s1 and s2 is the new
indicator feature function s1 ◦ s2 : X → P(LC

2) where

(s1 ◦ s2)((G′, v)) = {(L′(c), L′(p)) | c ∈ chG′(v) ∧ p ∈ paG′(v)} . 4

22

4 Transition-based Generation from AMR

We now define a transition system SAMR for (GAMR,Σ
∗
E) which we then extend to an

actual generator by assigning probabilities to its transitions. For this purpose, we pro-
ceed as follows: After introducing the concept of syntactic annotations in Section 4.1,
we define the actual transition system SAMR in Section 4.2 and derive how given a prob-
ability distribution of its transitions, a generator g : GAMR → Σ∗E can be built from it.
To this end, we first theoretically derive the optimal output ŵ of g given an AMR graph
G. As computing this optimal output is not feasible for large graphs, we then devise
an efficient algorithm to approximate ŵ. In Section 4.3, it is described how given a
corpus of AMR graphs and reference realizations, the required probability distribution
can be learned using several maximum entropy models. We discuss how postprocessing
steps can be applied to the generated sentence for further improvement of our results in
Section 4.4. Finally, we investigate in Section 4.5 how hyperparameters used throughout
the generation process can be optimized using a set of development data.

4.1 Syntactic Annotations

As we have seen in Section 3.3, a lot of – mostly syntactic – information like parts
of speech, number and tense gets lost in the text-to-AMR parsing process. As this
information would be useful for the generation of an English sentence from an AMR
graph, a key idea of this work is to annotate AMR graphs with reconstructed versions
thereof. Although the desired information is arguably not purely syntactic, we refer
to its reconstruction as a syntactic annotation. To represent syntactic annotations in
a uniform way, we define a set of syntactic annotation keys and, for each key, a set of
possible syntactic annotation values. A complete list of all syntactic annotation keys
along with possible annotation values can be found in Table 3; exemplary syntactic
annotations for vertices of an AMR graph are shown in Figure 6.13 We denote the set
of all syntactic annotation keys by Ksyn = {POS,DENOM,TENSE,NUMBER,VOICE} and for
each syntactic annotation key k ∈ Ksyn, we refer to the set of possible annotation values
as Vk. The set of all syntactic annotation values is denoted by Vsyn =

⋃
k∈Ksyn

Vk.

Definition 4.1 (Syntactic annotation) Let G = (V,E, L,≺) be a graph and let v ∈ V .
A syntactic annotation (for v) is a mapping α : Ksyn → Vsyn where for each k ∈ Ksyn, it
holds that α(k) ∈ Vk. The set of all syntactic annotations is denoted by Asyn. 4

It is important to note that syntactic annotations as introduced here are strongly
biased towards the English language. However, the underlying principle can easily be
transfered to many other natural languages by revising the sets Ksyn and Vsyn of syntactic
annotation keys and values. For example, adapting syntactic annotations to the German
language may require the introduction of an additional key CASE to reflect the German
case system and the redefinition of VDENOM to represent the set of German denominators.

13For the annotation key POS, only some exemplary values are shown in Table 3. A list of common POS
tags can be found at www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.
We use, however, only a small subset of these POS tags (see Section 4.3.2).

23

Key Values Meaning

POS {VB, NN, JJ, CC, . . . , –} The POS tag assigned to v

DENOM {the, a, –} The denominator assigned to v

TENSE {past, present, future, –} The tense assigned to v

NUMBER {singular, plural, –} The number assigned to v

VOICE {passive, active, –} The voice assigned to v

Table 3: Syntactic annotations used by our transition-based generator. For each syntactic
annotation key k ∈ Ksyn, the set of possible values Vk is given and the meaning of α(k) for some
vertex v is briefly explained.

As discussed in Section 3.3, there is often not just one reasonable syntactic annota-
tion for the nodes of an AMR graph. To account for this in our generator, we simply
consider multiple syntactic annotations per node and assign probabilities to them. For
this purpose, let G = (V,E, L,≺) be a graph and let α : Ksyn → Vsyn be a syntactic
annotation for some node v ∈ V . Furthermore, let k1, . . . , kn be some enumeration of
Ksyn. We denote by P (α | G, v) the probability of α being the correct annotation for v
given G and v. As a syntactic annotation, like any other function, is fully defined by the
values it assigns to each element of its domain, we may write

P (α | G, v) = P (α(k1), . . . , α(kn) | G, v) , (1)

i.e. the probability of α being the correct syntactic annotation for v is equal to the
joint probability of α(ki) being the correct annotation value for key ki at vertex v for all
i ∈ [n]. We note that it might be useful not to look at the syntactic annotations of all
nodes in V independently; for example, the tense assigned to a node depends to a large
extent on the tense assigned to its predecessors. However, ignoring these dependencies
allows us to handle syntactic annotations much more efficiently as we can store the
m-best syntactic annotations α1, . . . , αm for each node v ∈ V independently.14

Using the general product rule, we can transform Eq. (1) into

P (α(k1), . . . , α(kn) | G, v)

= P (α(k1) | G, v) · P (α(k2) | G, v, α(k1)) · . . . · P (α(kn) | G, v, α(k1), . . . , α(kn−1))
(2)

and as the above holds for any enumeration k1, . . . , km of Ksyn, we are free to choose

k1 = POS k2 = NUMBER k3 = DENOM k4 = VOICE k5 = TENSE .

Importantly, there are several strong dependencies between the values assigned to dif-
ferent syntactic annotation keys ki ∈ Ksyn by α. For instance, a word that is not a

14As can be seen in the original assignment (“Aufgabenstellung für die Masterarbeit”), our initial idea
was in fact to compute syntactic annotations top-down, allowing us to infer the syntactic annotation
of a node v from the annotations of its predecessors. We dismissed this idea after some preliminary
tests in which it performed poorly and instead directly integrated the determination of syntactic
annotations into our transition system.

24

1 : live-01

2 : boy 3 : city
ARG0 ARG1

α3(POS) = NN

α3(NUMBER) = singular

α3(DENOM) = a

α3(VOICE) = –

α3(TENSE) = –

α2(POS) = NN

α2(NUMBER) = plural

α2(DENOM) = the

α2(VOICE) = –

α2(TENSE) = –

α1(POS) = VB

α1(NUMBER) = –

α1(DENOM) = –

α1(VOICE) = active

α1(TENSE) = present

Figure 6: Exemplary syntactic annotations for an AMR graph; the annotations for each vertex
are written below it and surrounded by dashed lines. A reasonable realization of the graph would
be “the boys live in a city” whereas, for example, neither “the boy lives in a city” nor “the boys’
life in the city” would be consistent with the given syntactic annotation.

verb should have no tense or voice assigned to it (i.e. α(TENSE) = α(VOICE) = –) and
a plural noun can not have the article “a” as a denominator. On the other hand, it
seems reasonable to assume that, for example, the tense of a verb is independent of its
voice. In other words, α(TENSE) is conditionally independent of α(VOICE) given α(POS).
We formulate several such conditional independence assumptions, allowing us to rewrite
Eq. (2) as follows:

P (α(k1), . . . , α(kn) | G,v) = P (α(POS) | G, v) · P (α(NUMBER) | G, v, α(POS))

· P (α(DENOM) | G, v, α(POS), α(NUMBER))

· P (α(VOICE) | G, v, α(POS)) · P (α(TENSE) | G, v, α(POS)) .

(3)

Finally, we estimate the above conditional probabilities using maximum entropy models
pk for each k ∈ Ksyn and arrive at

P (α | G, v) = pPOS(α(POS) | G, v) · pNUMBER(α(NUMBER) | G, v, α(POS))

· pDENOM(α(DENOM) | G, v, α(POS), α(NUMBER))

· pVOICE(α(VOICE) | G, v, α(POS)) · pTENSE(α(TENSE) | G, v, α(POS)) .

(4)

Both the features extracted from G, v and α to obtain the maximum entropy models pk
and the training of these models is discussed in Section 4.3. As a final modification to
the above equation, we introduce weights wk ∈ R for each k ∈ Ksyn and we raise each
conditional probability pk to the wk-th power; for example, we replace pPOS(α(POS) | G, v)
by pPOS(α(POS) | G, v)wPOS . We denote the value obtained from P (α | G, v) through
introducing these weights by Pw(α | G, v). While this modification is not mathematically
justified, it allows our generator to decide how important it is that an applied transition
actually complies with the values predicted by each of the above models. We view the
weights wk as hyperparameters; how they are obtained is described in Section 4.5.

4.2 Transition System

We now define the core part of our generator, the transition system SAMR. The two
main tasks to be performed by this transition system are the restructuring of the input

25

Key Values Meaning

REAL Σ∗E The realization of v, i.e. the sequence of words that represents it
in the generated sentence

DEL {0, 1} A flag indicating whether v needs to be deleted

INS-DONE {0, 1} A flag indicating whether child insertion for v is complete

LINK V The original vertex, if v is a copy

SWAPS Z The number of times v has been swapped up (ρ(SWAPS)(v) > 0) or
down (ρ(SWAPS)(v) < 0)

INIT-CONCEPT LC The concept initially assigned to v, if it is overwritten through a
Merge transition

Table 4: Additional annotations used in the generation pipeline, assuming an AMR graph
G = (V,E,L,≺). For each annotation key k ∈ K \ Ksyn, the set of possible values Vk is given
and the meaning of ρ(k)(v) for v ∈ V is briefly explained.

AMR graph – for example by inserting and removing vertices or edges, merging multiple
vertices into a single one or changing the order among them – and the determination of
some additional information. The latter includes, among others, each node’s syntactic
annotation and its realization, i.e. a continuous sequence of words by which the node
is represented in the final output of our generator. To store all additional information
obtained for each node in a unified manner, we introduce the notion of an annotation
function that generalizes the concept of syntactic annotations. We denote by

K = Ksyn ∪ {REAL,DEL, INS-DONE, LINK, SWAPS, INIT-CONCEPT}

the set of all annotation keys. For each annotation key k ∈ K \ Ksyn, the set of corre-
sponding annotation values Vk is shown in Table 4; for syntactic annotations, we refer to
Table 3. While the meaning of some annotation keys might be unclear at this moment,
it will become clear during the discussion of SAMR. We denote by V =

⋃
k∈K Vk the set

of all possible annotation values.

Definition 4.2 (Annotation function) Let V be a set of vertices. An annotation
function for V is a function ρ : K → (V 7→ V) such that for all k ∈ K and for all
v ∈ dom(ρ(k)), it holds that ρ(k)(v) ∈ Vk. 4

To give an example, an annotation function ρ where

ρ(POS)(v1) = NN ρ(REAL)(v2) = at least

would indicate that the POS tag assigned to node v1 is NN and that the realization of
v2 is the sequence “at least”. As values are assigned to annotation keys incrementally
during the generation process through application of transitions, we allow ρ(k) to be
partial for all k ∈ K. Building up on the concept of annotation functions, we may now
define the set of configurations used by our generator.

26

Definition 4.3 (Configuration for AMR generation) A configuration for AMR gener-
ation is a tuple c = (G, σ, β, ρ) where

1. G = (V,E, L,≺) is a rooted, acyclic (LR ∪ {?}, LC ∪Σ∗E)-graph with ? /∈ LR being
a special placeholder edge label ;

2. σ = (σ1, . . . , σn) ∈ V ∗ is a finite sequence of nodes (node buffer) such that for all
v ∈ V , there is at most one i ∈ [n] with σi = v;

3. β = (β1, . . . , βm) ∈ ch(σ1)∗ is a finite sequence of nodes (child buffer) such that
for all v ∈ ch(σ1), there is at most one i ∈ [m] with βi = v;

4. ρ : K → (V ′ 7→ V) is an annotation function for some V ′ ⊇ V .

The set of all configurations for AMR generation is denoted by CAMR. 4

This definition is inspired by Wang et al. (2015) where configurations are defined as
triples consisting of a node buffer, an edge buffer and a graph. The underlying idea
is as follows: Given a configuration c ∈ CAMR, the transition to be applied next is to
modify primarily the top element of the node buffer, σ1, and, if β 6= ε, its child β1. If
this application completes the required modifications at node σ1 (or β1), the latter is
removed from σ (or β). That way, each node contained within σ and β gets processed
one at a time until they are both empty.

Definition 4.4 (SAMR) The tuple SAMR = (CAMR, TAMR, CtAMR, csAMR, cfAMR) is a
transition system for (GAMR,Σ

∗
E) where

1. TAMR = {Delete-Reentrance-(v, l) | v ∈ V, l ∈ LR}
∪ {Merge-(l, p) | l ∈ Σ∗E, p ∈ VPOS}
∪ {Swap, Delete, Keep, No-Insertion}
∪ {Realize-(w,α) | w ∈ Σ∗E, α ∈ Asyn}
∪ {Insert-∗-(w, p) | ∗ ∈ {Child,Between}, w ∈ ΣE, p ∈ {left, right}}
∪ {Reorder-(v1, . . . , vn) | vi ∈ V, i ∈ [n], n ∈ N} for any set V ;

2. CtAMR = {(G, ε, ε, ρ) ∈ CAMR} is the set of all configurations with both an empty
node buffer and an empty child buffer;

3. csAMR(G) = (G, σG, ε, ρ) for all G ∈ GAMR where σG is some bottom-up traversal
of all nodes in G and ρ = {(k, ∅) | k ∈ K};

4. cfAMR(c) = yieldρ(REAL)(G) for all c = (G, σ, β, ρ) ∈ CAMR if G = (V,E,L,≺) is
totally ordered and V ⊆ dom(ρ(REAL)); otherwise, cfAMR(c) is undefined. 4

Before looking into the transitions contained within TAMR, it is worth nothing that
there is a strong connection between some of the transitions used by our generator and
the transitions used by the CAMR parser of Wang et al. (2015). For example, Delete-
Reentrance can be seen as a counterpart of the Insert-Reentrance transition used

27

v1 : increase-01

v3 : country

v2 : consume-01

v4 : rich

ARG0

ARG1

ARG0

mod

→

v1 : increase-01

v3 : country σ̃ : country

v2 : consume-01

v4 : rich

ARG0

ARG1

ARG0

mod

Figure 7: Delete-Reentrance-(v2,ARG0) transition applied to the node with label “coun-
try”; the new node σ̃ is indicated by a dashed border. The reference realization of this partial
AMR graph is “rich countries increase their consumption”.

in CAMR and Merge, Swap and Delete transitions are used in both systems. How-
ever, other transitions such as Reorder have no direct counterpart in CAMR.

For the remainder of this section, let G = (V,E,L,≺) be an arbitrary rooted acyclic
graph. If a node v ∈ V has exactly one parent, we denote the latter by pv. As it may
be necessary to insert new nodes during the generation process, we make use of a set
Vins = {σ̃i | i ∈ N} of insertable nodes for which we demand that V ∩ Vins = ∅. For each
transition t ∈ TAMR, we formally define both the actual mapping t : CAMR 7→ CAMR

and dom(t), the set of configurations for which t is defined. In addition, we provide
a textual description and briefly justify the necessity of each class of transitions. For
the more complex transitions, exemplary applications are shown in Figures 7 to 12.
All AMR graphs and realizations shown in these examples are taken directly from the
LDC2014T12 corpus (see Section 3.3.2) to demonstrate the actual need for the corre-
sponding transitions.

The transitions used by our generator are defined as follows:

• Delete-Reentrance-(v, l) (v ∈ V , l ∈ LR)

Mapping: (G, σ1:σ, ε, ρ) 7→ (G′, σ1:σ̃:σ, ε, ρ[LINK(σ̃) = σ1]) where σ̃ ∈ Vins \ V
is some new node and

G′ = (V ∪ {σ̃}, E′, L ∪ {(σ̃, L(σ1))},≺)

E′ = E \ {(v, l, σ1)} ∪ {(v, l, σ̃)} .

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | (v, l, σ1) ∈ inG(σ1) ∧ |inG(σ1)| ≥ 2}

This transition removes the edge (v, l, σ1); it is thus only applicable if such an
edge exists and σ1 has at least one more incoming edge. As the deleted edge may
contain useful information for the generation process, a new node σ̃ is added as a

28

melt-01

sheet

ice

early

more

ARG1 time

degreeconsist-of

→

melt-01

sheet

ice

earlier

ARG1 time

consist-of

Figure 8: Merge-(earlier,JJ) transition applied to the node with label “more”. The reference
realization of this partial AMR graph is “the ice sheet has melted earlier”.

copy of σ1 and connected to v. Further handling of this copy must be decided in
separate transitions; therefore, σ̃ is inserted into the node buffer directly after σ1.

Through application of Delete-Reentrance, the input is stepwise converted
into a tree: Whenever a node σ1 has multiple incoming edges, all but one of these
edges are successively removed using this transition. An example can be seen in
Figure 7, where one of the incoming edges for the node labeled “country” gets
removed and a copy of said node is added to G; the information that σ̃ is a copy
of v3 is stored in ρ by setting ρ(LINK)(σ̃) = v3. To obtain the desired realization,
σ̃’s realization must then be set to “their” in a subsequent transition step.

• Merge-(l, p) (l ∈ Σ∗E, p ∈ VPOS)

Mapping: (G, σ1:σ, ε, ρ) 7→ (G′, σ, ε, ρ′) where G′ = (V \{σ1}, E′, L′,≺) and

E′ = E \ {(v1, l, v2) | σ1 ∈ {v1, v2}, l ∈ LR}
∪ {(pσ1 , l, v) | (σ1, l, v) ∈ E}

L′ = L \ {(σ1, L(σ1)), (pσ1 , L(pσ1))} ∪ {(pσ1 , l)}

ρ′ = ρ[POS(pσ1) 7→ p, INIT-CONCEPT(pσ1) 7→ L(pσ1)]

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | |in(σ1)| = 1 ∧ σ1 /∈ dom(ρ(DEL))}

This transition merges the top element of the node buffer, σ1, and its parent pσ1
into a single node with a new vertex label l ∈ Σ∗E and POS tag p ∈ VPOS; it is
only applicable if σ1 has exactly one incoming edge. All outgoing edges previously
connected to σ1 get reconnected to pσ1 ; the initial concept of pσ1 is preserved in
ρ(INIT-CONCEPT)(pσ1).

Whenever two nodes are realized by a mutual word or their realizations share at
least one common word, a Merge transition must be applied to fuse both nodes.
An example can be seen in Figure 8 where the nodes labeled “early” and “more”
are realized by the single word “earlier” in the reference realization.

29

v1 : possible

v2 : make-05

v3 : ‘Hallmark’ v4 : fortune

domain

ARG0 ARG1

→

v1 : possible

v2 : make-05

v3 : ‘Hallmark’ v4 : fortune

domain-of

ARG0 ARG1

Figure 9: Swap transition applied to the node labeled “make-05”; the edge label “domain” is
converted into its inverse, “domain-of”. The reference realization of this partial AMR graph is
“Hallmark could make a fortune”.

• Swap

Mapping: (G, σ1:σ, ε, ρ) 7→ ((V,E′, L,≺), pσ1 :σ1:(σ \ {pσ1}), ε, ρ′) where

ρ′ = ρ[SWAPS(σ1) 7→ S(σ1) + 1, SWAPS(pσ1) 7→ S(pσ1)− 1]

S(v) =

{
ρ(SWAPS)(v) if v ∈ dom(ρ(SWAPS))

0 otherwise

E′ = E \ ({(pσ1 , lσ1 , σ1)} ∪ {(v, l, pσ1) | v ∈ V, l ∈ LR})
∪ {(σ1, l

−1
σ1 , pσ1)} ∪ {(v, l, σ1) | (v, l, pσ1) ∈ E}

and lσ1 denotes the label of the edge connecting pσ1 and σ1.

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | |in(σ1)| = 1 ∧ σ1 /∈ dom(ρ(DEL))}

This transition swaps the top node of the node buffer, σ1, with its parent node.
It is therefore only applicable if σ1 has exactly one parent node pσ1 and there is
only one edge connecting σ1 and pσ1 . Both the direction and the label of this
single incoming edge get inverted; all parents of pσ1 get disconnected from pσ1 and
reconnected to σ1. The information that σ1 and pσ1 were swapped is stored in ρ
by incrementing ρ(SWAPS)(σ1) and decrementing ρ(SWAPS)(pσ1).

Swap transitions are required due to the projectivity of yieldρ(REAL) (see Defini-
tion 3.4). For instance, consider the AMR graph shown in Figure 9. If we assume
that the vertices labeled “possible”, “make-05”, “Hallmark” and “fortune” are re-
alized by “could”, “make”, “Hallmark” and “a fortune”, respectively, then for the
graph on the left, there is no order ≺ such that yieldρ(REAL) produces the desired
phrase “Hallmark could make a fortune”. This is the case because ρ(REAL)(v1)
cannot occur between ρ(REAL)(v3) and ρ(REAL)(v2) as v1 is not a successor of v2.
After swapping the node labeled “possible” with the node labeled “make-05”, such
an order can easily be found, namely ≺ = {(v3, v1), (v1, v2), (v2, v4)}+.

30

weigh-01

mass-quantity

1.1 kilogram

ARG3

mod poss

→

weigh-01

mass-quantity

1.1 kilogram

ARG3

mod poss

Figure 10: Delete transition applied to the node with label “mass-quantity”; deletion is
indicated by a dotted border. The reference realization of this partial AMR graph is “weighs 1.1
kilogram”.

• Delete

Mapping: (G, σ1:σ, ε, ρ) 7→ (G, σ1:σ, ε, ρ[DEL(σ1) 7→ 1, REAL(σ1) 7→ ε])

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | |in(σ1)| = 1 ∧ σ1 /∈ dom(ρ(DEL))}

Although the name may suggest otherwise, this transition does not directly remove
node σ1 from G. Instead, an application of Delete merely indicates that node σ1

is not represented in the generated sentence by setting the DEL flag to 1 and the
realization to ε. The reason for not directly deleting σ1 is that although it is not
represented in the generated sentence, it may still provide useful information with
regard to the realization and ordering of its child nodes.

An exemplary application of Delete is shown in Figure 10 where it is applied
to the node with label “mass-quantity” as the latter has no representation in the
reference realization.

• Keep

Mapping: (G, σ1:σ, ε, ρ) 7→ (G, σ1:σ, ε, ρ[DEL(σ1) 7→ 0])

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | |in(σ1)| = 1 ∧ σ1 /∈ dom(ρ(DEL))}

This transition serves as a counterpart to Delete as its application indicates that
the realization of node σ1 is a part of the generated sentence. The Keep transition
also fixes the position of σ1 with respect to its predecessors, i.e. no more Merge
or Swap transitions can be applied to it afterwards.

While Keep is not an absolutely necessary transition for our transition system
to work, including it allows us to make the generation process more efficient (see
Section 4.2.2).

31

follow-02

I −

ARG0 polarity →
follow-02

doI −

ARG0 polarity?

Figure 11: Insert-Child-(do,left) transition applied to the node with label “follow-02”. The
reference realization of this partial AMR graph is “I do not follow”.

• Realize-(w,α) (w ∈ Σ∗E, α ∈ Asyn)

Mapping: (G, σ1:σ, ε, ρ) 7→ (G, σ1:σ, ε, ρ′[REAL(σ1) 7→ w]) where ρ′ is ob-
tained from ρ by setting ρ′(k)(σ1) = α(k) for all k ∈ Ksyn.

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | ρ(DEL)(σ1) = 0 ∧ σ1 /∈ dom(ρ(REAL)) ∧
(σ1 /∈ dom(ρ(POS)) ∨ ρ(POS)(σ1) = α(POS))}

Realize-(w,α) specifies both the syntactic annotation and the realization of node
σ1, i.e. a consecutive sequence of words w by which σ1 is represented in the gener-
ated sentence. To give an example, reasonable transitions for a node labeled “pos-
sible” include Realize-(can, α1), Realize-(could, α1), Realize-(possible, α2) and
Realize-(possibility, α3) where

α1 = {(k, –) | k ∈ Ksyn}[POS 7→ MD] α2 = {(k, –) | k ∈ Ksyn}[POS 7→ JJ]

α3 = {(POS,NN), (DENOM, a), (TENSE, –), (NUMBER, singular), (VOICE, –)} .

• Insert-Child-(w, p) (w ∈ ΣE, p ∈ {left, right})

Mapping: (G, σ1:σ, ε, ρ) 7→ (G′, σ̃:σ1:σ, ε, ρ[DEL(σ̃) 7→ 0, INS-DONE(σ̃) 7→ 1])
where σ̃ ∈ Vins \ V is some new node and

G′ = (V ∪ {σ̃}, E ∪ {(σ1, ?, σ̃)}, L ∪ {(σ̃, w)},≺′)

≺′ =

{
≺ ∪ {(σ̃, σ1)} if p = left ,

≺ ∪ {(σ1, σ̃)} if p = right .

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | ρ(DEL)(σ1) = 0 ∧ σ1 ∈ dom(ρ(REAL)) ∧
σ1 /∈ dom(ρ(INS-DONE)) ∪ dom(ρ(LINK))}

This transition inserts a new node σ̃ with label w as a child of σ1; it also specifies
whether the realization of the new node is to be left or right of σ1 in the generated
sentence. A placeholder label ? is assigned to the edge connecting σ1 and σ̃; the
latter is put on top of the node buffer. To assure that the inserted node can not
have children on its own, ρ(INS-DONE)(σ̃) is set to 1.

32

Commonly inserted child nodes include prepositions, articles and auxiliary verbs;
an exemplary application of Insert-Child-(do,left) is shown in Figure 11.

• Reorder-(v1, . . . , vn) (vi ∈ V , i ∈ [n], n ∈ N)

Mapping: (G, σ1:σ, ε, ρ) 7→ (G′, σ′, (v1, . . . , vn) \ {σ1}, ρ) where

G′ = (V,E, L,≺′)

≺′ = (≺ ∪ {(vi, vi+1) | i ∈ [n− 1]})+

σ′ =

{
σ1:σ if n ≥ 2

σ otherwise.

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | {σ1} ∪ chG(σ1) = {v1, . . . , vn}
∧ (σ1 ∈ dom(ρ(INS-DONE)) ∩ dom(ρ(REAL)) ∨ ρ(DEL)(σ1) = 1)

∧ (≺ ∪ {(vi, vi+1) | i ∈ [n− 1]})+ is a strict order}

With this transition, the order among chG(σ1) ∪ {σ1} in the realization of G is
specified. After the application of Reorder, the σ1-subgraph G|σ1 is guaranteed
to be a totally ordered graph because G is processed bottom-up, i.e. for each node
v ∈ succ(σ1), some instance of Reorder has already been applied.

• Insert-Between-(w, p) (w ∈ ΣE, p ∈ {left, right})

Mapping: (G, σ1:σ, β1:β, ρ) 7→ (G′, σ′, β, ρ[REAL(σ̃) 7→ w]) where σ̃ ∈ Vins \ V
is some new node, lβ1 denotes the label of the edge connecting σ1

with β1 and

G′ = (V ∪ {σ̃}, E′, L ∪ {(σ̃, w)},≺′)

E′ = E \ {(σ1, lβ1 , β1)} ∪ {(σ1, lβ1 , σ̃), (σ̃, ?, β1)}

≺′ = (≺ ∪≺′′ ∪ {(v, σ̃) | (v, β1) ∈ ≺} ∪ {(σ̃, v) | (β1, v) ∈ ≺})+

≺′′ =

{
≺ ∪ {(σ̃, β1)} if p = left

≺ ∪ {(β1, σ̃)} if p = right
σ′ =

{
σ1:σ if β 6= ε

σ otherwise.

Domain: {(G, σ1:σ, β1:β, ρ) ∈ CAMR | ρ(DEL)(σ1) = 0}

This transition inserts a new node σ̃ with label w and realization w between σ1,
the top element of the node buffer, and β1, the top element of the child buffer;
it also specifies whether the realization of σ̃ should be left or right of β1 in the
generated sentence. As Insert-Between-(w, p) specifies both the realization and
the position of the inserted node, the latter is already completely processed right

33

exploit-01

resource

nationworld

ARG1

modposs

→

exploit-01

of

resource

nationworld

ARG1

?

modposs

Figure 12: Insert-Between-(of,left) transition applied to the nodes with labels “exploit-01”
and “resource”. The reference realization of this partial AMR graph is “the exploitation of the
world’s national resources”.

after its insertion and therefore does not need to be put onto the node buffer. The
placeholder edge label ? is assigned to the new edge connecting σ̃ and β1.

Insert-Between transitions are mostly used to insert adpositions (e.g. “of”,
“to”, “in”, “for”, “on”) between two nodes; an example can be seen in Figure 12.

• No-Insertion

Mapping: (G, σ1:σ, ε, ρ) 7→ (G, σ1:σ, ε, ρ[INS-DONE(σ1) 7→ 1])

(G, σ1:σ, β1:β, ρ) 7→ (G, σ′, β, ρ) where

σ′ =

{
σ1:σ if β 6= ε

σ otherwise.

Domain: {(G, σ1:σ, ε, ρ) ∈ CAMR | ρ(DEL)(σ1) = 0 ∧ σ1 ∈ dom(ρ(REAL)) ∧
σ1 /∈ dom(ρ(INS-DONE))} ∪ {(G, σ1:σ, β1:β, ρ) ∈ CAMR}

No-Insertion serves as counterpart to both Insert-Between and Insert-Child
and indicates that no node needs to be inserted. In case the edge buffer is not
empty, this transition removes the top element β1; otherwise, it leaves the graph
and both buffers unchanged, but sets the INS-DONE flag of σ1 to 1.

This concludes our discussion of TAMR. For each transition t ∈ TAMR, we denote by
C(t) the class to which it belongs; this class is obtained by simply removing all parameters
from t. To give a few examples, C(Insert-Between-(of, left)) = Insert-Between and
C(Merge-(earlier,JJ)) = Merge. We extend this definition to subsets T of TAMR and
denote by C(T) the set {C(t) | t ∈ T}; in particular, C(TAMR) denotes the set of all
classes of transitions used in our transition system SAMR.

34

4.2.1 Modeling

We now turn the transition system SAMR into an actual generator; in other words, we
derive from it a function g : GAMR → Σ∗E that assigns to each AMR graph G some real-
ization ŵ = g(G). Given an AMR graph G as input, our key idea is to rank all possible
transition sequences according to some score. We then take the sentence generated by
the highest scoring transition sequence to be the output of our generator:

ŵ = out(t̂, G) where t̂ = arg max
t∈T (SAMR,G)

score(t, G) . (5)

We define the score of a transition sequence t = (t1, . . . , tn), n ∈ N to be a linear
combination of a score assigned to its output by some language model, denoted by
scoreLM, and a score assigned to the individual transitions ti, i ∈ [n], denoted by scoreTS:

score(t, G) = θLM · scoreLM(out(t, G)) +

n∑
i=1

θC(ti) · scoreTS(ti, t, G) . (6)

In the above equation, θLM ∈ R+ and θτ ∈ R+, τ ∈ C(TAMR) are hyperparameters; how
they are obtained is described in Section 4.5. We may theoretically define scoreLM using
an arbitrary language model pLM (see Definition 3.20) but we explicitly assume here an
n-gram model and set

scoreLM(w) = log pLM(w) · |w|−1 (7)

where the additional factor of |w|−1 is used to compensate for the fact that n-gram
language models tend to favor sentences with only few words. We finally set

scoreTS(ti, t, G) = logP (ti | t1, . . . , ti−1, G) (8)

where P (ti | t1, . . . , ti−1, G) denotes the probability of ti being the correct transition to
be applied next when the input to the transition system is G and the previously applied
transitions are t1 to ti−1. We assume that this probability depends only on the current
configuration and not on all previously applied transitions, allowing us to simplify

P (ti | t1, . . . , ti−1, G) = P (ti | c) (9)

where c = (t1, . . . , ti−1)(G) denotes the configuration obtained from applying t1, . . . , ti−1

to csAMR(G) (see Definition 3.19). If ti does not belong to one of the classes Realize
and Reorder, we simply estimate the above conditional probabilities P (ti | c) using a
maximum entropy model, i.e. we assume

P (ti | c) = pTS(ti | c) (10)

where pTS is a maximum entropy model for TAMR and CAMR; the features used by pTS

will be described in Section 4.3 where we will also discuss the training procedure.
We now consider the two special cases of Realize and Reorder transitions. For

this purpose, let c = (G, σ1:σ, β, ρ) ∈ CAMR be a configuration for AMR generation

35

where G = (V,E, L,≺). Furthermore, let w ∈ Σ∗E and α ∈ Asyn. Using the law of total
probabilities, we derive

P (Realize-(w,α) | c) =
∑

α′∈Asyn

P (α′,Realize-(w,α) | c) (11)

where P (α′, t | c) denotes the joint probability of α′ being the right annotation for σ1

and t being the correct transition to be applied next given c. As this transition must
assign the right syntactic annotation to σ1, we argue that P (α′,Realize-(w,α) | c) = 0
for all α′ 6= α, allowing us to simplify Eq. (11) to

P (Realize-(w,α) | c) = P (α,Realize-(w,α) | c) (12)

= P (α | c) · P (Realize-(w,α) | c, α) (13)

where Eq. (13) is obtained from Eq. (12) using the general product rule.
We make the simplifying assumption that P (α | c) depends only on G and σ1, but we

replace P (α | G, σ1) with its weighted version Pw(α | G, σ1) as introduced in Section 4.1.
Furthermore, we use a maximum entropy model pReal for TAMR and CAMR × Asyn to
estimate P (t | c, α) and obtain

P (Realize-(w,α) | c) = Pw(α | G, σ1) · pReal(Realize-(w,α) | c, α) . (14)

For Reorder transitions, we use an approach similar to the one of Pourdamghani
et al. (2016). Let c and G be defined as above. Furthermore, let s = (v1, . . . , vn), n ∈ N
be a sequence of vertices from V such that c ∈ dom(Reorder-(v1, . . . , vn)). Then there
is some k ∈ [n] such that s = (v1, . . . , vk−1, σ1, vk+1, . . . , vn). Let

l = {(vi, vj) | 1 ≤ i < j ≤ n}

denote the total order such that s is the (ch(σ1) ∪ {σ1})-sequence induced by l. As
applying Reorder-(v1, . . . , vn) has the effect of adding l to ≺, we rewrite

P (Reorder-(v1, . . . , vn) | c) = P (l | c) (15)

where P (l | c) denotes the probability of l being the correct order among ch(σ1)∪{σ1}
given c. We extract from l three disjoint sets

l∗ = {(v1, v2) ∈ l | v1 = σ1 ∨ v2 = σ1}
ll = {(vi, vj) ∈ l | 1 ≤ i < j ≤ k − 1}
lr = {(vi, vj) ∈ l | k + 1 ≤ i < j ≤ n}

such that l∗ contains all tuples from l involving σ1, ll contains all tuples for which
both vertices are left of σ1 and lr contains all tuples for which both vertices are right
of σ1. We note that l = (l∗ ∪lr ∪ll)

+ and assume

P (l | c) = P (l∗,lr,ll | c) . (16)

36

Under the further assumption that the order among the vertices left of σ1 is independent
of the order among those right of σ1, we can use the general product rule to obtain

P (l | c) = P (l∗ | c) · P (lr | c,l∗) · P (ll | c,l∗) . (17)

We finally assume that firstly, the elements contained within l∗ are conditionally inde-
pendent of one another given c and that secondly, for all 1 ≤ i < j ≤ n with k /∈ {i, j},
the probability of vi occurring before vj depends only on c and the relative position of
both v1 and v2 with respect to σ1. This allows us to transform Eq. (17) into

P (l | c) =

k−1∏
i=1

P (vi l σ1 | c) ·
n∏

i=k+1

P (σ1 l vi | c)

·
k−2∏
i=1

k−1∏
j=i+1

P (vi l vj | c, vi l σ1, vj l σ1)

·
n−1∏
i=k+1

n∏
j=i+1

P (vi l vj | c, σ1 l vi, σ1 l vj) .

(18)

We note that as l is a total order, for all v, v′ ∈ ch(σ1)∪{σ1} we must either have vlv′
or v′ l v. We can thus rewrite

P (v l v′ | c) = 1− P (v′ l v | c) .

Using this identity, slightly reordering the terms from Eq. (18) and estimating all required
probabilities through maximum entropy models p∗, pl and pr, respectively, we arrive at
our final equation

P (Reorder-(v1, . . . , vn) | c)

=
k−1∏
i=1

p∗(vi l σ1 | c) ·
k−1∏
j=i+1

pl(vi l vj | c, vi l σ1, vj l σ1)

·

n∏
i=k+1

(1− p∗(vi l σ1 | c)) ·
n∏

j=i+1

pr(vi l vj | c, σ1 l vi, σ1 l vj)

 .

(19)

Like for the other classes of transitions, the details of training the maximum entropy
models from the above equation are described in Section 4.3.

4.2.2 Decoding

Unfortunately, finding the solution to Eq. (5) by simply trying all possible transition
sequences t ∈ T (SAMR, G) is far from being feasible for large AMR graphs G. Therefore,
the aim of this section is to find a good approximation w̃ of g(G) that can efficiently be
computed. We then use this approximation w̃ as the output of our generator.

37

1 2 3 4 5
Keep

Delete

Merge, Swap,
Delete-Reentrance

Realize

Insert-Child

No-Insertion Reorder

Insert-Between,
No-Insertion

Trestr TAMR \ Trestr

Figure 13: Graphical representation of the order in which transitions can be applied to a node

An obvious first approach to approximate g(G) would be to start with the initial
configuration csAMR(G) and then continuously apply the most likely transition until a
terminal configuration ct ∈ CtAMR is reached. This idea is implemented in Algorithm 1,
which is the equivalent of the parsing algorithm used by Wang et al. (2015); we will refer
to it as the greedy generation algorithm and denote the obtained terminal configuration
ct by generateGreedy(G).

Algorithm 1: Greedy generation algorithm

Input: AMR graph G = (V,E, L,≺)
Output: terminal configuration c ∈ CtAMR

1 function generateGreedy(G)
2 c← csAMR(G)
3 while c /∈ CtAMR do
4 T ∗ ← {t ∈ TAMR | c ∈ dom(t)}
5 t∗ ← arg maxt∈T ∗ P (t | c)
6 c← t∗(c)

7 return c

While this first algorithm is both extremely simple and efficient, it suffers from the
obvious problem that it does not in any way integrate the language model into the
generation process and thus approximates the best solution to Eq. (5) rather poorly.
A simple fix for this problem might be to consider for each configuration not just one,
but the n-best applicable transitions t1, . . . , tn, n ∈ N and to rerank all so-obtained
transition sequences using the language model. However, even for low values of n this
approach is unfeasible as for n > 1, the number of transition sequences to consider grows
exponentially with the number of vertices.

Yet another approach would be to directly take the language model into account at
each transition step. It is, however, not clear how a partial transition sequence or a single
transition might be scored by our language model; even more so if said transition does
not directly effect the realization of a node. Our solution to this problem stems from an
observation shown in Figure 13: The transitions in TAMR are applied to each node v of
our input graph G in a very specific order; this order can roughly be divided into five
stages (numbered 1 to 5 in Figure 13). First, Merge, Swap and Delete-Reentrance

38

city

name

‘Rome’

name

op1

Figure 14: AMR representation of Rome

transitions modify the relation between v and its predecessors (1). Afterwards, it is
decided whether v is deleted or kept; in the latter case, a realization must be determined
and child nodes may be inserted (2, 3). Irrespective of whether v was deleted, an order
among its children must be determined in the next stage (4) before finally, insertions
between v and its children are applied (5).

In accordance with these five stages, we partition the set TAMR into two disjoint
sets of consecutive transitions (denoted by Trestr and TAMR \ Trestr, respectively). We
choose this partition in such a way that the first set is restricted to transitions for
which we believe that a language model is not helpful in rating them; the second one
contains all remaining transitions. Each set can then be processed separately: In a first
processing phase, we modify the input AMR graph using only transitions from Trestr

and completely ignoring the language model. In a second phase, we run a modified
version of our generation algorithm on the output of the previous run, this time using
only transitions from TAMR \ Trestr, considering multiple possible transition sequences
for each vertex and scoring them using the language model. As indicated in Figure 13,
we set

Trestr = {t ∈ TAMR | C(t) ∈ {Delete-Reentrance,Merge,Swap,Delete,Keep}} .

The reason for this specific choice is that all these transitions are applied to a node before
its realization is determined. Therefore, it often takes several subsequent transition steps
until their effects on the generated sentence become clear; this makes it difficult to assign
language model scores to them. While this is not entirely true for the Delete transition
– which does have a direct impact on the realizations of nodes – a language model would
still hardly be useful in rating it. For an example, consider the concepts “city” and
“name” as used in Figure 14. Possible realizations of the corresponding AMR graph
include “the city with name Rome” and simply “Rome”. In most cases, we would prefer
the latter realization over the first; thus, Delete transitions should be applied to the
vertices labeled “name” and “city”. However, as both “city” and “name” are frequent
English words, it is likely that

scoreLM(the city with name Rome) > scoreLM(Rome)

and thus, the language model strongly favors applying Keep to both vertices.
For the first phase of our generation algorithm – in which only transitions from Trestr

are applied –, we slightly modify the definition of Delete and Keep transitions such

39

that the top element σ1 is removed from the node buffer whenever one of them is applied.
We denote the result of applying this modified version of the greedy generation algorithm
to some input graph G by generateGreedyrestr(G).

For the second phase of our two-phase approach, we must define how a partial tran-
sition sequence with transitions only from TAMR \ Trestr can be scored by a language
model. As a starting point towards this goal, we first introduce the concept of partial
transition functions.

Definition 4.5 (Partial transition function) Let G = (V,E, L ≺) be a rooted acyclic
graph. A partial transition function (for G) is a function b : V ∪ Vins 7→ (TAMR × [0, 1])∗

that assigns to some nodes v ∈ V ∪Vins a sequence of transitions to be applied when v is
the top element of the node buffer along with their probabilities. The set of all partial
transition functions is denoted by T par

AMR. 4

Using this notion of a partial transition function b, we derive Algorithm 2 that, given
some configuration c = (G, ε, ε, ρ) ∈ CAMR, applies to each node v of G exactly those
transitions specified by b; we refer to this algorithm as the partial generation algorithm
and denote the result of its application by generatePartial(c, b).

Algorithm 2: Partial generation algorithm

Input: configuration c = (G, ε, ε, ρ) ∈ CAMR where G = (V,E, L,≺) is rooted
and acyclic, partial transition function b ∈ T par

AMR

Output: configuration cr ∈ CAMR, the result of partially processing c with b
1 function generatePartial(c, b)
2 let σ be a bottom-up traversal of all nodes in G
3 c← (G, σ, ε, ρ)
4 while c /∈ CtAMR do
5 let c = (G′, σ1:σ′, β, ρ′)
6 if σ1 ∈ dom(b) ∧ b(σ1) 6= ε then
7 let b(σ1) = (t1, s1) · . . . · (tn, sn)
8 i← 1
9 while i ≤ n ∧ c ∈ dom(ti) do

10 c← ti(c)
11 i← i+ 1

12 b(σ1)← (ti, si) · . . . · (tn, sn)

13 else
14 c← (G′, σ′, ε, ρ′)

15 return c

The partial generation algorithm allows us to process a graph even if the required
transitions for some vertices are still unknown; it does so by simply ignoring these
vertices. However, we are still unable to actually assign language model scores to partial
transition functions. This is because we must apply cfAMR to obtain a sentence from

40

a configuration, but cfAMR can only be applied to states whose first component is a
totally ordered graph G and whose annotation function ρ assigns a realization to each
node contained within said graph; otherwise, yieldρ(REAL)(G) would not be defined. We
therefore generalize yield to a partial yield function which allows for arbitrary acyclic
graphs and partial realization functions.

Definition 4.6 (Partial yield) Let G = (V,E, L,≺) be an acyclic graph. Furthermore,
let Σ be an alphabet, V ⊆ V ′ and ρ : V ′ 7→ Σ∗. The function yieldpar

(G,ρ) : V → Σ∗ is
defined for each v ∈ V as

yieldpar
(G,ρ)(v) =

{
∗ if ≺ is a total order on ch(v) ∪ {v} and v ∈ dom(ρ)

ε otherwise.

where

∗ := yieldpar
(G,ρ)(c1) · . . . · yieldpar

(G,ρ)(ck) · ρ(v) · yieldpar
(G,ρ)(ck+1) · . . . · yieldpar

(G,ρ)(c|ch(v)|)

and (c1, . . . , ck, v, ck+1, . . . , c|ch(v)|), k ∈ [|ch(v)|]0 is the (ch(v) ∪ {v})-sequence induced
by ≺. If G is rooted, we write yieldpar

ρ (G) as a shorthand for yieldpar
(G,ρ)(root(G)). 4

From the above definition it is easy to see that yieldpar
(G,ρ)(v) behaves almost like

yield(G,ρ)(v), the only difference being that the partial yield function sets the realization
of all unprocessed nodes to ε and ignores all v′-subtrees of G|v for which no total order
among ch(v′) ∪ {v′} is specified.

We are now able to make the desired generalization of our score function so that it
is not only applicable to terminating transition sequences, but also to partial transition
functions given an initial configuration. For this purpose, let c be a configuration and b
be a partial transition function. Furthermore, let generatePartial(c, b) = (G, σ, β, ρ) and
v ∈ V . We define the partial score of b at v given c to be

scorepar(c, b, v) = θLM · scoreLM(yieldpar
(G,ρ(REAL))(v)) +

∑
v′∈dom(b)

scorepar
TS (b(v′)) (20)

where

scorepar
TS (s) =

n∑
i=1

θC(ti) · log pi

for all s = (t1, p1) · . . . · (tn, pn) ∈ (TAMR × [0, 1])∗ and for all τ ∈ C(TAMR), θτ denotes
the hyperparameter by the same name introduced in Eq. (6).

Example 4.7 We consider the partial transition function b1 : V 7→ (TAMR × [0, 1])∗

where dom(b1) = {1, 2} and

b1(1) = (Realize-(wants, a1), 0.75) · (No-Insertion, 0.8) · (Reorder-(2, 1, 3), 0.01)

· (No-Insertion, 0.9) · (Insert-Between-(to, left), 0.4)

b1(2) = (Realize-(he, a2), 0.9) · (No-Insertion, 0.95) · (Reorder-(2), 1)

a1 = {(POS,VB), (DENOM, –), (TENSE,present), (NUMBER, –), (VOICE, active)}
a2 = {(POS,PRP), (DENOM, –), (TENSE, –), (NUMBER, –), (VOICE, –)} .

41

1 : want-01

2 : he

3 : go-01

4 : he

ARG0

ARG1

ARG0

DEL 7→ 0

DEL 7→ 0

DEL 7→ 0

DEL 7→ 1

LINK 7→ 2

σ = ε β = ε
≺ = ∅

→

1 : want-01

2 : he 5 : to

3 : go-01

4 : he

ARG0 ARG1

?

ARG0

REAL 7→ toDEL 7→ 0

REAL 7→ he

INS-DONE 7→ 1

POS 7→ PRP

DENOM 7→ –

TENSE 7→ –

NUMBER 7→ –

VOICE 7→ –

DEL 7→ 0 DENOM 7→ –

REAL 7→ wants TENSE 7→ present

INS-DONE 7→ 1 NUMBER 7→ –

POS 7→ VB VOICE 7→ active

DEL 7→ 0

DEL 7→ 1

LINK 7→ 2

σ = ε β = ε
≺′ = {(2, 1), (1, 5), (5, 3)}+

Figure 15: Application of Algorithm 2 where b is the partial transition function described in
Example 4.7, c is shown on the left and the resulting configuration generatePartial(c, b) is shown
on the right.

Additionally, we consider the state c = (G, σ, β, ρ) shown in Figure 15 where G =
(V,E,L,≺) and ρ is represented as follows: For each k ∈ K and each v ∈ dom(ρ(k)), the
box directly below the graphical representation of v is inscribed with k 7→ ρ(k)(v). The
result of applying the partial generation algorithm, generatePartial(c, b) = (G′, σ′, β′, ρ′)
with G′ = (V ′, E′, L′,≺′) is shown in the right half of Figure 15. It holds that

yieldpar
ρ′(REAL)(G

′) = yieldpar
(G′,ρ′(REAL))(2) · ρ′(REAL)(1) · yieldpar

(G′,ρ′(REAL))(5)

= ρ′(REAL)(2) · ρ′(REAL)(1) · ρ′(REAL)(5) · yieldpar
(G′,ρ′(REAL))(3)

= ρ′(REAL)(2) · ρ′(REAL)(1) · ρ′(REAL)(5) · ε = he wants to .

Let θτ = 1 for all τ ∈ C(TAMR). Then

scorepar(c, b, 1) = θLM · scoreLM(he wants to) + scorepar
TS (b(1)) + scorepar

TS (b(2))

where

scorepar
TS (b(1)) = log 0.75 + log 0.8 + log 0.01 + log 0.9 + log 0.4

scorepar
TS (b(2)) = log 0.9 + log 0.95 + log 1 . 4

42

While we are now able to compute scores for partial transition sequences, it is still
unclear how a good such sequence for a given input G = (V,E, L,≺) can efficiently be
found. Our approach is to create a set of candidate partial transition functions for each
v-subgraph of G bottom-up, factoring in the language model at each step. More formally,
we successively construct a function best : V → P(T par

AMR ×R) such that for each v ∈ V ,
best(v) = {(b1, s1), . . . , (bn, sn)} contains partial transition functions b1, . . . bn that spec-
ify transitions for exactly the nodes of G|v, i.e. bi : succ(v) ∪ {v} → (TAMR × [0, 1])∗ for
all i ∈ [n]; each number si is the partial score of the corresponding partial transition
function bi. Before we give an actual algorithm to calculate best(v), we define two
important functions of which we will make use in said algorithm.

Definition 4.8 (All) The mapping all : CAMR → P(TAMR × R), defined by

all(c) = {(t, p) ∈ TAMR × R | c ∈ dom(t) ∧ p = P (t | c)}

for all c ∈ CAMR, assigns to each configuration c the set of all applicable transitions
along with their probabilities. 4

Definition 4.9 (Prune) Let A be a set, S = {(a1, p1), . . . , (am, pm)} ∈ P(A× R) be a
set, n ∈ N and r ∈ R+

0 . The set prunen(S) is defined recursively by

prunen(S) =

{
∅ if S = ∅ ∨ n = 0

{ŝ} ∪ prunen−1(S \ {ŝ}) otherwise

where ŝ = arg max(a,p)∈S p. In other words, prunen(S) is the set obtained from S by
including only the k = min(n,m) pairs (ai, pi) with the highest scores pi. We define

prune(n,r)(S) = {(a, p) ∈ prunen(S) | p ≥ pmax − r}

where pmax = max(a,p)∈S p. That is, prune(n,r)(S) is obtained from prunen(S) by retain-
ing only pairs for which the score is lower than pmax by at most r. 4

Example 4.10 Let A = {α, β, γ, δ} and S = {(α, 0.9), (β, 0.3), (γ, 0.8), (δ, 0.45)}. The
following holds true:

prunen(S) = S for n ≥ 4

prune3(S) = {(α, 0.9), (γ, 0.8), (δ, 0.45)}
prune(3, 0.15)(S) = {(α, 0.9), (γ, 0.8)} . 4

With the help of the above definitions, we can now formulate Algorithm 3 that, given
an initial state c ∈ CAMR, a node v ∈ V and a partial function best : V 7→ P(T par

AMR×R)
with succ(v) ⊆ dom(best), computes the set best(v) containing an approximation of the
best transition sequences for succ(v) ∪ {v}. We call this algorithm the best transition
sequence algorithm and refer to its output given the above input by getBest(v, c, best).
Note that this algorithm makes use of hyperparameters hi = (ni, ri) ∈ N+×R+

0 , i ∈ [5].
These tuples are used in several places for pruning the number of transitions to be
considered; the maximum size of best(v) is determined by n5.

43

Algorithm 3: Best transition sequence algorithm

Input: configuration c = (G, ε, ε, ρ) ∈ CAMR with G = (V,E,L,≺),
vertex v ∈ V with ρ(DEL)(v) = 0 and v /∈ dom(ρ(REAL)),
function best : V 7→ P(T par

AMR × R) such that succ(v) ⊆ dom(best)
Output: n5-best transition sequences for succ(v) ∪ {v}

1 function getBest(v, c,best)
2 c← (G, v, ε, ρ)
3 best(v)← ∅
4 for (treal, sreal) ∈ pruneh1(all(c)) do
5 hist← (treal, sreal)
6 creal ← treal(c)
7 repeat
8 T ∗ ← {t ∈ TAMR | creal ∈ dom(t)}
9 t∗ ← arg maxt∈T ∗ P (t | creal)

10 hist← hist · (t∗, P (t∗ | creal))
11 creal ← t∗(creal)
12 if t∗ 6= No-Insertion then
13 let creal = (G′, (σ̃, v), ε, ρ′)
14 best(σ̃)← getBest(σ̃, creal, best)
15 creal ← (G′, v, ε, ρ′)

16 until t∗ = No-Insertion
17 for (treor, sreor) ∈ pruneh2(all(creal)) do
18 hist← hist · (treor, sreor)
19 creor ← treor(creal)
20 let creor = (G′, σ, (β1, . . . , βn), ρ′)
21 b0 ← {(v,hist)}
22 best≤0(v)← {(v, {(b0, 1)})}
23 for i← 1, . . . , n do
24 ci ← (G′, σ, βi, ρ

′)
25 best≤i(v)← ∅
26 for b ∈ best≤i−1(v) do
27 for bi ∈ best(βi) do
28 for (tinsb, sinsb) ∈ pruneh3(all(creor)) do
29 bnew ← b[v 7→ b(v) · (tinsb, sinsb)] ∪ bi
30 snew ← scorepar(c, bnew, v)
31 best≤i(v)← pruneh4(best≤i(v) ∪ {(bnew, snew)})

32 best(v)← pruneh5(best(v) ∪ best≤n(v))

33 return best(v)

44

2 3 4 5
Realize

Insert-Child

No-Insertion Reorder

Insert-Between, No-Insertion

Figure 16: Representation of the order in which transitions from TAMR \ Trestr can be applied

As the best transition sequence algorithm is far more complex than the ones previously
shown, we give a more detailed explanation. For this purpose, we again consider the five
stages of processing a node shown in Figure 13; the stages relevant for Algorithm 3 are
recapped in Figure 16. Algorithm 3 processes the input node v from stage 2 to stage 5,
each time considering multiple possible transitions:

• Line 2 – 3: Configuration c is slightly modified as we are interested in the sequence
of transitions to apply when v is on top of the node buffer; best(v) is set to ∅.

• Line 4: Given c = (G, v, ε, ρ), all applicable transitions belong to the class Realize;
this follows directly from the fact that ρ(DEL)(v) = 0 and there is no realization
assigned to v. The n1-best Realize-(w,α) transitions are obtained through all(c).

• Line 5 – 6: The currently chosen Realize-(w,α) transition treal is stored in a
sequence hist and applied to c; we thereby move from stage 2 to stage 3.

• Line 7 – 16: The most likely Insert-Child transitions are greedily applied until
the best transition is No-Insertion. For each newly inserted vertex σ̃, the set
of best transition sequences best(σ̃) is determined. Through application of No-
Insertion, we move from stage 3 to stage 4.

• Line 17: Given configuration creal, only Reorder transitions can be applied; we
obtain the n2-best Reorder-(v1, . . . , vn) transitions from all(creal).

• Line 18 – 19: The current Reorder-(v1, . . . , vn) transition treor is stored in hist
and applied to creal; the final stage of processing v is reached.

• Line 22 – 31: We successively construct sets best≤i(v) ⊆ T par
AMR × R, i ∈ [n] that,

given state creor, store the best partial transition sequences for v, its children
β1, . . . , βi and their successors. Accordingly, best≤0(v) contains only transitions
previously applied to v; these transitions are inferred from hist. The set best≤i(v)
is obtained by iterating over all partial transition functions in both best≤i−1(v) and
best(βi) as well as the n3-best Insert-Between (or No-Insertion) transitions
for v and βi, computing the corresponding partial transition function bnew along
with its score and collecting the n4-best so-obtained functions. In other words, we
combine the best partial transition functions for {v} ∪

⋃i−1
j=1({βj} ∪ succ(βj)) with

the best partial transition functions for {βi} ∪ succ(βi) and the best applicable
transitions when v is on top of the node buffer and βi is on top of the child buffer.

• Line 32: For each considered Realize-(w,α) and Reorder-(v1, . . . , vn) transition,
the set best≤n(v) is added to best(v) which is then pruned to obtain only the n5-
best partial transition functions.

45

This concludes our discussion of the best transition sequence algorithm. We note that
this algorithm is currently only defined for vertices v where ρ(DEL)(v) = 0. However,
it can easily be extended to support also vertices with ρ(DEL)(v) = 1. We do not
explicitly write down this extension, but it can be derived from Algorithm 3 by simply
skipping both the realization of v and all possible insertions, i.e. only considering possible
reorderings. Whenever we refer to getBest(v, c,best) in the future, we explicitly mean
this modified version that works for each vertex v regardless of ρ(DEL)(v).

In a last step, we combine Algorithms 1 to 3 and construct Algorithm 4, our final
generation algorithm that takes as input an AMR graph G and outputs w̃, the desired
approximation of ŵ as defined in Eq. (5): We first apply the restricted version of Algo-
rithm 1 to G, resulting in a state of the form c = (G′, ε, ε, ρ). Subsequently, we compute
the sets best(v) for each node v in G′ bottom-up using Algorithm 3. Finally, Algorithm 2
is applied to c using b̂, the best partial transition function found for the root of G′. Note
that b̂ is guaranteed to assign a Realize and Reorder transition to every node of G′,
so we can apply cfAMR to the resulting configuration.

Algorithm 4: Generation algorithm

Input: AMR graph G = (V,E, L,≺)
Output: generated sentence w̃ ∈ Σ∗E

1 function generate(G)
2 c = (G′, ε, ε, ρ)← generateGreedyrestr(G)
3 let σ = (σ1, . . . , σn) be a bottom-up traversal of all nodes in G′

4 best← ∅
5 for i← 1, . . . , n do
6 best← best ∪ {(σi, getBest(σi, c,best))}

7 (b̂, ŝ)← arg max(b,s)∈best(root(G′)) s

8 ĉ← generatePartial(c, b̂)
9 w̃ ← cfAMR(ĉ)

10 return w̃

4.2.3 Complexity Analysis

We derive a theoretical upper bound for the number N(G) of operations required to
compute w̃ = generate(G) for an AMR graph G using Algorithm 4. Before we derive this
upper bound, we add several constraints to our transition system, limiting the number
of possible transitions. For example, the number of Insert-Child transitions that can
be applied to a vertex is currently unlimited, resulting in N(G) being unbounded; we
therefore set the maximum number of Insert-Child transitions per vertex to some
constant Cins ∈ N. We additionally demand that Swap is never applied to vertices
added through Delete-Reentrance transitions and, as is done in Wang et al. (2015),
that Swap can not be reversed; that is, if a Swap transition was applied to some vertex
v with parent pv, it may not be applied to pv with parent v in a subsequent step. For

46

our study of Algorithm 4, let G = (V,E,L,≺) be the input AMR graph. Furthermore,
let G′ = (V ′, E′, L′,≺′) be the graph constructed in line 2 and ĉ = (Ĝ, ε, ε, ρ̂) with
Ĝ = (V̂ , Ê, L̂, ≺̂) be the configuration obtained in line 8.

Finding a bottom-up traversal of all vertices in G′ (line 3) requires us to completely
process all nodes therein once; it therefore takes O(|V ′|) steps. Similarly, computing
cfAMR(ĉ) (line 9) requires O(|V̂ |) steps. As for each v ∈ dom(best), |best(v)| ≤ n5

where n5 is the hyperparameter introduced in Algorithm 3, finding the arg max (line 7)
requires O(n5) steps. We will see below that all these operations are negligible compared
to the number of steps required by the subroutines called in lines 2, 6 and 8. For each
of these three subroutines, we assume all operations performed therein to require only a
constant number of atomic steps and we denote the number of executed such operations
by N1, N2 and N3, respectively.

We first discuss the complexity of generateGreedyrestr(G) as called in line 2 of the
generation algorithm. As the restricted version of the greedy generation algorithm only
considers transitions from the set Trestr, we can derive

N1 ∈ O(
∑

τ∈C(Trestr)

N ′1(τ))

where for each τ ∈ C(Trestr), N
′
1(τ) is an upper bound for the number of transitions from

τ applied during the processing of G. As each Delete-Reentrance transition removes
an edge and no other transition from Trestr increases the number of edges, we can easily
derive the upper bound N ′1(Delete-Reentrance) = |E|. Similarly, each Merge tran-
sition removes a vertex and as Delete-Reentrance may add up to |E| new vertices,
we obtain the upper bound N ′1(Merge) = |V |+ |E|. For each pair of vertices, at most
one Swap transition can be applied and vertices inserted by Delete-Reentrance can
not be swapped; therefore, N ′1(Swap) = |V |2 is an upper bound for the number of
Swap transitions. Finally, we derive N ′1(Delete)+N ′1(Keep) = |V |+ |E| from the fact
that each vertex is either kept or deleted and this is decided exactly once. From these
considerations, we can conclude that N1 ∈ O(|E| + |V |2). Furthermore, we can easily
derive |V ′| ≤ |V |+ |E|.

We now consider the subroutine getBest(σi, c,best) called in line 6. For this purpose,
let Cmax = maxv∈V |chG(v)| be the maximum number of children for all nodes in G. A
straightforward analysis of the for-loops in Algorithm 3 gives

N2 ∈ O(n1 · (Cins ·Nins + n2 · (Cmax + Cins) · n4 · n5 · n3))

where the term Cins ·Nins comes from the fact that up to Cins Insert-Child transitions
may be applied and for each inserted child σ̃, routine getBest is called recursively, re-
quiring up to Nins additional operations. However, as inserted vertices have no children
of their own and Insert-Child transitions are not applicable to them, Nins is in O(n1).
Due to our assumption of Cins being a constant, we can further simplify

N2 ∈ O(n2
1 + Cmax ·

5∏
i=1

ni) .

47

We must take into account that getBest(σi, c,best) is computed once for each node
v ∈ V ′ and, as shown before, |V ′| ≤ |V | + |E|. However, for vertices σ̃ added through
Delete-Reentrance transitions, only O(n1) operations are required to compute the
set best(σ̃); the reasoning is the same as above in the case of vertices added through
Insert-Child transitions. Therefore, the number of operations required for executing
lines 5 to 6 of the generation algorithm is

N ′2 ∈ O(|V | ·N2 + |E| · n1) .

To compute generatePartial(c, b̂) as called in line 8, a constant number of transitions
needs to be applied to each vertex; the number of vertices is bounded by |V | + |E|.
Additionally, up to Cmax Insert-Between or No-Insertion transitions are applied
for each vertex with at least one child; in total, however, the number of such transitions
is also bounded by |V | + |E| as each node is at most once the top element of the child
buffer β. The resulting number of operations for the partial generation algorithm is
therefore

N3 ∈ O(|V |+ |E|) .

As the number of transitions applied is constant in the number of vertices and so is the
number of added vertices per transition, it follows directly that |V̂ | ∈ O(|V |+ |E|).

Combining all of the above considerations, we arrive at the sought-after upper bound

N(G) ∈ O(N1 +N ′2 +N3) = O(|E|+ |V | · (|V |+ n2
1 + Cmax ·

5∏
i=1

ni))

for the number of operations required by the generation algorithm with input G. As can
be seen from the above equation, this number depends tremendously on the values chosen
for hyperparameters n1 to n5. However, it is worth noting that in practice, the actual
number of required operations is often well below this upper bound. For example, the
number of Swap transitions required to process an AMR graph from one of the corpora
discussed in Section 3.3.2 is rarely higher than 3, whereas our upper bound is quadratic
in the number of vertices. We will further discuss the performance of Algorithm 4 from
a practical point of view in Section 6.

4.3 Training

The aim of this section is to describe how the maximum entropy models introduced in
Sections 4.1 and 4.2.1 can be trained given an AMR corpus C = ((G1, w1), . . . , (Gn, wn)).
We proceed as follows: As a first step, we derive in Section 4.3.1 how an AMR corpus
can be converted into the structure we use for our training process. In Section 4.3.2,
we describe how the models required to estimate the probabilities of syntactic annota-
tions can be learned. Finally, we show in Section 4.3.3 how sequences of training data
(c, t) ∈ CAMR× TAMR where t is the right transition to be applied when c is the current
configuration can be extracted from C to train the remaining maximum entropy models
required for our transition system. We also describe the sequences of features to be used
by all these models.

48

4.3.1 Preparations

Let C = ((G1, w1), . . . , (Gn, wn)) be an AMR corpus. We extend this corpus to a se-
quence Cext from which both syntactic annotations and required transition steps can
be inferred more easily. Let (G,w) ∈ GAMR × Σ∗E be some element of C and let
G = (VG, EG, LG,≺G). As a first preparation step, we convert w to lower case and
remove all punctuation from it, resulting in a new string w′ = w1 . . . wm, m ∈ N,
wi ∈ ΣE for i ∈ [m]. We then utilize a dependency parser to generate the corresponding
dependency tree D = (VD, ED, LD,≺D) as well as an alignment AD ⊆ VD× [m]. As each
vertex v ∈ VD corresponds to exactly one word of w, AD is guaranteed to be a bijective
function. Next, we use a POS tagger to annotate each word wi, i ∈ [m] with its part of
speech pi ∈ VPOS; we abbreviate the obtained sequence (w1, p1) . . . (wm, pm) by wPOS.

As a final step, we try to obtain an alignment AG ⊆ VG × [m] that links each vertex
v ∈ VG to its realization. To this end, we make use of two methods: Firstly, we use the
aligner by Pourdamghani et al. (2014) which bijectively converts AMR graphs into strings
and aligns the latter to realizations using the word alignment model described in Brown
et al. (1993); the so obtained string-to-string alignment can then easily be converted into
the desired format, resulting in the first candidate alignment Awa ⊆ VG × [m]. Secondly,
we use the rule-based greedy aligner by Flanigan et al. (2014) to obtain another candidate
alignment Arb ⊆ VG × [m]. An important difference between these two approaches is
that the aligner of Flanigan et al. (2014) aligns each vertex to a contiguous sequence of
words. In other words, for each v ∈ VG that is aligned to at least one word, there are
some k, l ∈ N such that

Arb(v) = {k, k + 1, k + 2, . . . , k + l − 1, k + l} .

This property is useful for our generator as the realization assigned to each vertex
through Realize transitions is as well a contiguous sequence of words. Therefore, we
also enforce this property upon Awa by removing from it for each vertex v all tuples (v, i)
that do not belong to the first contiguous sequence aligned to v, beginning from the left;
we denote the resulting alignment by A′wa. As it is desirable for our generator that as
many words as possible are aligned to some vertex, we construct a joint alignment A by
fusing both alignments. To this end, we take A′wa as a baseline; for every vertex that
is not aligned to any word, we adopt the alignment assigned by Arb, resulting in the
alignment

A = A′wa ∪ {(v, i) ∈ Arb | @j ∈ [m] : (v, j) ∈ A′wa} .

We further improve upon this alignment by adding a small number of handwritten
rules. For example, for unaligned vertices v ∈ VG whose concept consists of several
words separated by hyphens (such as “at-least”), we search for a contiguous sequence of
precisely those words in the reference realization. If such a subsequence wi . . . wi+j of w′

is found and none of the corresponding words is already aligned to some vertex, we add
{(v, k) | i ≤ k ≤ i+ j} to A. Also, we remove alignments to articles, auxiliary verbs and
adpositions as these words should almost always be handled through Insert-Child and
Insert-Between transitions and thereby get assigned their own, new vertices.

49

For a complete list of all handwritten alignment rules, we refer to Section 5.3.2. We
denote by AG the alignment obtained from A by applying all handwritten rules to it.
The components obtained during the preparation process can be joined together into a
bigraph B = (G,D,wPOS, AG, AD). Doing so for all elements of C results in the desired
extended corpus

Cext = ((G1, D1, w
POS
1 , AG1 , AD1), . . . , (Gn, Dn, w

POS
n , AGn , ADn))

which we require for our training process.

4.3.2 Syntactic Annotations

Throughout this section, let B = (G,D,wPOS, AG, AD) be an element of the extended cor-
pus Cext as defined above where G = (VG, EG, LG,≺G) and wPOS = (w1, p1) . . . (wm, pm).
In the following, we first derive how for each vertex v ∈ VG, the gold syntactic annotation
αv ∈ Asyn can be obtained from B and then describe how a maximum entropy model
can be trained from the resulting sequence of tuples (v, αv) ∈ VG ×Asyn.

In order to assign to some vertex v ∈ VG a meaningful syntactic annotation αv,
the latter should somehow be inferred from the words to which v is aligned; if there
are no such words, i.e. AG(v) = ∅, we ignore vertex v during the training process.
If there are multiple such words, i.e. |AG(v)| ≥ 2, and these words differ with regards
to their syntactic properties, we must somehow decide from which of them to infer
the syntactic annotation of v. We do so in a very simple way by using a function
bestPrefixB : VG × P([m]) 7→ [m] that, given a vertex v and a nonempty set of word
indices S ⊆ [m], returns the index i ∈ S such that wi has the longest common prefix
with LG(v); if multiple such indices exist, the lowest one is chosen.

Example 4.11 Let B1 = (G1, D1, w
POS
1 , AG1 , AD1) be an element of the extended corpus

Cext where G1 = (V,E,L,≺), V = {v1, v2, v3, v4} and

L = {(v1,person), (v2, develop-02), (v3, delight-01), (v4,−)}
wPOS

1 = (the, DT)(developer,NN)(is,VB)(not,RB)(delighted, JJ) .

The following statements are true:

bestPrefixB1(v2, {2, 5}) = 2 bestPrefixB1(v2, {4, 5}) = 5 bestPrefixB1(v1, {1, 2}) = 1 .

Note that the last of the above statements is true although the longest common prefix
of L(v1) with both w1 and w2 is equal to ε because index 1 is lower than 2. 4

For the syntactic annotation key POS, we consider only a subset of the POS tags
used in the Penn Treebank Project (Marcus et al., 1993).15 This subset is obtained by
aggregating POS tags whenever a distinction between them is not relevant to our use
case or can be inferred from the value assigned to some other syntactic annotation key.

15A list of all POS tags used in the Penn Treebank Project can be found at www.ling.upenn.edu/

courses/Fall_2003/ling001/penn_treebank_pos.html.

50

The function simplify : VPOS → VPOS that maps each POS tag to the simplified version we
are interested in is defined by

simplify(p) =

NN if p ∈ {NN, NNS, NNP, NNPS, FW}
VB if p ∈ {VB, VBD, VBP, VBZ}
JJ if p ∈ {JJ, JJR, JJS, RB, RBR, RBS, WRB}
p otherwise.

In order to obtain gold syntactic annotations, we will sometimes be required to check
whether a word w is close to another word from some set S ⊆ ΣE; for example, to find
out a noun’s denominator, we must check whether it has one of the words “the”, “a”
and “an” to its left. However, this word is not necessarily directly adjacent to w. We
therefore define the mapping leftBS : [m] 7→ {true, false} as

leftBS(i) =

{
true if wi−1 ∈ S ∨ (wi−2 ∈ S ∧ simplify(pi−1) = JJ)

false otherwise

so that leftBS(i) is true if and only if wi has some word from the set S to its left, possibly
with some adjective or adverb between them.

Example 4.12 We consider once again the bigraph B1 = (G1, D1, w
POS
1 , AG1 , AD1) as

introduced in Example 4.11 where

wPOS
1 = (the,DT)(developer,NN)(is,VB)(not,RB)(delighted, JJ) = (w1, p1) . . . (w5, p5) .

The statements leftB1{the, a, an}(2) and leftB1{is}(5) are both true. The first statement is true

because wi−1 = w1 ∈ {the, a, an}; the second statement is true because wi−2 = w3 ∈ {is}
and simplify(pi−1) = simplify(RB) = JJ. 4

Using the above prerequisites, we now describe how the gold syntactic annotation αv
for each vertex v ∈ VG can be obtained from B. For this purpose, let v ∈ VG be a vertex
that is aligned to at least one word, i.e. AG(v) 6= ∅, and let i = bestPrefixB(v,AG(v)).
Furthermore, let

〈be〉 = {be, am, is, are, was, were, being, been}
〈have〉 = {have, has, had, having}

be two sets containing all forms of the verbs “be” and “have”, respectively. The gold
syntactic annotation values αv(k) for all syntactic annotation keys k ∈ Ksyn can be
determined independently as follows:

• POS: We assign to v the POS tag simplify(pi); the only exception to this rule is
that when wi is a participle and has some form of “be” or “have” to its left, we
treat v like an actual verb:

αv(POS) =

{
VB if pi ∈ {VBN, VBG} ∧ leftB〈be〉∪〈have〉(i)

simplify(pi) otherwise.

51

• NUMBER: The number of v can be inferred from its non-simplified POS tag:

αv(NUMBER) =

singular if pi ∈ {NN, NNP, FW}
plural if pi ∈ {NNS, NNPS}
– otherwise.

• VOICE: To determine whether a vertex has passive voice, we check whether its
realization is a past participle that has some form of the verb “be” close to its left:

αv(VOICE) =

active if simplify(pi) = VB

passive if pi = VBN ∧ leftB〈be〉(i) = 1

– otherwise.

• TENSE: To determine the tense of a vertex, we must take into account both its
non-simplified POS tag and its left context:

αv(TENSE) =

present if pi ∈ {VBP, VBZ}
past if pi = VBD

future if pi = VB ∧ leftB{will}(i) = 1

– otherwise.

• DENOM: We devise two different approaches to assign a denominator to a vertex.
While the first approach is purely based upon the AMR graph and the reference
realization, the second one makes use of the dependency tree D. For the first
approach, we simply check whether the currently considered vertex represents a
noun and, if so, whether some article can be found close to its left:

αv(DENOM) =

the if simplify(pi) = NN ∧ leftB{the}(i)

a if simplify(pi) = NN ∧ leftB{a, an}(i)

– otherwise.

For the second approach, let D = (VD, ED, LD,≺D). We consider v′ = A−1
D (i), the

vertex of the dependency tree that corresponds to wi, and simply check whether
one of its children is an article:

αv(DENOM) =

the if ∃v′′ ∈ chD(v′) : LD(v′′) = the

a if ∃v′′ ∈ chD(v′) : LD(v′′) ∈ {a, an}
– otherwise.

An example of how gold syntactic annotations can be obtained using the above pro-
cedures can be seen in Figure 17, where the gold syntactic annotations extracted from
a POS-annotated version of the bigraph introduced in Example 3.16 are shown.

52

1 : want-01

2 : person

3 : sleep-01

4 : develop-02

ARG0
ARG1

ARG0

ARG0-of

(the, DT) (developer, NN) (wants, VBZ) (to, PRT) (sleep, VB)

4 : the 5 : to

2 : developer 3 : sleep

1 : wants

nsubj xcomp

det mark

G1

wPOS

G2

(a) Graphical representation of the bigraph B = (G1, G2, w
POS, A1, A2), a POS-annotated

version of the bigraph introduced in Example 3.16. For i ∈ {1, 2}, each node v of Gi is inscribed
with v :Li(v); each alignment (u, j) ∈ Ai is represented by a dashed arrow line connecting u
and wPOS(j).

α1

POS 7→ VB

NUMBER 7→ –

VOICE 7→ active

TENSE 7→ present

DENOM 7→ –

α2 = α4

POS 7→ NN

NUMBER 7→ singular

VOICE 7→ –

TENSE 7→ –

DENOM 7→ the

α3

POS 7→ VB

NUMBER 7→ –

VOICE 7→ active

TENSE 7→ –

DENOM 7→ –

(b) Gold syntactic annotation αi for each vertex i ∈ {1, 2, 3, 4} of graph G1 shown above

Figure 17: A bigraph and the gold syntactic annotations inferred from it

53

By extracting the correct syntactic annotation αv for each v ∈ VG and doing so for
every graph contained within our extended corpus Cext, we obtain a sequence of training
data that can be used to train the maximum entropy models pk, k ∈ Ksyn required
in Section 4.1; the only remaining task is to specify the sequence of features used by
these models. To fulfill this task, we first define a set F of feature candidates where
each feature candidate is itself a sequence of features. We then automatically select
the best working feature candidates using a greedy algorithm that works as follows:16

We start with an empty sequence of features f0 = ε and check for each of the feature
candidates f ∈ F whether and by how much adding the contained features to f0 improves
the number of vertices correctly annotated by the fully trained model on a development
data set. We then update f0 by adding to it the best performing feature candidate f̂ to
obtain f1 = f̂ :f0 and set F ← F \ {f̂}. We continue this procedure to obtain f2, . . . , fn
until either F = ∅ or no more feature candidate is found which improves the result and
we take the resulting sequence fn as the feature vector of our maximum entropy model.
Before describing how F is obtained, we require two auxiliary definitions.

Definition 4.13 (Gold parent) Let G = (V,E, L,≺) be a rooted, acyclic graph and
v ∈ V \ {root(G)}. The gold parent of v, denoted by p̂aG(v), is defined as

p̂aG(v) = arg min
v′∈paG(v)

dist(root(G), v′)

where for all v1, v2 ∈ V , dist(v1, v2) = 0 if v1 = v2 and otherwise, dist(v1, v2) denotes
the number of vertices in the shortest walk starting at v1 and ending at v2. 4

Definition 4.14 (Empirical POS tag) Let l ∈ LC be an AMR concept. The empirical
POS tag of l, denoted by pos(l), is defined as

pos(l) =

{
PROP if l is a PropBank frameset

p̂os(l) otherwise

where p̂os(l) denotes the POS tag observed most often for concept l in a set of training
data. 4

Table 5 lists the indicator features from which F is derived. Most of these features
are parametrized with a single vertex v; when computing the feature vector for some
vertex v′, we set this parameter not only to v′, but also to p̂aG(v′) and p̂aG(p̂aG(v′)), if
they exist. In other words, we extract features not only from vertex v′ itself, but also
from its gold parent and grandparent. We collect all so-obtained indicator features in
a set S = {s1, . . . , sm}, m ∈ N. The set F of feature candidates is then derived in a
one-to-one manner from the indicator features in S and all pairwise combinations si ◦sj ,
1 ≤ i < j ≤ m thereof; the details of this composition and the conversion from indicator
features to actual features can be found in Section 3.8.

16Feature selection is also performed through the training algorithm itself by setting corresponding
weights to zero. We nonetheless narrow down the choice of feature candidates to improve efficiency.

54

Indicator Feature Value

Concept(v) L(v)

ConceptS(v), S ⊆ LC A flag indicating whether L(v) ∈ S
Lemma(v) L(v) with all PropBank sense tags removed

WordNetPos(v) The most likely POS tag for Lemma(v) according to the use count
provided by WordNet (Miller, 1995; Fellbaum, 1998)

Pos(v) The POS tag assigned to v, if already determined

Number(v) The number assigned to v, if already determined

InLabel(v) If v 6= root(G), this is the label of the edge connecting p̂aG(v) and
v; otherwise, it is set to a special value ROOT

InLabelInv(v) A flag indicating whether InLabel(v) ends with -of

InLabelArg(v) A flag indicating whether InLabel(v) starts with ARG

HasChildl(v), l ∈ LC A flag indicating whether there is some v′ ∈ chG(v) with L(v′) = l

HasEdgel(v), l ∈ LR A flag indicating whether there is some v′ ∈ V such that (v, l, v′) ∈ E
OutSize(v) |chG(v)|
OutEmpty(v) A flag indicating whether |chG(v)| = 0

OutLabels(v) {l ∈ LR | ∃v′ ∈ V : (v, l, v′) ∈ E}
InLabels(v) {l ∈ LR | ∃v′ ∈ V : (v′, l, v) ∈ E}
OutLabelsPos(v) {(l, p) ∈ LR × VPOS | ∃v′ ∈ V : (v, l, v′) ∈ E ∧ pos(L(v′)) = p}
InLabelsPos(v) {(l, p) ∈ LR × VPOS | ∃v′ ∈ V : (v′, l, v) ∈ E ∧ pos(L(v′)) = p}
Children(v) {L(v′) | v′ ∈ chG(v)}
Parents(v) {L(v′) | v′ ∈ paG(v)}
OutLabelsChildren(v) {(lr, lc) ∈ LR × LC | ∃v′ ∈ V : (v, lr, v

′) ∈ E ∧ L(v′) = lc}
NonLinkChildren(v) {L(v′) | v′ ∈ chG(v) ∧ v = p̂aG(v′)}
ChildrenPos(v) {pos(L(v′)) | v′ ∈ chG(v)}
Name(v) The name assigned to v, if name ∈ OutLabels(v)

Mod(v) {L(v′) | v′ ∈ V, (v,mod, v′) ∈ E}
ModPos(v) {pos(L(v′)) | v′ ∈ V, (v,mod, v′) ∈ E}
Height(v) The height of G|v, if the latter is a tree

Depth(v) The length of the shortest path from root(G) to v

NrOfArgs(v) |{e ∈ E | ∃v′ ∈ V, i ∈ N : e = (v,ARGi, v′)}|
ArgFlags(v) {(ARGi, ∗(i)) | 1 ≤ i ≤ 5} where ∗(i) is a flag indicating whether v

has an outgoing edge labeled ARGi

ArgLinkFlags(v) {(ARGi, ∗(i)) | 1 ≤ i ≤ 5} where ∗(i) is a flag indicating whether v
has an outgoing edge (v,ARGi, v′) such that v = p̂aG(v′)

ArgOfFlags(v) {(ARGi-of, ∗(i)) | 1 ≤ i ≤ 5} where ∗(i) is a flag indicating whether
v has an incoming edge labeled ARGi-of

AllEdgeLabels {l ∈ LR | ∃v1, v2 ∈ V : (v1, l, v2) ∈ E}
AllCombinedLabels {(lr, lc) ∈ LR × LC | ∃v1, v2 ∈ V : (v1, lr, v2) ∈ E ∧ L(v2) = lc}

Table 5: Indicator features used for modeling the probability of syntactic annotations given
an AMR graph G = (V,E,L,≺). For v ∈ V and l ∈ LC, p̂aG(v) denotes v’s gold parent and
pos(l) denotes the empirical POS tag of l. For each indicator feature s, the value s(G) is either
explained textually or formally defined. If s(G) is a singleton, delimiting brackets are omitted.

55

4.3.3 Transitions

We now describe how the parameters required for estimating the probability distribution
P (t | c) for t ∈ TAMR, c ∈ CAMR with maximum entropy models can be obtained from
an extended corpus Cext as defined in Section 4.3.1. To this end, we first show how each
element of Cext can be turned into a sequence of training data T = (c1, t1), . . . , (cm, tm) ∈
(CAMR × TAMR)∗ consisting of configurations and corresponding gold transitions.

We again focus on one element B = (G,D,wPOS, AG, AD) of Cext. To extract the
desired sequence T from B, we require two auxiliary procedures: Firstly, we need a
function goldB : CAMR \ CtAMR → TAMR that maps each non-terminal configuration c
to the correct transition goldB(c) to be applied next; we call this function an oracle.
Secondly, we require a procedure to update B whenever some transition t is applied
to c in order to reflect this application on B. We denote the result of updating the
bigraph according to this procedure by update(B, c, t). Using these procedures, the
sequence T can be obtained through Algorithm 5, a simple modification of Algorithm 1
to which we refer as the training data algorithm. At the very end of the current section, a
comprehensive exemplary application of the training data algorithm and the subroutines
used therein is given.

Algorithm 5: Training data algorithm

Input: bigraph B = (G,D,wPOS, AG, AD) from Cext

Output: sequence of training data T ∈ (CAMR × TAMR)∗

1 function trainingData(B)
2 T ← ε
3 c← csAMR(G)
4 while c /∈ CtAMR do
5 t∗ ← goldB(c)
6 T ← (c, t∗) :T
7 B ← update(B, c, t∗)
8 c← t∗(c)

9 return T

In the following, we first devise an algorithm to determine goldB(c) and then describe
the procedure required to obtain update(B, c, t). Given a configuration c ∈ CAMR, we
compute goldB(c) by first checking for each class τ ∈ C(TAMR) whether some instance
thereof, i.e. some transition t such that C(t) = τ , needs to be applied. As soon as a
class τ is found of which an instance needs to be applied, we distinguish two cases: If
τ is not parametrized, i.e. τ ∈ {Keep, Delete, Swap, No-Insertion}, then τ is
returned immediately. Otherwise, the actual instance of τ that needs to be applied is
determined by calling yet another subroutine gold′B : C(TAMR) × CAMR 7→ TAMR that
is defined such that gold′B(τ, c) always belongs to class τ .17 The only exception to this

17In the definition of gold′B(τ, c), we will sometimes use nondeterminism. It is therefore not a function
in the strict mathematical sense; we will view it as a function nonetheless.

56

rule is that if τ ∈ {Insert-Child, Insert-Between}, we also allow gold′B(τ, c) to be
a No-Insertion transition. The idea outlined above is implemented in Algorithm 6, to
which we will refer as the oracle algorithm.

Algorithm 6: Oracle algorithm

Input: configuration c = (G, σ1:σ, β, ρ) ∈ CAMR where G = (V,E,L,≺),
bigraph B = (G,D,wPOS, AG, AD) from Cext

Output: gold transition t ∈ TAMR

1 function goldB(c)
2 if σ1 /∈ dom(ρ(DEL)) then
3 if |inG(σ1)| ≥ 2 then
4 return gold′B(Delete-Reentrance, c)

5 let paG(σ1) = {pσ1}
6 if AG(σ1) = ∅ then
7 return Delete

8 else if AG(σ1) ∩AG(pσ1) 6= ∅ then
9 return gold′B(Merge, c)

10 else if
AG(pσ1) 6= ∅ ∧ ∀i ∈ span1

B(pσ1) : min(span1
B(σ1)) ≤ i ≤ max(span1

B(σ1))
then

11 return Swap

12 else
13 return Keep

14 else if σ1 /∈ dom(ρ(REAL)) then
15 return gold′B(Realize, c)
16 else if σ1 /∈ dom(ρ(INS-DONE)) ∧ ρ(DEL)(σ1) = 0 then
17 return gold′B(Insert-Child, c)
18 else if β = ε then
19 return gold′B(Reorder, c)

20 return gold′B(Insert-Between, c)

We now describe how the subroutine gold′B : C(TAMR) × CAMR 7→ TAMR is defined.
For some classes τ ∈ C(TAMR), we devise two different approaches for obtaining the
best transition: one that is purely based upon the AMR graph, its realization and the
alignment between them and one that additionally makes use of dependency trees.

Let B = (G,D,wPOS, AG, AD) be an element of Cext as above, c = (G, σ1:σ, β, ρ) ∈
CAMR, G = (VG, EG, LG,≺G), D = (VD, ED, LD,≺D) and wPOS = (w1, p1) . . . (wn, pn).
For i ∈ [n], we denote wi also by w(i) and pi also by p(i). The required gold transitions
can be obtained as follows:

• gold′B(Delete-Reentrance, c): A gold incoming edge ê ∈ inG(σ1) for vertex σ1 is
determined; we view this edge as the only incoming edge that is not to be removed.

57

Given ê, some non-gold edge (v, l, σ1) ∈ in(σ1) \ {ê} is chosen nondeterministically
and the transition Delete-Reentrance-(v, l) is returned. We are guaranteed
that such an edge exists as |inG(σ1)| ≥ 2.

For our first approach – which makes no use of D –, we simply take the edge
connecting v and its gold parent p̂aG(v) (see Definition 4.13) as the gold incoming
edge ê. If there are multiple such edges, we choose any of them but we favor edges
with non-inverted labels. We note that this approach does not even make use of
wPOS or AG. Therefore, ê can also unambiguously be inferred from an AMR graph
G during test time.

For the second approach, we use D to compute a set of candidates C ⊆ VG con-
taining every parent of σ1 for which some corresponding dependency tree vertex is
also a parent of some dependency tree vertex corresponding to σ1:

C = {pσ1 ∈ paG(σ1) | ∃pdep ∈ π1
B(pσ1), σdep ∈ π1

B(σ1) : pdep ∈ paD(σdep)} .

If C consists of only one parent candidate p̂ and there is exactly one edge ê con-
necting p̂ and σ1, we simply take ê to be the gold incoming edge. Otherwise, we
determine ê using the first approach, but with the additional constraint that it
must originate from some vertex contained within C.

• gold′B(Merge, c): Whenever this subroutine is called, we are guaranteed that
σ1 has exactly one parent; we denote this parent by pσ1 . As the alignments
AG(σ1) and AG(pσ1) are contiguous and AG(σ1) ∩ AG(pσ1) 6= ∅, their union
A = AG(σ1) ∪ AG(pσ1) must as well be contiguous. Let (a1, . . . , an) be the A-
sequence induced by <N. The gold transition returned is Merge-(real,pos) where
real = w(a1) . . . w(an) and pos = simplify(p(a1)).

• gold′B(Realize, c): Let (a1, . . . , an) be the AG(σ1)-sequence induced by <N. We
set real = w(a1) . . . w(an) and return Realize-(real, ασ1) where ασ1 is the gold
syntactic annotation for node σ1 as derived in Section 4.3.2.

• gold′B(Reorder, c): We adapt the method by Pourdamghani et al. (2016) to obtain
the gold order among chG(σ1)∪{σ1}. To this end, all children of σ1 are first divided
into a left and right half:

left = {v ∈ chG(σ1) | med(span1
B(v)) ≤ med(AG(σ1))}

right = chG(σ1) \ left

where med denotes the median of a set of natural numbers and med(∅) = −∞.
For all S ∈ {left, right}, let

lS = {(v1, v2) ∈ S × S | med(span1
B(v1)) < med(span1

B(v2))} .

We turn lS into a total order lS
′ on S by fixing some arbitrary order among

all nodes v1, v2 ∈ S with med(span1
B(v1)) = med(span1

B(v2)). Let xS denote the
S-sequence induced by lS

′. We return Reorder-(xleft · σ1 · xright).

58

• gold′B(Insert-Child, c): For the approach disregarding D, we restrict ourselves to
left insertions and utilize a handwritten set Σic ⊆ ΣE of allowed concepts for child
insertions. This set consists mostly of auxiliary verbs and articles; for details, we
refer to Section 5.3.5. We require that articles can only be inserted as children of
nouns whereas auxiliary verbs can only be assigned to verbs and adjectives. Let i =
min(AG(σ1)) and let k ∈ N be some hyperparameter. For j = i− 1, i− 2, . . . , i− k
we check whether wj is an element of Σic and the following conditions hold:

(@v′ ∈ VG : j ∈ AG(v′)) ∧ (@j′ ∈ N : j < j′ < i ∧ simplify(pj′) = simplify(pi)) .

In other words, we only consider such words as candidates for Insert-Child tran-
sitions that are not aligned to any vertex and we demand that each such word is
inserted as a child of the vertex aligned to the closest word to its right with fitting
POS tag. As soon as some j is found such that all of the above conditions hold,
Insert-Child-(lem(wj), left) is returned where for each e ∈ ΣE, lem(e) denotes
the base form of e; for example, lem(is) = be and lem(houses) = house. If no such
j is found, we return No-Insertion.

For our alternative approach using the dependency tree D, we consider the set

C = {v ∈ VD | ∃v′ ∈ π1
B(σ1) : v ∈ chD(v′)}

of dependency tree vertices that are children of some vertex corresponding to σ1.
For all v ∈ C, we note that π2

B(v) = ∅ means that the word at index AD(v) has no
representation in the AMR graph. Therefore, we assume

I = {i ∈ [n] | ∃v ∈ C : π2
B(v) = ∅ ∧ i = AD(v)}

to be the set of indices of all words that need to be inserted as children of σ1.
If I = ∅, we return No-Insertion. Otherwise, let j = min(I). We return
Insert-Child-(lem(w(j)), d) where lem is defined as above and

d =

{
left if j < min(AG(σ1))

right otherwise.

For both approaches, if gold′B(Insert-Child, c) 6= No-Insertion, we denote by
indB(Insert-Child, c) the index j of the word which triggered the insertion.

• gold′B(Insert-Between, c): As β 6= ε whenever this subroutine is called, we are
guaranteed that there are β1 ∈ chG(σ1) and β′ ∈ chG(σ1)∗ such that β = β1:β′.

For the first approach, we again make use of a handwritten set Σib ⊆ ΣE of al-
lowed concepts, this time consisting mostly of adpositions, and we consider only
cases where min(AG(σ1)) < min(AG(β1)). Furthermore, we require that the word
to be inserted is located between the phrase corresponding to σ1 and the phrase
corresponding to β1 in the reference realization. That means, we consider only
words with indices in the range (max(AG(σ1)),min(AG(β1)) as insertion candi-
dates. From right to left, we check for each index i in the above range whether

59

wi is not aligned to any vertex (i.e. {v ∈ VG | (v, i) ∈ AG} = ∅) and wi ∈ Σib. If
this is the case, we return Insert-Between-(wi, left); if no such index is found,
we return No-Insertion. However, as soon as we encounter some word wi that is
aligned to some other child β′ of σ1 (i.e. β′ ∈ {v ∈ chG(σ1) | (v, i) ∈ AG}) while it-
erating over i, we assume that all words to the left of wi should be inserted between
σ1 and β′ rather than between σ1 and β1 and immediately return No-Insertion.

For our alternative approach, we use the dependency tree D to align edges to
corresponding insertions in advance and store these alignments in a set Aib ⊆
E × [|wPOS|]. This is done as follows: For each vertex v ∈ VD with paD(v) 6= ∅ and
chD(v) 6= ∅ that does not correspond to any vertex of G, i.e. π2

B(v) = ∅, we check
whether there is some pair (pv, cv) ∈ paD(v)× chD(v) such that the AMR vertices
corresponding to pv and cv are connected through some edge. In other words, we
search for some edge e = (v1, l, v2) ∈ EG such that

∃(pv, cv) ∈ paD(v)× chD(v) : v1 ∈ π2
B(pv) ∧ v2 ∈ π2

B(cv) .

If such an edge is found, then we add (e,AD(v)) to Aib and continue with the next
dependency tree vertex. Otherwise, we check whether some edge e′ = (v2, l, v1)
with the required property exists and, if so, add (e′, AD(v)) to Aib. If this is also
not the case, we extend our search radius and consider not only all parents and
children of v, but also its grandparents and grandchildren. At runtime, we must
then simply check whether the edge e connecting σ1 and β1 is aligned to some word
index i through Aib. If this is not the case, No-Insertion is returned; otherwise,
we return Insert-Between-(w(i), d) where

d =

{
left if i < min(AG(β1))

right otherwise.

For both approaches, if gold′B(Insert-Between, c) 6= No-Insertion, we denote
by indB(Insert-Between, c) the index i of the word which triggered the insertion.

This concludes our discussion of the oracle algorithm; we are now able to extract the
correct transition to be applied next from a bigraph B of the extended corpus and a
corresponding configuration c. As a next step, we describe how the bigraph B is updated
after applying this gold transition. For this purpose, let B = (G,D,wPOS, AG, AD),
c = (G, σ1:σ, β, ρ) ∈ CAMR, t ∈ TAMR and G = (V,E, L,≺). Furthermore, let t(c) =
(G′, σ′, β′, ρ′) where G′ = (V ′, E′, L′,≺′). Then

update(B, c, t) = (G′, D,wPOS, A′G, AD)

where depending on the class C(t) of the transition applied, the new alignment A′G
between G′ and wPOS can be obtained by distinguishing the following cases:

• If C(t) = Merge, then σ1 must have exactly one parent pσ1 and the application of
t merges σ1 and pσ1 into a single vertex. To reflect this in the alignment, we set

A′G = AG \ {(σ1, i) | i ∈ [|wPOS|]} ∪ {(pσ1 , i) | (σ1, i) ∈ AG} .

60

• If C(t) ∈ {Insert-Child, Insert-Between}, then a new vertex is inserted into
the graph, so V ′ = V ∪ {σ̃} for some vertex σ̃ ∈ Vins. This vertex must be aligned
to the word which triggered its insertion. We set

A′G = AG ∪ {(σ̃, indB(C(t), c))} .

• If C(t) /∈ {Merge, Insert-Child, Insert-Between}, i.e. none of the above cases
applies, we leave the alignment unchanged and set A′G = AG.

The procedures used by the training data algorithm are now fully specified. In order
to obtain a complete sequence Tcomp of training data, we join together the sequences
T = trainingData(B) for each element B of Cext. As probabilities for Realize and
Reorder transitions are modeled slightly different from the rest, two final modifications
must be made to this sequence Tcomp: Firstly, each tuple (c,Realize-(w,α)) is removed
from Tcomp and the tuple ((c, α),Realize-(w,α)) is added to a new sequence TReal.
This is done because the probabilities of Realize transitions are estimated by a separate
maximum entropy model pReal introduced in Eq. (14) and in accordance with this model,
we may assume the correct syntactic annotation for Realize transitions to be known.
Secondly, we remove each pair (c, t) with C(t) = Reorder from Tcomp and extract from
it the sequences of training data required for training the maximum entropy models
introduced in Eq. (19). To this end, let t = Reorder-(v1, . . . , vn) and c = (G, σ1:σ, β, ρ).
Then there is some k ∈ [n] such that σ1 = vk. The following sets containing pairs of
contexts and corresponding outputs are extracted from (c, t):

S∗ = {(c, vi l σ1) | 1 ≤ i < k} ∪ {(c, σ1 l vi) | k < i ≤ n}
Sl = {((c, vi l σ1, vj l σ1), vi l vj) | 1 ≤ i < j < k}
Sr = {((c, σ1 l vi, σ1 l vj), vi l vj) | k < i < j ≤ n}

For i ∈ {∗, l, r}, the sets Si extracted from all tuples in Tcomp of the above form are col-
lected and joined to a new sequence Ti; this sequence is then used to train the maximum
entropy model pi introduced in Eq. (19). Analogously, the sequence TReal is used to
train pReal. For the maximum entropy model pTS introduced in Eq. (10), which handles
all remaining transitions, the tuples remaining in Tcomp are used as training data.

To train all of the above maximum entropy models, we proceed exactly the same as for
the syntactic annotation models (see Section 4.3.2). That is, we specify a set of indicator
features from which we extract feature candidates that are then greedily composed to
a final feature sequence with which the model is trained. As indicator features, we use
the same features as for our syntactic annotation models (see Table 5) as well as some
additional ones. These additional indicator features can be found in Table 6; all of them
are parametrized with some vertex v. It is important to note that both the relevance and
the definiteness of all our features depends heavily on the transitions whose probability
is to be obtained. For instance, we may be interested in properties of both the node σ1

on top of the node buffer and its parent when considering Merge transitions, whereas
for Insert-Between transitions, properties of σ1 and the node β1 on top of the child

61

Indicator Feature Value

Rhok(v), k ∈ K ρ(k)(v)

RealizationLemma(v) The base form of ρ(REAL)(v)

RelativePosition(v) If v ≺ pv and ρ(DEL)(pv) = 0, this is set to “left”. Otherwise, if
pv ≺ v and ρ(DEL)(pv) = 0, this is set to “right”. If none of the
above holds, this feature is set to “del”.

OutLabelsS(v), S ⊆ LR A flag indicating whether OutLabels(v) ⊆ S
SameSideSize(v) |{v′ ∈ V | pv = pv′ ∧ (v ≺ pv ⇔ v′ ≺ pv)}|
SameSideLabels(v) {l ∈ LR | ∃v′ ∈ V : (pv, l, v

′) ∈ E ∧ (v ≺ pv ⇔ v′ ≺ pv)}
SameSideLabelsPos(v) {(l, p) ∈ LR × VPOS | ∃v′ ∈ V : (pv, l, v

′) ∈ E ∧ pos(L(v′)) = p ∧
(v ≺ pv ⇔ v′ ≺ pv)}

SameSidePos(v) {pos(L(v′)) | v′ ∈ V ∧ pv = pv′ ∧ (v ≺ pv ⇔ v′ ≺ pv)}
Mergeable(v) A flag indicating whether some Merge transition has been applied

to any vertex with the same concept and parent concept as v during
training

ComplexPos(v) For ρ(POS)(v) /∈ {NN, VB}, this is equal to ρ(POS)(v). For nouns,
the value of ρ(NUMBER)(v) is added and for verbs, this feature is
a composition of ρ(TENSE)(v), ρ(VOICE)(v), HasChildl(v) for all
grammatical mood indicators l and the most likely grammatical
number n ∈ VNUMBER for the first child of v connected through an
edge with label ARGi, i ∈ N, if such a child exists.

Table 6: Additional indicator features used for modeling the probabilities of transitions P (t | c)
where c = (G, σ, β, ρ) with G = (V,E,L,≺). For v ∈ V and l ∈ LC, pv denotes the parent of
v if |paG(v)| = 1 and pos(l) denotes the empirical POS tag of l (see Definition 4.14). For each
indicator feature s, the value s(G) is either explained textually or formally defined. If s(G) is a
singleton, delimiting brackets are omitted.

buffer are of relevance. Furthermore, available context information varies due to the
order in which transitions are applied. For example, the POS tag assigned to a vertex
is only known after its realization has been determined; it can therefore only be used as
an indicator feature for transitions applied to it after a Realize transition. To handle
both problems, we use varying sets of parameters for each parametrized indicator feature,
depending on the considered transition; as is done by Wang et al. (2015), we also set each
indicator feature to a special value NONE whenever it is not relevant or not properly
defined in the current context. The actual list of relevant features for each class of
transitions τ ∈ C(TAMR) can be found in the implementation (see Section 5.3.4).

We are now able to train all maximum entropy models required to estimate P (t | c),
but we make one final modification to the training procedure: To compensate for errors
made by our model pTS in an early stage of processing a node, we carry out the training
procedure twice. In a first iteration, we train all models exactly as described above. In a
second iteration, we slightly modify Algorithm 5: Whenever the transition to be applied
next is contained within the set Trestr, we replace the call to goldB(c) in line 5 with

t∗ ← arg max
t∈Trestr : c∈dom(t)

P (t | c)

62

v1 : want-01

v2 : person

v3 : sleep-01

v4 : develop-02

ARG0
ARG1

ARG0

ARG0-of

(the, DT) (developer, NN) (wants, VBZ) (to, PRT) (sleep, VB)

d4 : the d5 : to

d2 : developer d3 : sleep

d1 : wants

nsubj xcomp

det mark

G

wPOS

D

Figure 18: Graphical representation of the bigraph B = (G,D,wPOS, AG, AD) introduced in
Example 4.15. For i ∈ {G,D}, each node v ∈ Vi is inscribed with v :Li(v); each alignment
(u, j) ∈ Ai is represented by a dashed arrow line connecting u and wPOS(j).

where P is estimated by the model trained in the first iteration. In other words, we
replace gold transitions from Trestr with the actual output of our pretrained model. We
then fuse the so-obtained training data sequence with the sequence obtained in the first
run and retrain all maximum entropy models using this combined sequence.

We conclude this section with a comprehensive exemplary application of the training
data algorithm; this application also includes several runs of the oracle algorithm. As
this requires frequent switching between both algorithms, we abbreviate each line l of
an algorithm a by (a:l); for example, (6:3) refers to the third line of Algorithm 6.

Example 4.15 We consider a POS-annotated and lowercased version of the bigraph
B1 introduced in Example 3.16. For reasons of consistency with the notation used
throughout this section, we additionally rename its components and obtain the bigraph
B = (G,D,wPOS, AG, AD) with G = (VG, EG, LG,≺G) and D = (VD, ED, LD,≺D) shown
in Figure 18. We walk through Algorithm 5 with B as an input step by step and show
how the set trainingData(B) is obtained.

The first step of the training data algorithm is to initialize T = ε and to compute

csAMR(G) = (G, (v4, v2, v3, v1), ε, ρ) where ρ = {(k, ∅) | k ∈ K}

which is stored in a variable c (5:3). As c is not a terminal state, the algorithm calls
routine goldB(c) to obtain the gold transition to be applied next. In this subroutine, it is

63

v1 : want-01

v2 : developer

v3 : sleep-01
ARG0

ARG1

ARG0

Figure 19: Graphical representation of the AMR graph G1 = (VG1
, EG1

, LG1
,≺G1

). Each node
v ∈ VG1 is inscribed with v :LG1(v).

first determined that node v4 has only one parent and thus, no Delete-Reentrance
transition needs to be applied (6:3). Also, as v4 is aligned to some word, it must not
be deleted (6:6). It is then tested whether v4 and its parent node v2 have a common
realization (6:8). As this is the case, the gold transition to be applied next belongs to the
class Merge and as gold′B(Merge, c) = Merge-(developer,NN), the value returned by
goldB(c) is likewise t∗ = Merge-(developer,NN). The training tuple (c, t∗) is appended
to T (5:6), B is updated by removing all alignments involving v4 (5:7) and c is updated
by applying t∗ (5:8), resulting in the new configuration

c← (G1, (v2, v3, v1), ε, ρ1)

where ρ1 = ρ[POS(v2) 7→ NN, INIT-CONCEPT(v2) 7→ person] and G1 is shown in Figure 19.
As c is still no terminal configuration, the next transition is determined by calling

goldB(c). Because v2 has two parent nodes, v1 and v3, a Delete-Reentrance transi-
tion needs to be applied (6:3). For both the text-based and the dependency-tree-based
approach, gold′B(Delete-Reentrance, c) returns Delete-Reentrance-(v3,ARG0),
indicating that e = (v3,ARG0, v2) needs to be removed from EG1 . For the text-based
approach, this is the case because the path from v3 to root(G1) is longer than the path
from v1, making v1 the gold parent of v2 (see Definition 4.13). For the approach using
D, the reason is that d2, the dependency tree vertex corresponding to v2, is a child of
d1 (which corresponds to v1), but not a child of d3 (which corresponds to v3). After
t∗ = Delete-Reentrance-(v3,ARG0) is returned, (c, t∗) is added to the sequence
T of training data (5:6), B is updated (5:7) and by application of t∗ (5:8), the new
configuration

c← (G2, (v2, ṽ1, v3, v1), ε, ρ2)

is obtained where ρ2 = ρ1[LINK(ṽ1) = v2] and G2 is shown in Figure 20 on the left.
In the next iteration, neither Delete-Reentrance nor Delete transitions are ap-

plicable for the same reasons as in the very first iteration. There is no need for a Merge
transition as v2 and v1 do not have a common realization (6:8). No Swap is required
because no word aligned to v1 is between two words belonging to the span of v2 (6:10).
The oracle algorithm therefore returns t∗ = Keep (6:13). Again, (c, t∗) is added to T ,
the bigraph is updated and t∗ is applied whereby the new configuration

c← (G2, (v2, ṽ1, v3, v1), ε, ρ3)

with ρ3 = ρ2[DEL(v2) 7→ 0] is obtained; as Keep only modifies the DEL flag, this config-
uration is almost identical to the previous one.

64

v1 : want-01

v2 : developer v3 : sleep-01

ṽ1 : developer

ARG0 ARG1

ARG0

→

v1 : want-01

v2 : developer

ṽ2 : the

v3 : sleep-01

ṽ1 : developer

ARG0

?

ARG1

ARG0

Figure 20: Graphical representation of the AMR graph G2 = (VG2
, EG2

, LG2
,≺G2

) and the
graph G3 = (VG3 , EG3 , LG3 ,≺G3) obtained from G2 through a Insert-Child-(the, left) transi-
tion. For i ∈ {2, 3}, each node v ∈ VGi is inscribed with v :LGi(v).

At its next call, the oracle algorithm returns t∗ = Realize-(developer, σv2) where in
accordance with Figure 17 (Section 4.3.2),

σv2 = {(POS,NN), (DENOM, the), (TENSE, –), (NUMBER, singular), (VOICE, –)}

is the gold syntactic annotation for v2. The tuple (c, t∗) is added to T , B is updated and
t∗ is applied, resulting in the configuration

c← (G2, (v2, ṽ1, v3, v1), ε, ρ4)

where ρ4 is obtained from ρ3[REAL(v2) 7→ developer] by setting ρ4(k)(σ1) = σv2(k) for all
k ∈ Ksyn. Yet another call of the oracle algorithm returns t∗ = Insert-Child-(the, left),
regardless of which approach for gold′B(Insert-Child, c) is chosen (6:17). For the text-
based approach, this is the case because w1 (“the”) is not aligned to any vertex and
occurs directly left of w2 (“developer”), the first word aligned to v2 in the reference
realization. For the approach using D, the sets

C = {v ∈ VD | ∃v′ ∈ π1
B(v2) : v ∈ chD(v′)} = {d4}

I = {i ∈ [n] | ∃v ∈ C : π2
B(v) = ∅ ∧ i = AD(v)} = {1}

are computed and t∗ = Insert-Child-(lem(w(j)), d) is returned where j = min(I) = 1,
lem(w(1)) = lem(the) = the and d = left as 1 < min(AG(v2)) = 2.

As before, we update T and B and apply t∗ to obtain

c← (G3, (ṽ2, v2, ṽ1, v3, v1), ε, ρ5)

where ρ5 = ρ4[DEL(ṽ2) 7→ 0, INS-DONE(ṽ2) = 1] and G3 is shown in Figure 20 on the
right. We leave further study of the remaining steps to the reader, but we provide in
Table 7 a list of all gold transitions returned by the oracle algorithm in subsequent calls,
assuming that in each call of gold′B, the approach which makes no use of the dependency
tree D is chosen to obtain the gold transition whenever two alternative approaches are
defined. 4

65

σ β Gold Transition

ṽ2 : (v2, ṽ1, v3, v1) ε Realize-(the, σṽ2) where σṽ2 = {(POS,DT), (DENOM, –),
(TENSE, –), (NUMBER, –), (VOICE, –)}

ṽ2 : (v2, ṽ1, v3, v1) ε Reorder-(ṽ2)

v2 : (ṽ1, v3, v1) ε No-Insertion

v2 : (ṽ1, v3, v1) ε Reorder-(ṽ2, v2)

v2 : (ṽ1, v3, v1) ṽ2 No-Insertion

ṽ1 : (v3, v1) ε Delete

ṽ1 : (v3, v1) ε Reorder-(ṽ1)

v3 : (v1) ε Keep

v3 : (v1) ε Realize-(sleep, σv3) where σv3 = {(POS,VB), (DENOM, –),
(TENSE, –), (NUMBER, –), (VOICE, active)}

v3 : (v1) ε No-Insertion

v3 : (v1) ε Reorder-(ṽ1, v3)

v3 : (v1) ṽ1 No-Insertion

v1 ε Keep

v1 ε Realize-(wants, σv1) where σv1 = {(POS,VB), (DENOM, –),
(TENSE,present), (NUMBER, –), (VOICE, active)}

v1 ε No-Insertion

v1 ε Reorder-(v2, v1, v3)

v1 v2 : (v3) No-Insertion

v1 v3 Insert-Between-(to, left)

ε ε –

Table 7: Gold transitions returned by the oracle algorithm when processing the configuration
c = (G3, (ṽ2, v2, ṽ1, v3, v1), ε, ρ5). The contents of the node buffer σ and the child buffer β before
application of each transition are specified.

66

4.4 Postprocessing

To further improve the quality of the realizations produced by our generator, we carry
out several postprocessing steps. For doing so, we make use of both the actual realization
w̃ = generate(G) obtained from the input AMR graph G and the final configuration from
which this realization is inferred. While there may be several more useful postprocessing
steps, we restrict ourselves here to revising inserted articles, adding punctuation and
removing duplicate words from the realization.

In the following, let ĉ = (Ĝ, ε, ε, ρ̂) with Ĝ = (V̂ , Ê, L̂, ≺̂) be the final configuration
obtained in line 8 of Algorithm 4 for input G. As a first postprocessing step, we revise all
inserted articles and check whether further articles need to be inserted. It makes sense
to perform this revision as articles are added through Child-Insertion transitions; at
the time these transitions are applied to a node, its context (i.e. the words to its left
and right in the final realization) is generally still unknown. We therefore simply check
for each v ∈ V̂ with ρ̂(POS)(v) = NN whether removing or inserting an article improves
the score assigned to fAMR(ĉ) through our language model. To this end, we first remove
from Ĝ each child of v whose label is an element of the set 〈art〉 = {a, an, the}. We then
compute a linear combination of the language model score and the syntactic annotation
probabilities of the so-obtained graph Ĝ′ and compare this score with the scores of the
graphs obtained from Ĝ′ by inserting a new vertex ṽ with some realization from the set
〈art〉 as the leftmost child of v. From all of these graphs, we choose the one with the
highest score and update the final configuration ĉ accordingly.

Since all punctuation marks are removed from the AMR corpus during preparation in
Section 4.3.1, our generator does not learn to insert them. To fix this problem, we use
a rather simple, non-probabilistic approach for which we consider the set

R̂ =

{
chĜ(root(Ĝ)) if L̂(root(Ĝ)) = multi-sentence

{root(Ĝ)} otherwise

that, in most cases, just contains the root of Ĝ. However, some AMR graphs en-
code not just one, but multiple sentences; this is indicated through a special concept
“multi-sentence” for the root node. Therefore, whenever the root of Ĝ is labeled “multi-
sentence”, we process the subgraphs Ĝ|v for all v ∈ chĜ(root(Ĝ)) as if they were separate

graphs. For every vertex v ∈ R̂, we define two predicates

φv(?) = ∃v′ ∈ chĜ(v) : L̂(v′) ∈ {interrogative, amr-unknown}
φv(,) = v 6= root(Ĝ) ∧ ∃v′ ∈ chĜ(root(Ĝ)) : v ≺̂ v′

from which we infer the punctuation mark for the subgraph Ĝ|v as follows:

punc(v) =

? if φv(?)

, if ¬φv(?) ∧ φv(,)

. if ¬φv(?) ∧ ¬φv(,) ∧ |V̂ | ≥ 5

ε otherwise.

67

v1 : island

v2 : name

v3 : ‘Easter’ v4 : ‘Island’

name

op1 op2

Figure 21: AMR representation of Easter Island

In other words, we assign to each subgraph Ĝ|v the punctuation mark “?” if v has a
child labeled “interrogative” or “amr-unknown” as these are the concepts used by AMR
to indicate questions. We assign the punctuation mark “,” if Ĝ|v does not encode a
question and its span does not contain the rightmost word of the generated sentence.
If none of the above conditions holds and Ĝ has at least five vertices, the punctuation
mark “.” is assigned to it. We do not append a full stop to AMR graphs with less than
five vertices because these often do not represent complete sentences.

Using the above definitions, we construct a new terminal configuration c′ that includes
the punctuation marks to be inserted. To this end, we require a set of new vertices
Vpunc = {vpunc | v ∈ R̂} such that Vpunc ∩ V̂ = ∅. We set the realization of each vertex
vpunc to the punctuation mark assigned to Ĝ|v and modify ≺̂ such that this punctuation
mark is the rightmost word of the subgraph’s realization. More formally, we define
c′ = (G′, ε, ε, ρ′) where

G′ = (V̂ ∪ Vpunc, E
′, L′,≺′)

E′ = Ê ∪ {(v, ?, vpunc) | v ∈ R̂}
L′ = L̂ ∪ {(vpunc, punc(v)) | v ∈ R̂}
≺′ = (≺̂ ∪ {(v′, vpunc) | v ∈ R̂, v′ ∈ chĜ(v) ∪ {v}})+

ρ′ = ρ̂[REAL 7→ ρ̂(REAL) ∪ {(vpunc, punc(v)) | v ∈ R̂}]

and compute w̃ = fAMR(c′).
As a final postprocessing step, we remove duplicate words from w̃. That is, whenever

a word appears twice in a row in w̃, one of both instances is discarded. Such realizations
with duplicate words are occasionally generated by our system due to named instances
whose concept shares a common word with its name. An example of such a named
instance can be seen in Figure 21, where the English word “island” is both the concept
of vertex v1 and part of its name, possibly resulting in the lower-case realization “easter
island island” for the whole AMR graph.

4.5 Hyperparameter Optimization

Throughout the previous sections, we have introduced several hyperparameters. These
parameters include, for example, real-valued weights θτ , τ ∈ C(TAMR) for transitions

68

and tuples (n, r) ∈ N+ × R+
0 for pruning. In this section, we will give a short overview

on how these parameters can be obtained.
To simplify the optimization task, we regard each k-dimensional hyperparameter θ ∈

Rk, k ∈ N, as a sequence of k one-dimensional hyperparameters. Let n ∈ N be the
total number of such one-dimensional hyperparameters used in our generation pipeline.
As N ⊆ R, we can write each possible assignment of values to all hyperparameters as
a sequence Θ = (θ1, . . . , θn) ∈ Rn. To evaluate a particular such assignment Θ, we
simply use the development set of an AMR corpus and calculate the Bleu score that the
generation algorithm achieves if for all i ∈ [n], the i-th hyperparameter is set to θi; we
denote the obtained score by scoreBleu(Θ). We are then interested in the highest-scoring
assignment

Θ̂ = arg max
Θ∈Rn

scoreBleu(Θ) .

Two commonly used algorithms to approximate the solution to the above equation are
grid search and random search. While the first algorithm defines a set Vi = {v1

i , . . . , v
m
i },

m ∈ N of possible values for each hyperparameter i and then performs an exhaustive
search over all possible assignments, the latter samples random assignments for a prede-
fined number of times. As reported by Bergstra and Bengio (2012), random search is in
general the more efficient of both approaches, especially if the number of hyperparam-
eters is high or the evaluation of a hyperparameter set is an expensive operation. We
therefore first perform a random search and then try to locally optimize single hyperpa-
rameters in the best assignment found during random search.

To reduce the search space, we introduce for each i ∈ [n] an interval ri = [mini,maxi]
with mini ≤ maxi and mini,maxi ∈ R that specifies both the minimum and the max-
imum value that can be assigned to the i-th hyperparameter. We then sample several
uniformly distributed vectors (θ1, . . . , θn) ∈ r1 × . . . × rn and take the highest-scoring
such vector (θ̂1, . . . , θ̂n) as an initial assignment. Afterwards, we iterate over all i ∈ [n]
and look whether the total score of vector (θ̂1, . . . , θ̂n) can be improved by changing only
θ̂i. To this end, we introduce yet another parameter s ∈ N+ and try replacing θ̂i by all
values contained within the set

Vi = {mini + j · maxi −mini
s

| 0 ≤ j ≤ s} .

In other words, we try s+ 1 values uniformly distributed between min(i) and max(i).
For a list of all required hyperparameters and further details on the implementation

of this hyperparameter optimization algorithm, we refer to Section 5.3.3.

69

5 Implementation

We now describe our implementation of the transition-based generator. This implemen-
tation is written entirely in Java, a relatively fast high-level programming language that
is also used by most of the external libraries required by our generator. It is worth
nothing that our implementation occasionally differs to some extent from the algorithms
and formal definitions given in Section 4. While some modifications actually improve
the output of our generator, the vast majority thereof is solely due to reasons of effi-
ciency. For example, we do not train a single maximum entropy model pTS to estimate
P (t | c) for all transitions t ∈ TAMR with C(t) /∈ {Reorder, Realize}, but instead
train independent models for each of the stages identified in Figure 13 (Section 4.2.2);
this makes the training process both faster and more memory efficient by reducing the
number of training data per model. However, the most important changes in terms of
the generator’s actual output are that firstly, we enforce several constraints with regards
to the applicability of transitions and secondly, we provide default realizations in order
to cope with AMR concepts not seen during training.

In the following, we will first discuss all enforced transition constraints in Section 5.1
and the embedding of default realizations in Section 5.2. Subsequently, we provide a
description of the implementation’s overall structure and selective Java classes in Sec-
tion 5.3. An overview of external libraries used by our generator is given in Section 5.4.
For a more quick and practical introduction on how to use the generator, we refer to the
instructions found in the implementation’s README.html file (see Appendix B).

5.1 Transition Constraints

For each class τ ∈ C(TAMR), we implement several constraints limiting the number of
configurations given which transitions from τ are applicable. For our discussion of these
constraints, let c = (G, σ1:σ, β, ρ) be the current configuration of our transition system
where G = (V,E,L,≺). If σ1 has only a single parent node, we denote the latter by pσ1 .
The constraints for each class of transitions are as follows:

• Swap: We allow this transition only if σ1 is not a copy of some other node, i.e. σ1 /∈
dom(ρ(LINK)). We do so because copies created through Delete-Reentrance
transitions can not have any children of their own and thus, the projectivity of
yield does not constitute a problem. Furthermore, we demand that σ1 is not a
named entity; this can be verified by checking whether there is some v ∈ chG(σ1)
with L(v) = name. As a final constraint, we demand that σ1 and pσ1 have not
already been swapped in any previous transition step.

• Merge: During training, we store for each pair (pσ1 , σ1) of merged vertices all
concepts and POS tags assigned to them. From these data, we construct a lookup
table

LM : LC × LC 7→ Σ∗E × VPOS

mapping each pair of parent and child labels to the tuple of concept and POS tag
observed most often. For instance, the lookup table obtained from training with

71

the LDC2014T12 corpus (see Section 3.3.2) contains, among others, the following
entries:

LM(early,more) = (earlier, JJ) LM(likely,−) = (unlikely, JJ)

LM(thing, achieve-01) = (achievement,NN) LM(person,hunt-01) = (hunter,NN)

We then restrict the number of allowed Merge transitions as follows: Whenever
(L(pσ1), L(σ1)) /∈ dom(LM), i.e. vertices with the same labels as σ1 and pσ1 have
never been merged during training, we disallow all kinds of Merge transitions.
Otherwise, we allow only Merge-LM(L(pσ1), L(σ1)), the Merge transition ob-
served most often for the given pair of labels. As in the case of Swap transitions,
we additionally disallow Merge transitions whenever σ1 is a copy of some other
node or a named entity.

• Delete: Again, we disallow Delete transitions for named entities. Although
copies created through Delete-Reentrance are often not represented in the
generated sentences, we also disallow Delete transitions if σ1 ∈ dom(ρ(LINK)).
This is because the realization of such copies is handled exclusively through default
realizations as described in Section 5.2.

• Realize: We implement several restrictions with regards to syntactic annotations;
the main purpose of these restrictions is to make the process of computing and stor-
ing syntactic annotations more efficient. Whenever a Realize-(w,α) transition is
applied, the following must hold:

α(POS) 6= VB ⇒ α(TENSE) = α(VOICE) = –

α(POS) 6= NN ⇒ α(NUMBER) = α(DENOM) = –

α(NUMBER) = plural ⇒ α(DENOM) 6= a .

To further improve the efficiency of our implementation, whenever the concept rep-
resented by σ1 is not a PropBank frameset,18 we require that α(POS) = p̂os(L(σ1)),
i.e. we assign to σ1 the POS tag most frequently observed for concept L(σ1) during
training (see Definition 4.14). This restriction stems from the observation that for
most concepts which are not PropBank framesets, almost all reasonable realiza-
tions have the same simplified part of speech. For example, it is almost always the
case that instances of the concepts “boy”, “city” and “world” are realized as nouns
and instances of “early”, “rich” and “fast” are realized as adverbs or adjectives.
If σ1 ∈ dom(ρ(LINK)), we only allow Realize-(w,α) if w is one of the default
realizations assigned to c and α (see Section 5.2).

In our implementation of Algorithm 3, we do not consider all possible syntactic
annotations when computing the n1-best Realize transitions. Instead, we only
consider the nk-best values for each syntactic annotation key k ∈ Ksyn where
nk ∈ N is some hyperparameter.

18Whether a vertex v ∈ V represents a PropBank frameset can easily be determined by checking whether
L(v) matches the regular expression [A-z]+-[0-9]+.

72

• Insert-Child: We allow at most one Insert-Child transition per vertex and we
only allow vertices to be inserted left of σ1; both restrictions are purely on grounds
of efficiency. Furthermore, we manually handle insertions of articles and auxiliary
verbs required by passive constructions as these can directly be inferred from the
syntactic annotation values ρ(DENOM)(σ1) and ρ(VOICE)(σ1), respectively.

• Reorder: As the number of possible reorderings for some vertex v grows super-
exponentially with the number of its children, we implement several constraints to
reduce the number of reorderings to be considered. Let Reorder-(v1, . . . , vn) be
the Reorder transition whose applicability is to be checked and let

l = {(vi, vj) | 1 ≤ i < j ≤ n}

denote the total order such that (v1, . . . , vn) is the (ch(σ1)∪{σ1})-sequence induced
by l. If σ1 has some child cσ1 with L(cσ1) ∈ {the, a, an}, we demand that cσ1
occurs before σ1 and all of its other children, i.e. cσ1 = v1. For enumerations and
listings, we require that the order defined through edge labels of the form OPi,
i ∈ N be preserved. In other words, if σ1 has children c1, . . . , cm where each child
ci is connected to σ1 through an edge with label OPi, we demand that cj l ck for
all 1 ≤ j < k ≤ m. We implement several more such restrictions; for a full list
thereof, we refer to Section 5.3.3.

• Insert-Between: We restrict the allowed labels for vertices inserted through
left and right Insert-Between transitions to two handwritten sets Wleft and
Wright, containing the insertions observed most frequently during training as well
as common English prepositions (see Section 5.3.5). As children connected to σ1

through an edge with label “domain” almost always require a Insert-Between-
(w, right) transition with w ∈ 〈be〉, we handle this special case manually.

5.2 Default Realizations

As some AMR concepts are either not observed at all during training or only some specific
forms thereof are observed (for example, a verb may occur in the training corpus only in
past tense), we provide default realizations r̃(c,α) for some pairs (c, α) ∈ CAMR × Asyn.
Given some configuration c = (G, σ1:σ, ε, ρ) in which Realize transitions are applicable,
we then set

P (Realize-(r̃(c,α), α) | c, α) = p̃

for all α ∈ Asyn where p̃ ∈ [0, 1] is some hyperparameter; in order to assure that P is
still a valid probability measure, we subtract a small amount δ from the probabilities of
all other applicable Realize transitions.

Let the current configuration be of the form c = (G, σ1:σ, ε, ρ) with G = (V,E,L,≺)
and let α ∈ Asyn be a syntactic annotation for σ1. If σ1 is a noun, verb, adjective or
adverb according to α and not a copy of some other node, i.e. α(POS) ∈ {NN, VB, JJ}
and σ1 /∈ dom(ρ(LINK)), we determine r̃(c,α) as follows: If L(σ1) is a PropBank frameset,
we first remove the frameset id from it; for example, we turn the instances “want-01” and

73

1 : project

2 : name

3 : ‘Three’ 4 : ‘Gorges’

name

op1 op2

Figure 22: AMR representation of the “Three Gorges” project

“develop-02” into “want” and “develop”, respectively. Let lσ1 denote the so-obtained
truncated label. We query WordNet (Fellbaum, 1998; Miller, 1995) to find out whether
a word with lemma lσ1 and POS tag α(POS) exists; if this is not the case, no default
realization r̃(c,α) can be found. Otherwise, we use SimpleNLG (Gatt and Reiter, 2009)
to turn lσ1 into the required word form according to α. This is done by first instantiating
a phrase consisting only of lσ1 and then specifying features of this phrase. For example,
the number of a noun can be set to some value num as follows:

phrase.setFeature(Feature.NUMBER, num);

The so-obtained word is then returned as a default realization r̃(c,α). For α(POS) = JJ,
if lσ1 can serve as both an adjective and an adverb, both forms are used as default
realizations with probabilities of p̃/2 each. For example, given lσ1 = quick, both “quick”
and “quickly” are returned.

If α(POS) /∈ {NN, VB, JJ}, we check whether lσ1 is a pronoun and if so, we provide
both the corresponding personal pronoun and possessive pronoun forms as default real-
izations, each with probability p̃/2. Importantly, this is also done if σ1 is a copy of some
other vertex, but in this case, we make use of yet another hyperparameter pε ∈ [0, p̃], set
the probabilities of both realizations to (p̃− pε)/2 and add ε as another default realiza-
tion with probability pε. If none of the above applies and σ1 ∈ dom(ρ(LINK)), we return
only ε as a default realization.

Apart from this basic handling of unknown instances and pronouns, we also provide
special realization rules for named entities (i.e. vertices with a child labeled “name”),
dates and numbers. For named entities, we remove all vertices encoding the name from
the AMR graph and keep only the concept itself, for which we allow three different
kinds of default realizations: nothing but the name, the name followed by the concept
and the concept followed by the name. For instance, consider the AMR graph shown in
Figure 22. As this graph represents a named entity, we remove from it all vertices but the
root, for which we provide the three default realizations “Three Gorges”, “Three Gorges
project” and “project Three Gorges”. If the named entity has already been observed
during training, we choose from these three candidates the realization assigned to it
most often to be the default realization. Otherwise, if at least the concept of the named
entity has already been observed during training, we choose the arrangement observed
most often for this concept. If neither the name nor the concept were observed during

74

training, we take only the name itself as the default realization. An exception to the
above rules are countries, world regions and continents, for which the default realizations
are both the name and the corresponding adjective, each with probability p̃/2.19 For
example, an instance of the AMR concept “country” with name “France” gets assigned
the default realizations “France” and “French”.

Date entities are converted to month-day-year format, resulting in strings like “April
2 2016” or “July 24 2011”. Finally, numbers that are not part of a date are converted
to ordinal numbers if their parent is an instance of the concept “ordinal-entity” and
otherwise left as is, but if they end with six or nine zeros, the latter are replaced by the
string “million” or “billion”, respectively.

5.3 Packages

Our implementation of the transition-based generator is divided into five packages main,
dag, ml, gen and misc. For each of these packages, we discuss here only the most
important classes contained therein and the functionality they provide; for a thorough
description of all classes and functions, we refer to the Javadoc documentation available
in the javadoc subdirectory of our implementation.

5.3.1 main

The main package consists only of the two classes PathList and AmrMain. While the
former contains nothing but string constants referring to the paths of training, develop-
ment and test data, trained maximum entropy models and various external resources,
the latter provides wrapper functions for the most important tasks to be performed
by our implementation: Generation, training and hyperparameter optimization can be
performed using the methods generate(), train() and optimizeHyperparams(), re-
spectively. While the first method can be called with an arbitrary list of AMR graphs as
parameter, the other methods require the training and development corpora to be found
in the directories specified in PathList. Assuming that they are stored in official AMR
format,20 AMR graphs can be read from a file using the loadAmrGraphs() function.

To train the generator using train(), each subdirectory of the training directory
(specified in PathList.AMR SUBDIRECTORIES and PathList.TRAINING DIR, respectively)
must contain all information required to build an extended corpus (see Section 4.3.1),
but this information is to be distributed among several files. These files must go by the
following names specified in PathList and should contain the following information:

• PathList.AMR FILENAME: This file must contain a list of aligned and tokenized
AMR graphs, separated by empty lines and encoded using the official AMR format.
The alignments must be stored in the format used by Flanigan et al. (2014).21

19The adjective forms corresponding to countries and nations are extracted from en.wikipedia.org/

wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations.
20See github.com/amrisi/amr-guidelines/blob/master/amr.md for a description of this format.
21See github.com/jflanigan/jamr/blob/Generator/docs/Alignment_Format.md for a description of

this format.

75

v1 : want-01

v2 : person

v3 : sleep-01

v4 : develop-02

ARG0
ARG1

ARG0

ARG0-of

(the, DT) (developer, NN) (wants, VBZ) (to, PRT) (sleep, VB)

d4 : the d5 : to

d2 : developer d3 : sleep

d1 : wants

nsubj xcomp

det mark

G

wPOS

D

Figure 23: Graphical representation of the bigraph B = (G,D,wPOS, AG, AD) as described in
Example 4.15. For i ∈ {G,D}, each node v ∈ Vi is inscribed with v :Li(v); each alignment
(u, j) ∈ Ai is represented by a dashed arrow line connecting u and wPOS(j). An additional
alignment A′G ⊆ VG × [|wPOS|] is indicated through wavy arrow lines.

Above each AMR graph, there must be a line starting with # ::tok containing a
tokenized reference realization and a line starting with # ::alignments containing
the alignments. Additional annotations – such as the non-tokenized reference
realization – are allowed, but ignored during the training procedure. For example,
the AMR graph shown in Figure 23, its reference realization and the corresponding
alignment AG may be represented like this:

::tok the developer wants to sleep

::alignments 1-2|0.0+0.0.0 2-3|0 4-5|0.1

(v1 / want-01

:ARG0 (v2 / person

:ARG0-of (v4 / develop-02))

:ARG1 (v3 / sleep-01

:ARG0 v2))

• PathList.DEPENDENCIES FILENAME: This file must contain a list of dependency
trees which correspond to the AMR graphs found in the above file in a one-to-one
manner. The dependency trees must be separated by empty lines and encoded in

76

Stanford dependencies (SD) format.22 To give an example, the dependency tree
shown in Figure 23 can be encoded as follows:

root(ROOT-0, wants-3)

nsubj(wants-3, developer-2)

xcomp(wants-3, sleep-5)

det(developer-2, the-1)

mark(sleep-5, to-4)

• PathList.POS FILENAME: This file should contain a newline-separated list of POS
sequences where POS tags are separated by spaces. The i-th sequence of POS
tags must correspond to the reference realization of the i-th AMR graph found in
the PathList.AMR FILENAME file. The following entry corresponds to the reference
realization shown in Figure 23:

DT NN VBZ PRT VB

• PathList.EM ALIGNMENTS FILENAME: This file should contain a newline-separated
list of alignments in the format used by the string-to-string aligner described in
Pourdamghani et al. (2014).23 The i-th alignment must correspond to the reference
realization of the i-th AMR graph found in the PathList.AMR FILENAME file. For
example, the entry encoding the additional alignment A′G shown in Figure 23 may
look like this:

1-1.1.1 2-1 4-1.2

The training procedure requires at least 8GB of RAM and may take several hours to
days, depending on the used hardware. It is important to note that when training the
generator with the train() method on a different corpus than LDC2014T12, some of the
resources found in directory res must also be rebuilt using the corresponding methods
provided by misc.StaticHelper. For more information on this process, we refer to the
Javadoc documentation of the latter class and to README.html (see Appendix B).

Our implementation also supports the command-line based generation of English sen-
tences from AMR graphs. For generation using the command line, the following param-
eters may be specified:

• --input (-i): The file in which the input graphs are stored in official AMR format.
If this parameter is not specified, it is assumed that the required AMR graphs can
be found in the subdirectories of the PathList.TEST DIR file.

• --output (-o): The file in which the generated sentences should be saved. This is
the only mandatory parameter.

22See nlp.stanford.edu/software/stanford-dependencies.shtml for a description of this format.
23Note that this format differs slightly from the one used by Flanigan et al. (2014).

77

• --bleu (-b): If this flag is set, the Bleu score achieved by the generator on the
given data set is printed to the standard output stream. This is only possible if
the AMR graphs are stored with tokenized reference realizations in the input file.

• --show-output (-s): If this flag is set, pairs of reference realizations and corre-
sponding generated sentences are printed to the standard output stream once the
generator is finished. Again, this can only be done if the AMR graphs are stored
with tokenized reference realizations in the input file.

As the generation process requires around 8GB of RAM, the generator should always
be run with parameter -Xmx8g. For example, the command

java -jar -Xmx8g AmrGen.jar --input in.txt --output out.txt --bleu

can be used to generate sentences from all AMR graphs found in in.txt, write them to
out.txt and print the obtained Bleu score to the standard output stream.

5.3.2 dag

This package contains classes that are closely related to labeled ordered graphs as intro-
duced in Definition 3.1. Most importantly, the class DirectedGraph is used to model
actual graphs; their vertices and edges are represented by instances of Vertex and Edge,
respectively.

Although they could theoretically be modeled using just the above classes, a wrapper
class DependencyTree is used to represent dependency trees and a class Amr is used
to represent AMR graphs. Bigraphs are not explicitly modeled; instead, AMR graphs
simply store a reference to the corresponding dependency tree. If given, the Amr class
also stores the reference realization of the graph and the corresponding alignment as well
as POS tags. Furthermore, it provides some convenient methods and functions for the
handling of AMR graphs. For example, the calculateSpan() method can be used to
calculate the span of each vertex and yield() implements both yield(G,ρ) and yieldpar

(G,ρ).
Another important method provided by this class is prepare() and its subroutines
prepareForTesting() and prepareForTraining(), which prepare an AMR graph ei-
ther for training or testing; this preparation includes, among others, collapsing named
entities into a single node for more efficient processing, converting the reference realiza-
tion to lower case and computing the span of each vertex. The prepareForTraining()

method also defines all alignment rules mentioned in Section 4.3.1.
In addition to the above functionality, the package dag provides two classes AmrFrame

and DependencyTreeFrame which provide means of visualizing both dependency trees
and AMR graphs; these classes are also capable of showing alignments between graphs
and their realizations as well as annotations assigned to vertices.

5.3.3 gen

This package constitutes the core of our generator. The actual generation algorithm
is implemented in the classes FirstStageProcessor and SecondStageProcessor. The

78

former contains a method processFirstStage() which implements the restricted ver-
sion of the greedy generation algorithm, applying only transitions from the set Trestr

to its input; the latter contains the rest of the logic required by the generation algo-
rithm. Most importantly, it contains a function getBest(), which is a straightforward
implementation of Algorithm 3, the best transition sequence algorithm. Default re-
alizations as defined in Section 5.2 and required by this method are provided by the
getDefaultRealizations() function of class DefaultRealizer. A full list of restric-
tions for Reorder transitions can be found in class PositionHelper, which also con-
tains a method to compute n-best reorderings. Finally, the postProcess() method of
class PostProcessor can be used to perform postprocessing as described in Section 4.4.

For training the various maximum entropy models required by our generator, the non-
instantiable classes GoldSyntacticAnnotations and GoldTransitions contain static
methods to obtain gold syntactic annotation values and gold transitions, respectively.
These classes implement all approaches devised in Sections 4.3.2 and 4.3.3, with the sole
exception of Delete-Reentrance transitions, for which only the text-based approach
is implemented. This is the case because a qualitative analysis of several dozen AMR
graphs from the LDC2014T12 corpus showed both approaches to give almost identical
results, but this approach performed slightly better than the dependency-tree-based
approach and is much easier to implement.

Hyperparameters used throughout the generation process are managed by the classes
Hyperparam and IntHyperparam; the former also contains methods to perform random
search and grid search as explained in Section 4.5. For a list of all hyperparameters and
a short explanation thereof, we refer to the documentation of the Hyperparams class.

5.3.4 ml

This package contains all classes related to maximum entropy modeling. As mentioned
before, we do not use a single maximum entropy model pTS to estimate P (t | c) for all
transitions t ∈ TAMR, but instead train independent such models for each stage identified
in Figure 13 (Section 4.2.2). On grounds of efficiency, we additionally use two different
maximum entropy models for Insert-Between transitions: The model implemented
by ArgInsertionMaxentModel is queried whenever the vertex on top of the node buffer
is connected to its child through a PropBank semantic role (i.e. the edge connecting
both vertices has a label of the form ARGi for some i ∈ N); in all other cases, we use
the model implemented by OtherInsertionMaxentModel.

All classes representing maximum entropy models can be identified by their common
suffix MaxentModel; they are subclasses of either OpenNlpMaxentModelImplementation,
an implementation of maximum entropy models based on the GISModel class provided
by OpenNLP, or StanfordMaxentModelImplementation, an implementation using the
Stanford Classifier.24 The IndicatorFeature interface and its two implementations
StringFeature and ListFeature provide means of representing features.

24For further details on OpenNLP and the Stanford Classifier, we refer to opennlp.apache.org and
nlp.stanford.edu/software/classifier.shtml, respectively.

79

5.3.5 misc

The package misc contains miscellaneous classes whose methods are used in various
places throughout the implementation. For example, the class PosHelper provides the
simplify mapping defined in Section 4.3.2 and PrunedList implements the function
prunen as introduced in Definition 4.9. The class StaticHelper contains functions for
generating additional resources required by the generator, such as the lookup table LM

for Merge transitions introduced in Section 5.1. The WordNetHelper class provides an
interface to WordNet (Fellbaum, 1998; Miller, 1995). Importantly, the class WordLists

contains several collections of words required by the generator; for example, the words
allowed for Insert-Between and Insert-Child transitions are defined therein.

5.4 External Libraries

Our implementation makes use of several external libraries for various purposes such
as POS tagging, language modeling, maximum entropy modeling and computing Bleu
scores. Below, we list all external libraries embedded into our generator and briefly
explain how they are used:

• The Extended Java WordNet Library (available at extjwnl.sourceforge.net) is
used to access WordNet (Miller, 1995; Fellbaum, 1998) which, in turn, is required
for default realizations and to compute some features of our maximum entropy
models.

• We use both the Apache OpenNLP library (available at opennlp.apache.org) and
the Stanford Classifier (available at nlp.stanford.edu/software/classifier.

shtml) for maximum entropy modeling; while the training procedure provided by
the former library is both faster and more memory-efficient, we achieved slightly
better results using the latter.

• The Berkeley Language Model (Pauls and Klein, 2011) is used for computing
scoreLM, the language model score assigned to generated sentences. It provides
methods for efficiently loading and accessing large n-gram language models.

• For POS tagging of our training and development data, we use the Stanford Log-
linear Part-Of-Speech Tagger (Toutanova et al., 2003), a part of the Stanford
CoreNLP toolkit (Manning et al., 2014).

• SimpleNLG (Gatt and Reiter, 2009) is used to determine default realizations.

• We use the BleuMetric implementation of Phrasal (Spence Green and Manning,
2014) to compute the Bleu score obtained by our generator.

• To graphically display AMR graphs and dependency trees, we use several classes
provided by JGraphX (available at github.com/jgraph/jgraphx).

• For parsing command line options, we make use of JCommander (available at
jcommander.org).

80

6 Experiments

We evaluate our approach by studying the results of several experiments conducted using
the implementation described in Section 5. For carrying out these experiments, a single
machine with 8GB of RAM and a 2.40GHz Intel R© CoreTMi7-3630QM CPU with eight
cores was used; the operating system was Ubuntu 16.10.

All experiments reported in this section were performed using the LDC2014T12 cor-
pus, containing 10,313 training AMR graphs, 1,368 development AMR graphs and 1,371
test AMR graphs (see Table 2, Section 3.3.2). The reference realizations of all AMR
graphs in the training and development set were tokenized using cdec (Dyer et al.,
2010) and annotated with POS tags using the Stanford Log-linear Part-of-Speech Tagger
(Toutanova et al., 2003); dependency trees were obtained using the BLLIP parser (Char-
niak, 2000; Charniak and Johnson, 2005) and subsequently converted into the format
required by our generator using the Stanford Dependencies Converter.25 Alignments
between AMR graphs and reference realizations were obtained using the methods by
Flanigan et al. (2014) and Pourdamghani et al. (2014) and fused as described in Sec-
tion 4.3.1. For language modeling, we used a 3-gram model with Kneser-Ney smoothing
trained on Gigaword v1 (LDC2003T05).26 The corresponding language model file in
binary format can be found in the file res/lm.binary of our implementation.

We manually compared the quality of gold annotations and transitions returned by
the alternative approaches devised in Sections 4.3.2 and 4.3.3 on a small number of de-
velopment AMR graphs; in the vast majority of cases, both approaches returned exactly
the same. However, using dependency trees to determine gold denominators turned
out to be slightly more error-prone, the reason being that the automatically generated
dependency trees for some realizations were themselves erroneous. For Insert-Child
and Insert-Between transitions, it happened occasionally that one of both approaches
returned nonsensical transitions, but it was very rarely the case that both approaches
failed simultaneously. Therefore, in all of the experiments discussed below, we used the
purely text-based approach to obtain gold denominators during training; for Insert-
Child and Insert-Between transitions, we used both approaches concurrently, thus
doubling the number of available training data. Hyperparameter optimization was per-
formed as described in Section 4.5 with parameter s = 15, resulting in the configuration
found in the file res/hyperparams.txt.

As a first experiment, we used the fully trained system to generate realizations for
all AMR graphs in the development and test set of LDC2014T12 and computed the
corresponding Bleu scores.27 Our approach achieves a Bleu score of 27.4 on both the
development and test set. A comparison of these results with the scores achieved by all
other currently published approaches can be seen in Table 8; therein and throughout the
remainder of this section, we abbreviate the tree-transducer-based approach of Flanigan

25For further details on the Stanford Dependencies format and the conversion process, see nlp.stanford.
edu/software/stanford-dependencies.shtml.

26The used Gigaword n-gram counts are available at www.keithv.com/software/giga/.
27Throughout this section, we implicitly mean the case-insensitive 1...4-gram Bleu score with scaling

factor s = 100, rounded to the first decimal place, whenever we speak of Bleu scores.

81

System LMa Corpus lmax Dev Test

Our approach 3-gram LDC2014T12
∞ 27.4 27.4

30 28.3 28.9

JAMR-gen (2016) 5-gram LDC2014T12 ∞ 22.7 22.0

PBMT-gen (2016) 5-gram LDC2014T12 ∞ 27.2 26.9

TSP-gen (2016) 4-gram LDC2015E86 30 21.1 22.4

SNRG-gen (2017) 4-gram LDC2015E86 30 25.2 25.6

NEUR-gen (2017) – LDC2014T12,
LDC2011T07

∞ – 29.7

Table 8: Comparison of our approach with other generators. The “LM” column lists the kind
of language model used, the “Corpus” column contains the used corpora and the “lmax” column
contains the maximum number of words in the reference realization for an AMR graph to be
considered for Bleu score computation. The “Dev” and “Test” columns show the Bleu scores
obtained on the development and test sets, rounded to the first decimal place.

aAll language models are trained on Gigaword; our language model is trained on Gigaword v1
(LDC2003T05) whereas JAMR-gen, TSP-gen and SNRG-gen use Gigaword v5 (LDC2011T07). For
PBMT-gen, the version of Gigaword used to build the language model is not specified.

et al. (2016) by JAMR-gen, the phrase-based generator of Pourdamghani et al. (2016)
by PBMT-gen, the approach of Song et al. (2016) based on a traveling salesman problem
solver by TSP-gen, the synchronous node replacement grammar approach of Song et al.
(2017) by SNRG-gen and the generator of Konstas et al. (2017) using a neural network
architecture by NEUR-gen. Whenever available, Table 8 lists the results obtained with
the LDC2014T12 corpus as this is the corpus used for our experiments, thus allowing
for better comparisons than LDC2015E86.

In terms of Bleu scores, our approach performs much better than JAMR-gen, TSP-
gen and SNRG-gen and slightly better than PBMT-gen, but worse than NEUR-gen. For
the comparison with the TSP-gen and SNRG-gen generators, we must take into account
that these systems were both trained using the LDC2015E86 corpus; while the test and
development sets in this corpus are exactly the same as for LDC2014T12, it contains
6,520 additional training AMR graphs, thus giving TSP-gen and SNRG-gen a noticeable
advantage. It is also important to note that the scores reported in Song et al. (2016,
2017) were obtained after removing from the development and test sets all AMR graphs
whose reference realizations have more than lmax = 30 words; this is especially relevant
as longer AMR graphs are, generally speaking, more difficult to process. After removal
of all AMR graphs with more than 30 words, our approach achieves scores of 28.3 and
28.9 on the development and test set, respectively, whereas TSP-gen achieves scores of
21.1 and 22.4 and SNRG-gen achieves scores of 25.2 and 25.6.

Except for NEUR-gen, the above-mentioned generators all make use of language mod-

82

els trained on Gigaword; however, JAMR-gen, TSP-gen, SNRG-gen and PBMT-gen use
4- or 5-gram models trained on Gigaword v5 whereas we consider only 3-grams and use
Gigaword v1. As higher-order n-grams can cope with more complex sentence structures
and are thus more powerful than a 3-gram model, we believe that our approach would
perform even better if we replaced our 3-gram model by some higher-order model. Un-
fortunately, we are not able to verify this claim as neither Gigaword nor higher-order
n-gram models trained on it are available free of charge; we thus have to resort to a
freely available 3-gram language model trained on Gigaword v1.

The NEUR-gen system does not include a language model at all; instead, sentences
from Gigaword v5 (LDC2011T07) are annotated with AMR graphs using the text-to-
AMR parser described in Konstas et al. (2017) and directly embedded into the system
as additional training data (see Section 2). However, only such sentences from Gigaword
are used which contain exclusively words that also occur in LDC2014T12. To obtain the
Bleu score of 29.7 on the LDC2014T12 test set, Konstas et al. (2017) use two million such
sentences, increasing the number of training data by a factor of roughly 153. Although
many of the automatically generated AMR graphs are likely to contain at least some
errors, it is reasonable to assume that the improvement in Bleu score compared to other
approaches is mainly due to this enormous enlargement of the training corpus. This claim
is supported by the fact that using the LDC2015E86 corpus, the test set results reported
by Konstas et al. (2017) lie between 22.0, when only the AMR graphs from LDC2015E86
are used, and 33.8, when 20 million annotated sentences from Gigaword are factored into
the training process. For LDC2014T12, Konstas et al. (2017) unfortunately do not report
the scores for the development set or for any number of included Gigaword sentences
other than two million. Naturally, it would make sense to investigate whether including
annotated sentences from Gigaword into the training process of our system leads to
comparable improvements of our results. As mentioned above, however, Gigaword is not
free of charge, making us unable to carry out this investigation.

As another experiment, we evaluated our generator on several subsets of our develop-
ment and test sets that contain only AMR graphs for which the number of tokens lref in
the reference realization lies within a certain interval. We chose the set of intervals

{[0, 10], (10, 20], (20, 30], (30, 40], (40,∞)}

and computed the Bleu score and the average time required to process a single graph
for each interval.28 The results can be seen in Figure 24a and 24b; Figure 24c lists the
number of graphs in the LDC2014T12 corpus for each of the above intervals.

Not surprisingly, the processing of AMR graphs takes more time the longer the ref-
erence realizations are, with about 0.05s required for graphs with lref ≤ 10 and up to
0.7s required for graphs with lref > 40. However, it is worth noting that our implemen-
tation is by no means optimized with respect to algorithmic efficiency. For example,
the processing of large graphs could massively be improved through parallelization as
for vertices v and v′ with v /∈ succ(v′) and v′ /∈ succ(v), the sets best(v) and best(v′)
required by Algorithm 4 can be computed independently.

28The time measurements do not include the time required to load the language model and all required
maximum entropy models into memory.

83

≤10 11–20 21–30 31–40 >40

23

24

25

26

27

28

29

30

Reference realization length lref

B
le

u
sc

or
e

Dev

Test

(a) Case-insensitive 1, . . . , 4-gram Bleu score achieved by our generator
on the development and test set when only AMR graphs with reference
realization lengths lref in the given intervals are considered

≤10 11–20 21–30 31–40 >40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reference realization length lref

t
in
s

Dev

Test

(b) Average time required to generate a sentence from a single AMR graph
in the development and test set when only AMR graphs with reference
realization lengths lref in the given intervals are considered.

Reference realization length lref

≤10 11–20 21–30 31–40 >40

Dev AMRs 255 485 374 162 92
Test AMRs 299 441 333 173 125

(c) Number of development and test AMR graphs for some values of lref

Figure 24: Performance of our transition-based generator when considering only AMR graphs
for which the number lref of tokens in the reference realization is within a certain interval

84

With regards to the Bleu scores reported in Figure 24a, it is noteworthy that the
results for lref > 40 are well below average, supporting our claim that a 4- or 5-gram
language model might improve the Bleu score achieved by our generator as such higher
order n-gram models are especially helpful for long sentences. Interestingly, however, the
Bleu score of 22.8 achieved on the test set for lref ≤ 10 is even lower than for lref > 40.
A qualitative analysis of all AMR graphs whose reference realizations have at most ten
tokens shows that this low score is mainly due to wrongly guessed punctuation marks –
which can have a great impact on the Bleu score for sentences with relatively few words
–, wrong date formats and errors made by our syntactic annotation models. To illustrate
this, consider the following examples, where for each i ∈ N, wir denotes a reference real-
ization provided in the LDC2014T12 test set and wig denotes the output of our generator
for the corresponding AMR graph:

w1
r = 2004-12-19 w2

r = a kathmandu police officer reports

w1
g = december 19 2004 w2

g = a report by the kathmandu police officers .

For w1
r and w1

g, there are no matching n-grams at all; for w2
r and w2

g, only three unigrams
and one bigram match. Nonetheless, w1

g and w2
g are about equally good realizations of

the corresponding AMR graphs as w1
r and w2

r .
Our generator works best for AMR graphs whose reference realizations have between

11 and 30 tokens; for an example, consider the following pairs of reference realizations
wir and outputs wig:

w3
r = the story is based on the final report of the attorney general ’s office .

w3
g = the story is based on the attorney general ’s office final report .

w4
r = wen stated that the chinese government supports plans for peace in the

middle east and remains firmly opposed to violent retaliation .

w4
g = wen stated that the chinese government supports the plan for peace in

the middle east and remains in firm opposition to the violent retaliation .

However, if there are long range dependencies, our generator often fails to find syntac-
tically correct realizations that transfer the meaning of the corresponding graphs. This
is especially the case for AMR graphs with long reference realizations, as can be seen in
the below example:

w5
r = the performance of the female competitors of the chinese diving team ,

mingxia fu and bin chi , in the first 6 rounds of the 10 - meter platform
diving competition at the seventh world swimming championships held
here today was ideal , and hopes of entering the heats are in sight .

w5
g = the ideal female competitors mingxia fu and bin chi of chinese diving team

performance 6 first round of preliminary competition of the 10 meter
platform diving at the seventh world swimming championships were held
here today and hope to enter the heat is in sight .

85

Gold Transition

Mer
ge

Sw
ap

De
le
te

Ke
ep

A
p

p
li
e
d

T
ra

n
si

ti
o
n

Merge 707 7 11 78

Swap 0 75 2 25

Delete 2 4 865 90

Keep 81 332 233 13979

Figure 25: Confusion matrix for transitions performed in the first phase of our generation algo-
rithm; Delete-Reentrance transitions are not included as they are always applied correctly.

As a last experiment, we looked into the individual syntactic annotations and transitions
used by our generator and investigated how well the prediction of these annotations
and transitions works. In accordance with our generation algorithm, we discuss the
results of this investigation separately for transitions from the set Trestr and all remaining
transitions.

For transitions contained within Trestr, the confusion matrix shown in Figure 25 com-
pares the transitions applied by our generator during the processing of all development
AMR graphs of LDC2014T12 with the respective gold transitions. Each entry in a row
with label ta and column with label tg denotes the number of times a transition of class
ta was applied when the gold transition would have been in tg; accordingly, diagonal
entries correspond to correctly applied transitions. For example, 707 Merge transitions
were applied correctly and 70 Merge transitions were applied when according to goldB,
a Keep transition should have been applied. As can be concluded from Figure 25, Swap
is by far the most error-prone transition for the first stage: It is only applied correctly
in 75 cases whereas in 332 cases, a Keep transition is applied when a Swap transition
would actually be required.

With regards to Merge, it is noteworthy that our definition of this transition – which
only allows merging nodes with their parents – makes it impossible for our generator
to transform several graphs into their reference realizations. This can be seen in the
three exemplary partial AMR graphs from LDC2014T12 illustrated in Figure 26: The
graph in Figure 26a requires a Merge transition among the two neighboring nodes with
labels “−” and “ever” to obtain the reference realization; similarly, merging the nodes
with labels “vice” and “prime” is necessary for the graph shown in Figure 26b. Even
more problematic is the graph illustrated in Figure 26c, which would require us to merge
all three vertices simultaneously. These examples suggest that revising the definition of
Merge transitions might be a way to improve the results obtained by our generator.

86

contain-01

− ever

polarity time

wr = never contained
wg = not ever contained

(a)

minister

vice prime

mod mod

wr = vice-prime minister
wg = vice prime minister

(b)

possible

− imagine-01

polarity domain

wr = unimaginable
wg = can not imagine

(c)

Figure 26: Partial AMR graphs from LDC2014T12 requiring Merge transitions among neigh-
bors. The corresponding reference realization wr and the output of our generator wg in the
respective contexts is given below each partial graph.

Reorderings Dev Test

p∗ 85.34% 83.90%
pl 84.38% 83.96%
pr 83.26% 78.11%

Insertions Dev Test

pTS (Stage 3) 86.32% 84.78%
pTS (Stage 5) 89.71% 89.55%

Realizations Dev Test

pPOS 76.58% 74.90%

pDENOM 80.61% 81.65%

pTENSE 74.79% 72.49%

pNUMBER 84.80% 86.00%

pVOICE 93.35% 93.84%

pREAL 82.28% 81.83%

Table 9: Percentage of times in which the maximum entropy models used by our generator assign
the highest probability to the correct outputs when processing the development and test sets of
LDC2014T12. Situations in which the correct transition or annotation is uniquely determined
through the transition constraints defined in Section 5.1 are excluded.

We finally turn to an evaluation of the maximum entropy models used for syntactic
annotations and all remaining transitions. Table 9 shows the percentage of times in
which the transition with the highest probability according to our models was in fact
the gold transition to be applied, divided into three groups. The first of these groups,
headed “Reorderings” in Table 9, lists the number of times the maximum entropy models
p∗, pl and pr assigned the highest probability to the right order between two vertices.
The group captioned “Insertions” lists the percentage of correctly predicted transitions in
stages 3 and 5 of Figure 13 (Section 4.2.2). We recall that in stage 3, only Insert-Child
and No-Insertion transitions can be applied whereas in stage 5, only Insert-Between
and No-Insertion transitions are applicable. The last group, titled “Realizations”,
subsumes the results obtained by all syntactic annotation models pk, k ∈ Ksyn and the
model pReal for Realize transitions. The vast majority of values shown in Table 9 is
above 80%, indicating that in general, the features used to train our models are well-
chosen. The percentage of correctly determined POS tags on both the development and
test set is comparably low; however, as can be seen in the example outputs w2

g and w4
g

shown before, this does not necessarily result in bad realizations.

87

7 Conclusion

We have devised a novel approach for the challenging task of AMR-to-text generation.
Our core idea was to turn input AMR graphs into ordered trees from which sentences
can easily be inferred through application of the yield function. We chose the principle
component of our approach to be the transition system SAMR, whose set of transitions
TAMR defines how the transformation from AMR graphs to suitable trees can be per-
formed. Some transitions contained within this set, such as Merge, Swap and Delete,
have an equivalent in the likewise transition-based text-to-AMR parser by Wang et al.
(2015), which served as a model for our approach.

In order to turn SAMR into a generator, we assigned probabilities to transitions and
defined the score of a transition sequence to be a linear combination of the probabilities
of all its transitions and the probability assigned to the resulting sentence by a language
model. We approximated these probabilities using maximum entropy models that were
trained with a set of gold transitions extracted from a large corpus of AMR graphs and
corresponding realizations. As an exhaustive search for the highest-scoring transition
sequence given some input would be far too time-consuming, we developed an algorithm
that approximates this sequence in two phases: In a first phase, only transitions from
a subset Trestr of TAMR are greedily applied without taking the language model into
consideration; in a second phase, the output of this first phase is processed bottom-
up, considering multiple partial transition sequences at each step and factoring in the
language model. Through parametrized pruning, we restricted the number of sequences
to be considered, allowing us to find a good balance between required time and quality
of the generated sentences. We introduced the concepts of syntactic annotations and
default realizations to help our system decide which transition to apply next. To further
improve our results, we defined some postprocessing steps – such as the insertion of
punctuation marks – to revise the tree structure obtained from our transition system.

In experiments carried out using a Java-based implementation of our generator, we
obtained a lower-cased 1 . . . 4-gram Bleu score of 27.4 on the LDC2014T12 test set,
the second best result reported so far and the best without using parsed sentences
from an external source such as Gigaword (LDC2011T07) as additional training data.
This result strongly suggests that our transition-based transformation of AMR graphs
into ordered tree structures is indeed quite a promising approach for the AMR-to-text
generation task.

Throughout this work, we have highlighted a number of ways in which the results
obtained by our system may further be improved upon. As outlined in Section 6, one
promising way that could easily be implemented, but would require access to Gigaword,
would be to replace the used 3-gram language model with some higher-order model.
One could also follow the idea of Konstas et al. (2017) and annotate Gigaword sentences
with AMR graphs using a parser to augment the number of available training data; as
pointed out in Section 6, it is reasonable to assume that implementing this idea would
have a major impact on the quality of our generator.

Another possible modification shown to be promising in Section 6 is the redefinition of
Merge transitions to allow for a merging of neighboring vertices. It is also conceivable

89

to modify this transition in a way that allows for vertex groups of arbitrary size to be
merged. In this context, one may also investigate whether the generator could further
be tweaked by revising other classes of transitions. Of course, such a revision does not
have to be limited to the formal definitions of the transitions themselves, but may also
be extended to the extraction of gold transitions from a training corpus as done by the
oracle algorithm introduced in Section 4.3.3.

While we have put plenty of effort into the selection of suitable features for the training
of our maximum entropy models, one could of course also try to improve our generator’s
output by adding new features extracted from the given contexts. In addition, it should
be investigated whether the conditional probability P (t | c) of a transition t given a
configuration c and the various conditional probabilities of syntactic annotations can
be predicted more reliably by a model more powerful than maximum entropy models.
In view of recent advances in AMR generation and parsing made with neural network
architectures (see van Noord and Bos, 2017; Konstas et al., 2017), especially probabilistic
neural networks come to mind.

A further way to improve results may be to extend or revise the postprocessing steps
introduced in Section 4.4. For instance, the assignment of punctuation marks could be
refined – or even be integrated into the actual transition system – as the current output
of punctuation marks by our generator shows some room for improvement, especially
with respect to the placement of commas.

Yet another possibility for enhancing the quality of our generator lies in editing the
current implementation in order to make it more resource-friendly and time-efficient;
as outlined in Section 6, the latter could be achieved through parallelization. A time-
optimized implementation may also lead to better results in terms of Bleu score, as it
would allow us to both drop some of the transition constraints introduced in Section 5.1
and increase the maximum values allowed for performance-relevant hyperparameters
used by the best transition sequence algorithm.

Finally, it would also be interesting to investigate in how far our results are, as claimed
in Section 1, in fact transferable to other languages. As indicated in Section 4.1, this
would require us to revise the concept of syntactic annotations to properly reflect the
linguistic peculiarities of the considered language. Unfortunately, however, such an
investigation is not feasible at present, as no sufficiently large AMR corpus is available
for any other language than English.

90

References

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight,
K., Koehn, P., Palmer, M., and Schneider, N. (2013). Abstract meaning representation
for sembanking. In Proc. Linguistic Annotation Workshop, pages 178–186.

Berger, A. L., Della Pietra, V. J., and Della Pietra, S. A. (1996). A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305.

Brown, P. F., Della Pietra, V. J., Della Pietra, S. A., and Mercer, R. L. (1993). The
mathematics of statistical machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–311.

Buys, J. and Blunsom, P. (2017). Robust incremental neural semantic graph parsing.
arXiv:1704.07092 [cs.CL].

Cai, S. and Knight, K. (2013). Smatch: an evaluation metric for semantic feature struc-
tures. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 748–752.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the 1st
North American Chapter of the Association for Computational Linguistics Conference,
pages 132–139.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and MaxEnt dis-
criminative reranking. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 173–180.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–
393.

Dyer, C., Weese, J., Setiawan, H., Lopez, A., Ture, F., Eidelman, V., Ganitkevitch,
J., Blunsom, P., and Resnik, P. (2010). cdec: A decoder, alignment, and learning
framework for finite-state and context-free translation models. In Proceedings of the
ACL 2010 System Demonstrations, pages 7–12.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press.

Flanigan, J., Dyer, C., Smith, N. A., and Carbonell, J. (2016). Generation from abstract
meaning representation using tree transducers. In Proceedings of the 2016 Meeting of
the North American Chapter of the Association for Computational Linguistics, pages
731–739.

91

Flanigan, J., Thomson, S., Carbonell, J. G., Dyer, C., and Smith, N. A. (2014). A
discriminative graph-based parser for the abstract meaning representation. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
pages 1426–1436.

Gatt, A. and Reiter, E. (2009). SimpleNLG: A realisation engine for practical applica-
tions. In Proceedings of the 12th European Workshop on Natural Language Generation,
pages 90–93.

Huang, L., Knight, K., and Joshi, A. (2006). Statistical syntax-directed translation with
extended domain of locality. In Proceedings of Association for Machine Translation
in the Americas, pages 66–73.

Jones, B., Andreas, J., Bauer, D., Hermann, K. M., and Knight, K. (2012). Semantics-
based machine translation with hyperedge replacement grammars. In Proceedings of
the 24th International Conference on Computational Linguistics, pages 1359–1376.

Kingsbury, P. and Palmer, M. (2002). From TreeBank to PropBank. In Proceedings
of the 3rd International Conference on Language Resources and Evaluation, pages
1989–1993.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 181–184.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,
B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E.
(2007). Moses: Open source toolkit for statistical machine translation. In Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration
Sessions, pages 177–180.

Konstas, I., Iyer, S., Yatskar, M., Choi, Y., and Zettlemoyer, L. (2017). Neural AMR:
Sequence-to-sequence models for parsing and generation. arXiv:1704.08381 [cs.CL].

Langkilde, I. and Knight, K. (1998). Generation that exploits corpus-based statistical
knowledge. In Proceedings of the 36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Conference on Computational Linguistics
- Volume 1, pages 704–710.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D.
(2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 55–60.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large anno-
tated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–
330.

92

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the
ACM, 38(11):39–41.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Com-
putational Linguistics, 34(4):513–553.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The proposition bank: A corpus
annotated with semantic roles. Computational Linguistics, 31(1):71–106.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages 311–318.

Pauls, A. and Klein, D. (2011). Faster and smaller n-gram language models. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, pages 258–267.

Peng, X., Song, L., and Gildea, D. (2015). A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceedings of the Nineteenth Conference
on Computational Natural Language Learning, pages 32–41.

Pourdamghani, N., Gao, Y., Hermjakob, U., and Knight, K. (2014). Aligning English
strings with abstract meaning representation graphs. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing, pages 425–429.

Pourdamghani, N., Knight, K., and Hermjakob, U. (2016). Generating English from
abstract meaning representations. In Proceedings of the 9th International Natural
Language Generation Conference, pages 21–25.

Pust, M., Hermjakob, U., Knight, K., Marcu, D., and May, J. (2015). Parsing En-
glish into abstract meaning representation using syntax-based machine translation. In
Conference on Empirical Methods in Natural Language Processing, pages 1143–1154.

Puzikov, Y., Kawahara, D., and Kurohashi, S. (2016). M2L at SemEval-2016 task 8:
AMR parsing with neural networks. In Proceedings of the 10th International Workshop
on Semantic Evaluation, pages 1154–1159.

Shen, D. and Lapata, M. (2007). Using semantic roles to improve question answering. In
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 12–21.

Song, L., Peng, X., Zhang, Y., Wang, Z., and Gildea, D. (2017). AMR-to-text generation
with synchronous node replacement grammar. arXiv:1702.00500 [cs.CL].

Song, L., Zhang, Y., Peng, X., Wang, Z., and Gildea, D. (2016). AMR-to-text generation
as a traveling salesman problem. Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2084–2089.

93

Spence Green, D. C. and Manning, C. D. (2014). Phrasal: A toolkit for new directions
in statistical machine translation. In Proceedings of the 9th Workshop on Statistical
Machine Translation, pages 114–121.

Tesnière, L. (1959). Eléments de syntaxe structurale. Librairie C. Klincksieck.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, pages 173–180.

van Noord, R. and Bos, J. (2017). Neural semantic parsing by character-based transla-
tion: Experiments with abstract meaning representations. arXiv:1705.09980 [cs.CL].

Wang, C., Xue, N., and Pradhan, S. (2015). A transition-based algorithm for AMR
parsing. In Proceedings of the 2015 Meeting of the North American Chapter of the
Association for Computational Linguistics, pages 366–375.

Zhou, J., Xu, F., Uszkoreit, H., Qu, W., Li, R., and Gu, Y. (2016). AMR parsing with an
incremental joint model. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 680–689.

94

A List of Symbols

Symbol Meaning Page

Asyn the set of all syntactic annotations 23

C(T) the classes to which the transitions in T belong 34

CAMR the set of all configurations for AMR generation 27

cfAMR the finalization function used by SAMR 27

csAMR the initialization function used by SAMR 27

CtAMR the set of terminal configurations used by SAMR 27

GAMR the set of all AMR graphs 11

GDEP the set of all dependency trees 15

K the set of all annotation keys 26

Ksyn the set of all syntactic annotation keys 23

LC the set of all AMR concept labels 10

LD the set of all dependency labels 15

LR the set of all AMR relation labels 10

SAMR our transition system used for AMR-to-text generation 27

T (S, I) the set of all terminating transition sequences for I in S 18

TAMR the set of transitions used by SAMR 27

Trestr the restricted set of transitions used in the first phase of our gen-
eration algorithm

39

V the set of all annotation values 26

Vk the set of annotation values for key k ∈ K 23, 26

Vins the set of insertable vertices 28

Vsyn the set of all syntactic annotation values 23

π1
B, π2

B mappings through which vertices of a bigraph B with common
alignments are linked

16

ΣE the set of all English words, including numbers and punctuation
marks

6

95

B Readme File

The following is the content of the README.html file included in the implementation.
This content is largely identical to the description of our implementation in Section 5,
but places a particular emphasis on the setup and practical use of the generator.

Transition-based AMR Generator

This is a Java-based implementation of the AMR-to-text generator introduced in “Tran-
sition-based Generation from Abstract Meaning Representations”. For a detailed de-
scription of all relevant classes, please refer to the Javadoc documentation found in the
javadoc subdirectory. Running the generator requires Java Version 8 or newer.

Generation

There are two ways of generating sentences from AMR graphs using this generator:
You may either use the precompiled and pretrained (using the LDC2014T12 corpus)
generator’s command line interface, which requires almost no time to set up but is
not very flexible, or you may set up the generator as described in section Setup and
then use the methods loadAmrGraphs(String directory, boolean forTesting) and
generate(List<Amr> amrs) of class main.AmrMain.

For using the command line interface, the following parameters may be specified:

• --input (-i): The file in which the AMR graphs are stored in official AMR format.
The AMR graphs must be separated by empty lines and there must be two line
breaks after the last graph. If this parameter is not specified, it is assumed that
the required AMR graphs can be found in the subdirectories bolt, consensus,
dfa, proxy and xinhua of corpus/test (as is the case for LDC2014T12).

• --output (-o): The file in which the generated sentences should be saved. This is
the only required parameter.

• --bleu (-b): If this flag is set, the Bleu score achieved by the generator on the
given data set is output to the standard output stream. This is only possible if the
AMR graphs are stored with tokenized reference realizations (indicated by a line
beginning with # ::tok right above each actual AMR graph) in the input file.

• --show-output (-s): If this flag is set, pairs of (reference realization, generated
sentence) are printed to the standard output stream when the generator is finished.
Again, this is only possible if the AMR graphs are stored with tokenized reference
realizations in the input file.

Important: Note that the generation process requires around 8GB of RAM. Therefore,
the generator should always be run with -Xmx8g or more.

96

Examples

Following is the content of the file in.txt (line breaks are indicated through ←↩):

(v1 / want-01 ←↩
:ARG0 (v2 / person ←↩

:ARG0-of (v4 / develop-02)) ←↩
:ARG1 (v3 / sleep-01 ←↩

:ARG0 v2)) ←↩
←↩

It is an encoding (in official AMR format) of an AMR graph used extensively in the
Master’s thesis. The following command generates an English sentence from this graph:

java -jar -Xmx8g AmrGen.jar --input in.txt --output out.txt

Running this command creates a new file out.txt which contains only a single line with
content “the developer wants to sleep”.

The following command generates sentences from all AMR graphs found in some/

directory/input.txt, writes them to some/other/directory/output.txt and out-
puts the obtained Bleu score to the standard output stream:

java -jar -Xmx8g AmrGen.jar --input some/directory/input.txt --output

some/other/directory/output.txt --bleu

The following command generates sentences from all AMR graphs found in the sub-
directories bolt, consensus, dfa, proxy and xinhua of corpus/test, writes them to
some/directory/output.txt and outputs both the Bleu score and pairs of reference
realizations and generated sentences to the standard output stream:

java -jar -Xmx8g AmrGen.jar -o some/directory/output.txt -b -s

Setup

To set up the AMR generator, simply build the Maven project using pom.xml, which
automatically loads all dependencies.

Setup using IntelliJ IDEA

Using IntelliJ IDEA (tested with IntelliJ IDEA Ultimate 2016.3 under Ubuntu 16.10,
Windows 10 and OS X 10.10.5), the project can be set up as follows:

• Select File | New | Project from Existing Sources...

• In the “Select File or Directory to Import” dialogue, select the root folder of the
implementation and click Ok.

• In the “Import Project” dialogue, click Next several times and then Finish.

97

Training

After performing the steps described above, the maximum entropy models required by
the generator can be retrained using the train() method provided by main.AmrMain.
This assumes that the development and training AMR graphs can be found in the subdi-
rectories bolt, consensus, dfa, proxy and xinhua of corpus/dev and corpus/training,
respectively. Each of these subfolders should contain the following four files:

• data.amr.tok.aligned: A list of aligned and tokenized AMR graphs, separated
by newlines. The file must end with two line breaks. To obtain the reported results,
the alignments should be created using JAMR. Above each AMR graph, there
should be a line starting with # ::tok containing a tokenized reference realization
and a line starting with # ::alignments containing the alignments. For example,
an AMR graph may be represented like this:

::tok the developer wants to sleep

::alignments 1-2|0.0+0.0.0 2-3|0 4-5|0.1

(v1 / want-01

:ARG0 (v2 / person

:ARG0-of (v4 / develop-02))

:ARG1 (v3 / sleep-01

:ARG0 v2))

• data.amr.tok.charniak.parse.dep: A list of dependency trees which correspond
to the AMR graphs found in the above file in a one-to-one manner. The dependency
trees must be separated by empty lines and encoded in Stanford dependencies
format. For example, the dependency tree corresponding to the sentence encoded
by the above AMR graph may look like this:

root(ROOT-0, wants-3)

nsubj(wants-3, developer-2)

xcomp(wants-3, sleep-5)

det(developer-2, the-1)

mark(sleep-5, to-4)

• pos.txt: A newline-separated list of POS sequences, where POS tags are separated
by spaces and each sequence corresponds in a one-to-one manner to the reference
realizations of the AMR graphs in the above file. The following entry corresponds
to the sentence represented by the above AMR graph:

DT NN VBZ PRT VB

• alignments.txt: A list of additional alignment sequences, where each sequence
corresponds in a one-to-one manner to the AMR graphs in the above file. To obtain

98

the reported results, these alignments must be encoded in the format used by the
aligner of Pourdamghani et al. (2014) found at isi.edu/~damghani/papers/

Aligner.zip and should be obtained using this very aligner. For example, the
alignment 1-2|0.0+0.0.0 2-3|0 4-5|0.1 shown above in JAMR format should
be encoded as follows:

1-1.1 1-1.1.1 2-1 4-1.2

To change the naming conventions, edit the corresponding entries in main.PathList. To
retrain only specific models, use the setUp(List<Models> modelsToTrain, boolean

stopAfterFirstStage) method provided by main.AmrMain.

Important: Note that the training process requires around 8GB of RAM and may take
several hours to days. Therefore, it should always be run with -Xmx8g or more.

Important: Note that retraining the AMR generator on a different dataset may also
require you to rebuild some of the files described in section External Resources. For
these files, the functions required to rebuild them are given below.

Hyperparameter Optimization

After training the classifier, hyperparameter optimization may be performed using the
optimizeHyperparams() method provided by main.AmrMain. This assumes that the
development AMR graphs can be found in the subdirectories bolt, consensus, dfa,
proxy and xinhua of corpus/dev. For randomized hyperparameter optimization, the
various kinds of update functions provided by gen.Hyperparam can be used.

External Resources

All external resources used by our implementation of the transition-based generator
can be found in the subdirectory res. The paths to all of these files are defined in
main.PathList. The external resources have the following contents:

• res/lm.binary: The language model to be used by the generator. This language
model should be compatible with the Berkeley LM. For efficient generation, it
should be in binary format. By default, this file contains a 3-gram language model
trained on Gigaword (LDC2003T05) which can be found at www.keithv.com/

software/giga.

• res/english-bidirectional-distim.tagger: A model file for the Stanford POS tagger
used to annotate reference realizations and unknown words with POS tags.

• res/morph-verbalization.txt: A file containing tuples of verbs and corresponding
nouns, e.g. (develop,development) or (pray,prayer). This file is obtained from
amr.isi.edu and used for determining default realizations.

99

• res/verbalization.txt: A file containing nouns and corresponding AMR graph re-
alizations using PropBank framesets, e.g. (actor, person :ARG0-of act-01). It
is obtained from amr.isi.edu and used during the preparation of AMR graphs.

• res/concepts.txt: This file contains all concepts observed during training. It
can be refilled using the getConceptList(List<Amr> amrs) method provided by
misc.StaticHelper.

• res/bestpostags.txt: This file maps each non-PropBank concept to the POS tag
observed most often in the training data of LDC2014T12. It was obtained using
the getBestPosTagsMap(List<Amr> amrs) method of misc.StaticHelper.

• res/mergemap.txt: For each pair of vertices that has been merged during training,
this file contains the resulting (realization,pos)-tuple observed most often, e.g.
(long,more)→ (longer,JJ). It was obtained using the getMergeMap(List<Amr>

amrs) method of misc.StaticHelper.

• res/namedentities.txt: This file stores realizations observed for named entities
during training along with the number of times these realizations have been ob-
served.

• res/hyperparams.txt: This file contains the current configuration for all hyper-
parameters. For more details, please refer to the Javadoc documentation of
gen.Hyperparam and gen.Hyperparams.

100

