
Technische Universität Dresden

Masterarbeit

The Problem of Computing the
Most Probable Tree of a

Probabilistic Tree Automaton

Pius Friedrich Meinert

Fakultät Informatik
Institut für Theoretische Informatik

Lehrstuhl für Grundlagen der Programmierung

Betreuer:
Dipl.-Inf. Kilian Gebhardt

Erstgutachter:
Prof. Dr.-Ing. habil. Heiko Vogler

Zweitgutachter:
Dr.-Ing. Stefan Borgwardt

02. August 2019

Erklärung der Urheberschaft
Hiermit versichere ich, die vorliegende Arbeit selbstständig, ohne fremde Hilfe und
ohne Benutzung anderer als der von mir angegebenen Quellen angefertigt zu haben.
Alle aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
gekennzeichnet. Die Arbeit wurde noch keiner Prüfungsbehörde in gleicher oder ähnlicher
Form vorgelegt.

Dresden, 02. August 2019
Unterschrift von Pius Friedrich Meinert

iii

Aufgabenstellung
“The Problem of Computing the Most Probable Tree of a

Probabilistic Tree Automaton”

Technische Universität Dresden
Fakultät Informatik

Student: Pius Friedrich Meinert
Geburtsdatum: 8th January 1993
Matrikelnummer: 4661105
Studiengang: Master Informatik
Immatrikulationsjahr: 2016

Modul: Masterarbeit
Studienleistung: Masterarbeit
Umfang: 22 weeks, 29 CP
Beginn am: 1st March 2019
Einzureichen am: 2nd August 2019

Verantw. Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler
Betreuer: Dipl.-Inf. Kilian Gebhardt

Weighted tree automata (WTA) are well-studied devices in the field of theoretical
computer science [FV09]. Their application in natural language processing (NLP) is often
with the probabilistic semiring, the Viterbi semiring, and the tropical semiring for training
and decoding purposes: During weight training with the expectation/maximization
algorithm, the probabilistic semiring and the inside/outside algorithm [Bak79] are used
to compute the expected frequency of rule applications for the recognition of a certain
training sample. However, during decoding, i.e., the application of the automaton to new
inputs, the Viterbi semiring (or, equivalently the tropical semiring after conversion in a
negative log-domain) is applied to find the most probable run [Knu77; Ned03].

The main reason why WTA over the probabilistic semiring (also called probabilistic
tree automata (PTA)) are not used during decoding is the lack of a suitable algorithm to
find the most probable tree and its anticipated run-time. The probability of some tree is
the sum of the probabilities of all runs of the PTA on this tree. The probability of each
run is the product of the probabilities of the rules it comprises. Apparently, optimizing

1 / 4

this sum of products is NP-hard. This follows, on the one hand, from the NP-hardness of
finding the most probable tree of a probabilistic tree-substitution grammar [Sim02] and,
on the other hand, from the NP-hardness of finding the most probable string recognized
by a probabilistic finite (string) automaton (PFA) [CdlH00].

Thus, in order to apply PTA one either assumes that there is no ambiguity, e.g., by
ensuring that the PTA is deterministic and searching for the best run which coincides
with the most probable tree in this case. Alternatively, one simply assumes that the best
run is a good approximation of the most probable tree.

For some probabilistic finite automata A de la Higuera and Oncina [dlHO13b; dlHO13a]
have analyzed the problem of finding the most probable string recognized by A. In
particular, they

• device an algorithm that solves the decision problem whether given a PFA A,
a bound b ∈ N, and a probability p there exists a string w of length ≤ b with
probability > p in polynomial time [dlHO13b],

• show that there is a PFA A for which the most probable string has length exponential
in the size of A [dlHO13b],

• show that a string w having probability p is of bounded length [dlHO13a],

• give an algorithm that computes the most probable string (with probability p) in
time polynomial in the inverse of p [dlHO13a], and

• carry out experiments on synthetic automata to evaluate the quality of the bound
and differences between most probable run and most probable string. [dlHO13a]

Thus, for PFA it is possible to compute the most probable string but the run-time of the
presented algorithm depends on how probable the result is, which cannot be known in
advance.

A careful analysis of the techniques applied by de la Higuera and Oncina [dlHO13b;
dlHO13a] indicates that they can be generalized to probabilistic tree automata. Thus,
the tasks of Pius Meinert to solve in his master thesis are as follows:

• He shall show that finding the most probable tree recognized by some PTA is
NP-hard using a direct reduction of SAT similar to Sima’an [Sim02].

• He shall show that there is a PTA A for which the most probable tree has height
exponential in the size of A.

• He shall show that a tree ξ having probability p is of bounded size.

• He shall give an algorithm that computes the most probable tree (with probability
p) in time polynomial in the inverse of p.

• He shall implement this algorithm in a performant programming language and
carry out experiments on suitable synthetic PTA to evaluate the quality of the
bound and the differences between most probable run and most probable tree.

2 / 4

If the run-time of the implementation is empirically small enough to allow for experi-
ments with real-world grammars from the domain of NLP, then a facultative task is to
analyze differences in run-time and in quality compared to the most probable run (or
other relevant decoding strategies).

Requirements. The student’s work must satisfy the usual standards. The work
must be self-contained and complete with all necessary definitions and references. The
authorship of the content – including the own – must be clearly identifiable. Third-party
content, e.g. algorithms, constructions, definitions, and ideas, must be clearly marked by
appropriate references to the literature. Long literal citations shall be avoided. Where
applicable, it must be explained to what extent and for which purpose third-party content
was modified. The structure shall be clearly recognizable, and the reader shall be guided
well through the work. The presentation of notions and methods shall be mathematically
well-founded. The student shall provide explanations and examples for every major
notion, method, and construction. Where appropriate, illustrations shall complete the
presentation. Regarding diagrams, which illustrate phenomenons of experiments, it must
be clearly explained, which values are shown by the various axes and which dependencies
are shown between the values of these axes. Lemmas and theorems shall be proven as
complete as possible. The proofs shall be presented in an easily comprehensible way.

The implementation shall be documented in detail. The documentation shall be reason-
ably distributed over the source code and the written part of the work. All dependencies
and installation steps shall be documented. The installation shall be automated in a
script if this is possible in a platform independent way. Alternatively, a platform in-
dependent containerized version of the program shall be compiled. The student must
credibly show that the implemented programs and program parts function as required,
which shall be documented by appropriate example runs. Reported experiments shall be
automated in a single script including preprocessing steps to allow for reproducibility. If
the run-time of experiments is very high, then this script shall be parameterized such that
single experiments can be run independently, shared intermediate results are reused, and
experiments on a subset of the data can be run. In these cases also the parametrization
and results on the subset of the data shall be documented in the written report. The
student agrees on a later release of the implementation under a free software license.

Dresden, 26th February 2019

Unterschrift von Heiko Vogler Unterschrift von Pius Friedrich Meinert

3 / 4

References

[Bak79] James K Baker. “Trainable grammars for speech recognition”. In: The Journal
of the Acoustical Society of America 65.S1 (1979), pp. 132–132.

[CdlH00] Francisco Casacuberta and Colin de la Higuera. “Computational Complexity
of Problems on Probabilistic Grammars and Transducers”. In: Grammatical
Inference: Algorithms and Applications. Ed. by Arlindo L. Oliveira. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 15–24. isbn: 978-3-540-
45257-7.

[dlHO13a] Colin de la Higuera and Jose Oncina. “Computing the Most Probable String
with a Probabilistic Finite State Machine”. In: Proceedings of the 11th
International Conference on Finite State Methods and Natural Language
Processing. St Andrews, Scotland: Association for Computational Linguistics,
July 2013, pp. 1–8. url: http://www.aclweb.org/anthology/W13-1801.

[dlHO13b] Colin de la Higuera and Jose Oncina. “The most probable string: an al-
gorithmic study”. In: Journal of Logic and Computation 24.2 (Jan. 2013),
pp. 311–330. issn: 0955-792X. doi: 10.1093/logcom/exs049.

[FV09] Zoltán Fülöp and Heiko Vogler. “Weighted Tree Automata and Tree Trans-
ducers”. In: Handbook of Weighted Automata. Ed. by Manfred Droste, Werner
Kuich, and Heiko Vogler. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 313–403. isbn: 978-3-642-01492-5. doi: 10.1007/978-3-642-
01492-5_9.

[Knu77] Donald E. Knuth. “A generalization of Dijkstra’s algorithm”. In: Information
Processing Letters 6.1 (1977), pp. 1–5. issn: 0020-0190. doi: 10.1016/0020-
0190(77)90002-3.

[Ned03] Mark-Jan Nederhof. “Weighted Deductive Parsing and Knuth’s Algorithm”.
In: Computational Linguistics 29.1 (2003), pp. 135–143. doi: 10.1162/
089120103321337467.

[Sim02] Khalil Sima’an. “Computational complexity of probabilistic disambiguation”.
In: Grammars 5.2 (2002), pp. 125–151.

4 / 4

Abstract
In this work we show a number of results regarding the most probable tree (mpt) problem
for probabilistic tree automata (pta) A. We proof a bound on recognisable trees, showing
that trees ξ with a high probability are shallow, i.e., height(ξ) ≤ |A|2

PrA(ξ) . Furthermore,
we provide a pta construction for which the most probable tree is of superpolynomial
size. The computation of the most probable tree itself is NP-hard. This we show by a
polynomial-time reduction directly from 3-SAT. Lastly, present an algorithm for finding
the most probable tree in time dependent on the mpt’s probability.

ix

Contents

1. Introduction 1

2. Preliminaries 3
2.1. General mathematical definitions and notation 3
2.2. Alphabets and trees . 4
2.3. Automata . 7
2.4. Complexity theory . 10

3. Tree size properties 13
3.1. Probable tress are shallow . 13
3.2. A most probable tree of superpolynomial size 19

4. NP-hardness of the most probable tree problem 25
4.1. Further notation . 25
4.2. Reduction . 26

5. Most probable tree algorithm 33
5.1. Calculating the most probable string . 33
5.2. Generalisation to trees . 35
5.3. Complexity analysis . 38
5.4. Experiments . 42
5.5. Implementation . 47

6. Conclusion 51

Bibliography 53

List of Figures 55

A. Readme file 57

xi

1. Introduction

Natural language can be highly ambiguous: Even though an utterance is usually delivered
with a certain analysis in mind, more often than not, it can be interpreted in a number
of ways. Any attempt to model natural language should therefore incorporate such
ambiguity (Chomsky 1956).

Nondeterministic finite state automata are one of the most basic formalisms for such
purposes. Such an automaton employs state behaviour to gradually accept a sequence
of words forming a sentence. A run of an automaton for a sentence is a succession of
states where between these states the words of the sentence are recognised in order.
In consequence, multiple different runs for the same sentence can represent different
interpretations.

As not all of the various readings of a sentence are equiprobable, runs of an automaton
should not be either. Accordingly, weights are assigned to transitions in an automaton,
that is, to rules leading from one state to another while reading a word. Then, the weight
of a run can be determined by multiplying all transition weights in the run. In addition,
the score of a sentence is attained by summing up the weights of all its different runs. If
weights are real numbers in the range of 0 to 1, they can be interpreted as probabilities.
An automaton with this kind of weights is called probabilistic finite state automaton
(pfa) and defines a probability distribution over a set of sentences (or strings).

A natural generalisation for pfa is to allow for branching and, thus, establish prob-
abilistic tree automata (pta). Just as the former assign probabilities to strings, a pta
defines a probability distribution over a set of trees. Probabilistic tree automata allow
for modelling the syntactic structure of a sentence as it is for example captured in phrase
structure trees that are provided by treebanks like the Penn Treebank (Marcus, Santorini,
and Marcinkiewicz 1993). Tree automata in general have been proved to be useful in a
variety of natural language processing applications (May and Knight 2006; Knight and
May 2009; Koller and Kuhlmann 2011) and their formal properties have been studied
extensively in the past (Engelfriet 2015; Gécseg and Steinby 1984; Fülöp and Vogler
2009).

One of the most interesting problems for probabilistic tree automaton is that of
calculating the most probable tree. As this proves to be quite hard to determine,

1

1. Introduction

one typically settles for the computationally feasible approximation of finding the most
probable run. Unfortunately, the tree with the best run and the most probable tree do
not coincide in general.

In this work we examine the most probable tree problem and associated questions. This
is motivated by a number of results for the corresponding problem for pfa, i.e., finding
the most probable string. We show that these results are generalisable to probabilistic
tree automata.

Subsequently, we provide an overview over the thesis’ chapters: We start out with
the presentation of necessary preliminaries in Chapter 2. This chapter is predominantly
used to introduce the automata and related concepts that appear throughout the thesis.
Whenever appropriate, definitions and notation are strongly based on the reference work
for weighted tree automata by Fülöp and Vogler 2009.

Chapter 3 encompasses two results regarding the size of probable trees: The first,
described in Section 3.1, is a bound on the height of trees depending on the size of the
automaton and the tree’s inverse probability. Essentially that implies that probable trees
are shallow. This result is based on a proof by de la Higuera and Oncina 2013 (Section 3)
for pfa and the size of strings.

The remaining sections deal more directly with the most probable tree problem:
In Section 3.2 we provide a pta whose most probable tree is of a size greater than
polynomial in the size of the automaton. By that we show that there are instances of
pta for which determining the most probable tree cannot be accomplished in polynomial
time. The equivalent for pfa has been shown in Section 4.4 of de la Higuera and Oncina
2014.

While the preceding demonstrates that the most probable tree problem is not in the
class of problems that can be computed in nondeterministic polynomial time (NP),
Chapter 4 shows that the problem is NP-hard, i.e., at least as difficult as the hardest
problems in NP. Even though there exist proofs that already indicate NP-hardness for
this problem (cf. Sima’an 2002; Casacuberta and de la Higuera 2000), we present a short,
direct reduction from the NP-complete problem 3-SAT to the most probable tree problem.

Finally, albeit the problem being NP-hard, we develop an algorithm for the most
probable tree problem in Chapter 5. The algorithm is an adaptation of an algorithm that
finds the most probable string given a pfa (de la Higuera and Oncina 2013, Algorithm 1).
Besides showing that it is theoretically possible to calculate the best tree, we implement
the algorithm in the programming language Rust. With the help of that, we evaluate the
practical applicability of the algorithm and how well the best run approximation holds
up.

2

2. Preliminaries

In this chapter, we provide essential notation and definitions that are used throughout
this work. We begin by stating more widely known mathematical concepts and how they
are represented here. Afterwards, definitions for alphabets and trees are given which
are required for the subsequent section. That section introduces definitions that lead
to the notion of probabilistic tree automata. As a last point, a short section gives an
introduction to some concepts of complexity theory.

2.1. General mathematical definitions and notation

For the notions of sets and functions/mappings we use the usual notation. As for generally
known sets used here: N denotes the set of natural numbers including 0 and R the set of
real numbers including 0. The sets N+ = N \ { 0 } and R+ = R \ { 0 } denote the sets of
positive natural numbers and positive real numbers, respectively.

For every k ∈ N, the set {n ∈ N | 1 ≤ n ≤ k } is abbreviated by [k]. Similarly, for
every a, b ∈ R, the set { r ∈ R | a ≤ r ≤ b } is abbreviated by [a, b]. A parentheses instead
of a bracket indicates the exclusion of the bounding number, e.g., (a, b] = [a, b] \ { a }.

Let I and A be sets. An (I-indexed) family is a function f : I → A. Especially for
families we often write ai instead when we refer to an element f(i) ∈ A. Consequently,
such a family f is introduced by (ai | i ∈ I).

Throughout this thesis, the symbols + and · denote the usual addition and multiplica-
tion on the natural and real numbers. For an r ∈ R+, we denote the logarithm of r to base
2 by log(r). Let A,B be sets and f : A→ B a mapping. We define maxa∈A f(a) = { f(a) |
f(a′) ≤ f(a) for every a′ ∈ A } and argmaxa∈A f(a) = { a | f(a) ∈ maxa′∈A f(a

′) }.
A commutative semiring is a tuple (S,⊕,�,0,1) where

• ⊕ : S × S → S is an associative and commutative mapping,

• � : S × S → S is an associative and commutative mapping that distributes over ⊕,

• 0 ∈ S is the identity element of ⊕ and the absorbing element of �, and

• 1 ∈ S is the identity element of �.

3

2. Preliminaries

Oftentimes a semiring (S,⊕,�,0,1) is referred to only by its carrier set S. The semiring
that is used almost exclusively here, is the probabilistic semiring ([0, 1], ·,+, 0, 1).

Probability Let Ω be a countable, nonempty set. A σ-algebra is a set A ⊆ P(Ω) where
Ω ∈ A, for all A ∈ A it holds that Ω \ A ∈ A, and if A1, A2, . . . ∈ A then

⋃∞
i=1Ai ∈ A.

Let A be a σ-algebra. A probability measure is a function Pr: A → [0, 1] such that
Pr(Ω) = 1 and for every countable sequence A1, A2, . . . ∈ A of pairwise disjoint sets, i.e.,
Ai 6= Aj =⇒ Ai ∩Aj = ∅,

Pr

(∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai).

Let ω ∈ Ω and A,B ⊆ Ω. We abbreviate Pr({ω }) by Pr(ω) and Pr(A ∩B) by Pr(A,B).
Given pairwise disjoint sets B1, B2, . . . ⊆ Ω with

⋃∞
i=1Bi = Ω: Due to the law of total

probability, we have

Pr(A) =

∞∑
i=1

Pr(A,Bi).

Since for our purposes more rudimentary probability definitions are sufficient, we omit the
definition of random variables and do not delve deeper into probability theory. Instead,
for a countable set A, we primarily use the definition of a probability distribution as a
mapping Pr: A→ [0, 1] such that

∑
a∈A Pr(a) = 1.

2.2. Alphabets and trees

An alphabet is a finite, nonempty set whose elements are called symbols. A finite sequence
of symbols from an alphabet Γ is called a word over Γ (often just referred to as string).
The set of all words over Γ is denoted by Γ∗. Consider a word w = w1w2 . . . wn where
n ∈ N, w1, . . . , wn ∈ Γ. If n = 0, we call w the empty word and denote it by ε.

A ranked alphabet is a tuple (Σ, rk) where Σ is an alphabet and rk : Σ → N is a
mapping of symbols to natural numbers which we refer to as rank. For every k ∈ N,
we define Σ(k) = {σ ∈ Σ | rk(σ) = k }. Especially when introducing ranked alphabets
we will directly provide the symbols including their ranks by writing σ(k), signifying
that rk(σ) = k. As the rank mapping is thereby implicitly given, we often identify the
alphabet Σ with the tuple (Σ, rk).

4

2.2. Alphabets and trees

Definition 1. Let Σ be a ranked alphabet and X = {x1, x2, . . . } be a set of variables
disjoint from Σ. The set of trees over Σ and X, denoted by TΣ(X), is the smallest set
T ⊆ (Σ ∪X ∪ { (,), , })∗ s.t.

1. X ⊆ T and

2. if k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T , then σ(ξ1, . . . , ξk) ∈ T .

As a shorthand, TΣ(∅) is denoted as TΣ. Given a set of variables X, we often refer to
a tree ζ ∈ TΣ(X) \ TΣ as prefix (in literature often called contexts) and to a tree ξ ∈ TΣ
as complete.

Let Σ be a ranked alphabet, X = {x1, x2, . . . } be a set of variables disjoint with
Σ and ξ ∈ TΣ(X) a tree. In the following we define operations on trees (cf. Fülöp
and Vogler 2009, Section 2.2) and use the abbreviation ξ = σ(ξ1, . . . , ξk) for: There are
k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(X) such that ξ = σ(ξ1, . . . , ξk). We define the height,
size, and set of positions of trees as functions height : TΣ(X)→ N, size : TΣ(X)→ N, and
pos : TΣ(X)→ P(N∗). First, height(ξ) ∈ N is recursively defined as

height(ξ) =

1 if ξ ∈ X

1 + maxi∈[k] height(ξi) if ξ = σ(ξ1, . . . , ξk).

Secondly, size(ξ) ∈ N is defined as

size(ξ) =

1 if ξ ∈ X

1 +
∑

i∈[k] size(ξi) if ξ = σ(ξ1, . . . , ξk).

Thirdly, the set pos(ξ) ⊆ N∗ is inductively defined as

pos(ξ) =

{ ε } if ξ ∈ X

{ ε } ∪ { ip | i ∈ [k], p ∈ pos(ξi) } if ξ = σ(ξ1, . . . , ξk).

A path for a tree ξ (path) is a sequence of positions π = p1p2 . . . pk ∈ pos(ξ)k where for
all i ∈ {2, . . . , k} there is a c ∈ N+ with pi = pi−1c (continuous path).

Let p ∈ pos(ξ). The label of ξ at p is defined by

ξ(p) =


ξ if ξ ∈ X

σ if ξ = σ(ξ1, . . . , ξk) and p = ε

ξi(pi) if ξ = σ(ξ1, . . . , ξk) and p = ipi for i ∈ [k], pi ∈ pos(ξi).

5

2. Preliminaries

The subtree of ξ at p is recursively defined by

ξ|p =

ξ if p = ε

ξi|pi if ξ = σ(ξ1, . . . , ξk) and p = ipi for i ∈ [k], pi ∈ pos(ξi).

Let ζ ∈ TΣ(X). The replacement of the subtree of ξ at p by ζ is defined by

ξ[ζ]p =


ζ if p = ε

σ(ξ1, . . . , ξi−1, ξi[ζ]pi , ξi+1, . . . , ξk)
if ξ = σ(ξ1, . . . , ξk) and
p = ipi for i ∈ [k], pi ∈ pos(ξi).

Let ξ1, . . . , ξn ∈ TΣ. We define substituting every occurrence of a variable xi in ξ by tree
ξi, tree substitution on ξ with ξ1, . . . , ξn, by

ξ(ξ1, . . . , ξn) =



ξi if ξ ∈ X and ξ = xi

ξ if ξ ∈ X and ξ 6= xi

ξ if ξ ∈ TΣ

ξ[ξi]p(ξ1, . . . , ξn)
if ξ = σ(ξ1, . . . , ξk),

i ∈ [k], p ∈ pos(ξ) and ξ(p) = xi.

As a last operation for trees, we define the set of complete trees reachable from a prefix
tree. That is, trees that that can be constructed by replacing all variables in prefix trees
with complete trees.

Definition 2. Let Σ be a ranked alphabet, X a set variables and ζ ∈ TΣ(X) \ TΣ a
prefix tree. We define the set of reachable trees from ζ as

TΣ|ζ = { ζ(ξ1, . . . , ξn) ∈ TΣ | ξ1, . . . , ξn ∈ TΣ }.

The concepts and the naming of prefix trees (normally contexts), complete trees (usually
just trees), tree substitution and reachable trees are fairly uncommon. We therefore
provide a short illustration in Example 1.

Example 1. Let Σ = {σ(2), γ(1), α(0), β(0) } be a ranked alphabet and X = {x1, x2, . . . }
a set of variables. An example for a prefix tree in TΣ(X)\TΣ is given by ζ = σ(γ(x1), x2).
Let ξ1 = α and ξ2 = β. The complete tree ξ = σ(γ(α), β) is the result of the tree
substitution ζ(ξ1, ξ2). Consequently, ξ is reachable from prefix ζ, i.e., ξ ∈ TΣ|ζ . A
depiction of ξ and ζ is provided in Figure 1. 4

6

2.3. Automata

σ

γ

x1

x2

(a) ζ ∈ TΣ(X) \ TΣ

σ

γ

α

β

(b) ξ ∈ TΣ|ζ

Figure 1.: Prefix tree ζ and complete tree ξ of Example 1.

Lastly, we define tree series, assigning elements of a semiring set to trees:

Definition 3 (Fülöp and Vogler 2009, Section 2.4). Let X be a set with Σ ∩X = ∅
and S a semiring. A tree series over Σ, X and S (or for short: tree series) is a mapping
r : TΣ(X)→ S. For every ξ ∈ TΣ(X), the element r(ξ) ∈ S is called the coefficient of ξ
and is denoted by (r, ξ).

The set of all tree series is denoted by S〈〈TΣ(X)〉〉.

2.3. Automata

As most of our results are based on works about probabilistic finite automata, we initially
state their definition as a reference. These automata recognise words over an alphabet
(strings) and assign probabilities to them.

Definition 4 (cf. de la Higuera and Oncina 2013, Definition 1). A probabilistic finite
automaton (for short: pfa) is a tuple B = (Q,Γ,M, I, F) where:

• Q is a finite nonempty set, the set of states.

• Γ is the input alphabet with Γ ∩Q = ∅.

• M : Q× Γ×Q→ [0, 1] is the complete transition function.

• I : Q→ [0, 1] is a mapping of initial probabilities.

• F : Q→ [0, 1] is a mapping of final probabilities.

These pfa are a special case of weighted finite automata. A natural generalisation of
such string automata is to build tree automata that accept tree series. An introduction to
weighted tree automata and important results are represented by Fülöp and Vogler 2009.
Our definitions are primarily based on theirs. In the following let S be a commutative
semiring.

7

2. Preliminaries

Definition 5 (Fülöp and Vogler 2009, Definition 3.2). A weighted tree automaton (over S)
(for short: wta) is a tuple A = (Q,Σ, S, µ, ν) where:

• Q is a finite nonempty set, the set of states.

• Σ is the ranked input alphabet with Σ ∩Q = ∅.

• µ = (µσ | σ ∈ Σ) is a family of transition mappings µσ : Qk ×Q→ S for σ ∈ Σ(k).

• ν : Q→ S is a mapping of root weights.

Let X be a set of variables. A run of A on ξ ∈ TΣ(X) is a mapping κ : pos(ξ)→ Q;
the set of all runs of A on ξ is denoted by RA(ξ). For every κ ∈ RA(ξ) and p ∈ pos(ξ),
the run induced by κ at position p is the run κ|p ∈ RA(ξ|p) and defined for every
p′ ∈ pos(ξ|p) by κ|p(p′) = κ(pp′). For a tree ξ ∈ TΣ(X), we define the weight function
of a run wt: RA(ξ) → [0, 1] recursively as follows: If x ∈ X and κ ∈ RA(x), then
wt(κ) = 1. Let k ∈ N, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ(X), κ ∈ RA(σ(ξ1, . . . , ξk)). We define
wt(κ) = wt(κ|1) · . . . · wt(κ|k) · µσ((κ(1), . . . , κ(k)), κ(ε)). The run semantics of A is the
tree series rA ∈ S〈〈TΣ(X)〉〉 such that for every ξ ∈ TΣ(X)

(rA, ξ) =
∑

κ∈RA(ξ)

wt(κ) · νκ(ε).

We call a wta over the probabilistic semiring S = ([0, 1],+, ·, 0, 1) a probabilistic tree
automaton (pta) if the following two properties hold:

1. The root weight mapping ν forms a probability distribution over all states q ∈ Q,
i.e.,

∑
q∈Q νq = 1 and for every q ∈ Q the transition mappings form probability

distributions over the input symbols σ ∈ Σ and tuples of states (q1, . . . , qk) ∈ Qk,
i.e., ∀q ∈ Q :

∑
σ∈Σ

∑
q1,...,qk∈Q µσ((q1, . . . , qk), q) = 1 (proper).

2. The tree series rA ∈ S〈〈TΣ〉〉 forms a probability distribution over all trees ξ ∈ TΣ,
i.e.,

∑
ξ∈TΣ(rA, ξ) = 1 (consistent).

Since all pta are defined over the probabilistic semiring, its declaration is omitted for a pta
A = (Q,Σ, µ, ν). Additionally, for a ptaA and tree ξ ∈ TΣ we denote the coefficient (rA, ξ)
as PrA(ξ) and call it probability of ξ. Note that PrA(κ, ξ) = wt(κ)·νκ(ε) forms a probability
distribution over ξ ∈ TΣ and κ ∈ RA(ξ) and therefore

∑
ξ∈TΣ

∑
κ∈RA(ξ) Pr(κ, ξ) = 1.

8

2.3. Automata

Prefix probabilities Let A = (Q,Σ, µ, ν) be a probabilistic tree automaton, X a set of
variables and ζ ∈ TΣ(X) \ TΣ a prefix tree. Due to properness and the definition of the
weight function wt, we have

PrA(ζ) =
∑

ξ∈TΣ|ζ

PrA(ξ).

Notation and nomenclature Whenever a pta is introduced, we only provide transitions
and root weights that are non-zero. All other possible transitions or root weights for
states have the value 0. Furthermore, states with non-zero root weight are often referred
to as final states. For a pta A and tree ξ ∈ TΣ(X), if PrA(ξ) 6= 0, we say A accepts ξ or
recognises ξ, interchangeably. In order to avoid having to mention the set of states Q for
a pta A every time, we define the size of A as |A| = |Q|.

Visual representation Whenever we visualise probabilistic tree automata, we depict
them as functional hypergraphs: Each state is represented by a node (circle). Its
identifier is provided within the circle. A doubly lined circle for a state q ∈ Q indicates
νq 6= 0. Should q be the only final state, i.e., νq = 1, further indication of root weights is
omitted. Otherwise it is given in the description of the figure. A transition is depicted
by a hyperedge (squares) with its symbol within the box and its probability next to it.
The associated states can be inferred from the connected edges in a counterclockwise
order. Should a transition be presented on its own, it is visualised as shown in Figure 3a.
Similarly, runs are shown with the state for each position next to the position in tree
itself (Figure 3b).

Example 2. Probabilistic tree automaton A = (Q,Σ, µ, ν) where

Q = { q0, q1, q2 },

Σ = {σ(2), γ(1), α(0), β(0) },

µσ = { ((q1, q2), q0)→ 1.0, ((q1, q2), q1)→ 0.1 },

µγ = { ((q1), q1)→ 0.5, ((q2), q1)→ 0.3 },

µα = { ((ε), q1)→ 0.1, ((ε), q2)→ 0.5 },

µβ = { ((ε), q2)→ 0.5 },

νq0 = 0.9, and

νq1 = 0.1.

A depiction of this pta is given in Figure 2.

9

2. Preliminaries

q0

q1 q2

σ
1.0

γ
0.3

σ
0.1

γ
0.5

α
0.1

α
0.5

β
0.5

Figure 2.: A depiction of the probabilistic tree automaton as described in Example 2
with root weights νq0 = 0.9 and νq1 = 0.1.

We provide a short exemplary calculation for the weight of a run and the probability of
a tree: Let ξ = σ(γ(α), β) ∈ TΣ be a tree and κ ∈ RA(ξ) a run of A on ξ where κ(ε) = q0,
κ(1) = q1, κ(2) = q2, and κ(11) = q2. The weight of κ is

wt(κ) = wt(κ|1) · wt(κ|2) · µσ((q1, q2), q0)

= wt(κ|11) · µγ((q2), q1) · µβ((ε), q2) · 1.0

= µα((ε), q2) · 0.3 · 0.5 · 1.0

= 0.5 · 0.3 · 0.5 · 1.0 = 0.075.

The probability of ξ is

PrA(ξ) = wt(κ) · νq0 +
∑

κ′∈RA(ξ)\{κ }

wt(κ′) · νκ′(ε)

= 0.075 · 0.9 + 0.0235 = 0.091.

Run κ and a transition from µσ are visualised in Figure 3. 4

2.4. Complexity theory

We reduce the section regarding complexity theory to the presentation of relevant problems
and requirements for the proof of NP-hardness. Each problem consists of an instance,
describing the parameters of the problem, and a question, expressing the problem to
solve. Presented here are two kinds of problems: Optimisation problems for which the
best answer from all possible answers is sought and decision problems that have only one

10

2.4. Complexity theory

σ

q1 q2

q0

(a) Transition ((q1, q2), q0)→ 1.0 ∈ µσ.

σ

γ

α

β

q0

q1

q2

q2

(b) Run κ ∈ RA(σ(γ(α), β)).

Figure 3.: Visualisation of a transition and a run for the pta from Example 2.

correct answer for the given input. We can transform optimisation problems into decision
problems by repeatedly answering the decision problem while modifying its instance
parameters. The eponymous problem of this work is the most probable tree problem
(MPT) for pta:

Problem 1 (most probable tree problem (MPT)).

Instance A pta A = (Q,Σ, µ, ν).

Question What is the most probable tree ξ given A, i.e., ξ ∈ argmaxξ′∈TΣ PrA(ξ
′)?

MPT is an optimisation problem. As such, we can transform it into a decision problem
(MPT-decision). There, we do not directly seek the most probable tree but a tree whose
probability exceeds a given threshold. Repeatedly increasing the threshold and checking
if the answer to the decision problem is still yes, eventually provides the answer to the
optimisation problem MPT.

Problem 2 (most probable tree decision problem (MPT-decision)).

Instance A pta A = (Q,Σ, µ, ν) and a real number λ ∈ [0, 1].

Question Is there a tree ξ ∈ TΣ, such that PrA(ξ) ≥ λ?

Another problem we need is a version of the boolean satisfiability problem. We do
not go into detail but regarding notation we use the following: For some n ∈ N+, a
set of variables is given by a set X = {x1, . . . , xn }. The set of corresponding literals
is defined by Lit(X) = X ∪ { sx | x ∈ X }. As a representation for the truth values true
and false we often use the symbols > and ⊥, respectively. We make use of the decision
problem 3-SAT. For a k ∈ N+, a 3-SAT formula is a formula f =

∧
i∈[k]Ci with clauses

Ci = (ui1 ∨ ui2 ∨ ui3) and literals uij ∈ Lit(X).

11

2. Preliminaries

Problem 3 (3-SAT).

Instance A boolean formula f in conjunctive normal form with at most 3 literals per
clause over variables x1, . . . , xn.

Question Is the formula f satisfiable, i.e., is there an assignment of > or ⊥ to each
variable such that f evaluates to >?

Of interest here, is the class of NP-hard problems. Problems in this class are at least
as hard as any problem that is in NP. That is, these problems are not necessarily in NP
but are as least as hard as any problem that can by solved by a nondeterministic turing
machine in polynomial-time.

Polynomial-time reduction In order to show that a decision problem D is NP-hard
it suffices to proof that it is at least as hard is an NP-complete decision problem, that
is, a problem that is both in NP and NP-hard. 3-SAT, for example, is NP-complete.
Showing this can be done by a polynomial-time reduction from an NP-complete problem
Q to D which is denoted by Q �p D. For that, we provide a method to transform an
arbitrary instance of Q to an instance of D, show that the transformation can be done in
deterministic polynomial-time and prove that the reduction is answer-preserving. The
latter meaning that for every instance of NP-complete problem Q we have: The instance’s
answer is yes if and only if the answer to the transformed instance (of problem D) is yes.

12

3. Tree size properties

For probabilistic finite automata, de la Higuera and Oncina provided two results on
the length of recognisable words. We generalise these results to probabilistic tree
automata. First, in Section 3.1, we give an upper bound on the height of recognisable
trees. Subsequently, we show the construction of a pta for which the most probable tree
is of superpolynomial size in the size of the automaton (Section 3.2).

3.1. Probable tress are shallow

This first theorem is a generalisation of de la Higuera and Oncina 2013, Proposition 1.
With that, we show a relation between the structure of a tree, in particular its height,
and its probability. Their proposition states that probable strings are short. We adapt
their proof and essentially show that probable trees are shallow.

Theorem 1. Let A be a pta and ξ ∈ TΣ a tree with PrA(ξ) > 0. Then height(ξ) ≤ |A|2
PrA(ξ) .

The theorem follows from the subsequent lemma. But instead of having a fixed tree,
we show a bound on a tree’s height given a lower bound of its probability.

Lemma 1. Let A be a pta and p ∈ R+ a real number. If there is a tree with probability
at least p, then its height is at most b = |A|2

p .

Proof. Let ξ be a tree of height h, with probability PrA(ξ) = p, and n = |A|. With-
out loss of generality let Q = { q1, . . . , qn } be the set of states for A. We fix a
path π = p1p2 . . . ph ∈ pos(ξ)h of length h. In case there are multiple such paths
in ξ, we arbitrarily choose the leftmost. For each i ∈ [n], let RiA(ξ) = {κ ∈ RA(ξ) |
i = min(argmaxk∈[n] |{ p ∈ π | κ(p) = qk }|) } be the set of runs for which qi ∈ Q is the
most used state on path π. Runs that have no unique most used state on π are arbitrarily
assigned to the set with the smallest index i. Then R1

A, . . . , R
n
A are pairwise disjoint and⋃

i∈[n]R
i
A(ξ) = RA(ξ) holds.

13

3. Tree size properties

There is at least one index j ∈ [n] such that
∑

κ∈RjA(ξ)
PrA(κ, ξ) ≥ p

n . This can be
easily shown for j ∈ argmaxi∈[n]

∑
κ∈RiA(ξ) PrA(κ, ξ):

PrA(ξ) =
∑

κ∈RA(ξ)

PrA(κ, ξ) ≥ p

⇔
n∑
i=1

∑
κ∈RiA(ξ)

PrA(κ, ξ) ≥ p

⇒
n∑
i=1

∑
κ∈RjA(ξ)

PrA(κ, ξ) ≥ p

⇔
∑

κ∈RjA(ξ)

PrA(κ, ξ) ≥
p

n
. (1)

Let κ ∈ RjA(ξ) and k ∈ [h] the smallest index such that κ(pk) = qj . For each of the
other indices k′ ∈ { k + 1, . . . , h } with κ(pk′) = qj we define a run κk′ of A on the tree
ξ[ξpk′]|pk where for each position p ∈ pos(ξ[ξpk′]|pk):

κk′(p) =

κ|pk′ (c) if p = pkc

κ(p) otherwise.

We denote this set of new (run, tree)-pairs as Alt(κ, j). Each element (κ′, ξ′) ∈ Alt(κ, j)
is at least as likely as (κ, ξ) because only a subset of transitions is applied. Furthermore,
since with κ the state qj appears at least h

n times on π, i.e., |{ p ∈ π | κ(p) = qj }| ≥ h
n ,

we have that

|Alt(κ, j)| ≥ h

n
− 1. (2)

Next up, we will form a sum over all alternative (run, tree)-pairs for runs in RjA(ξ).
Unfortunately, there may be cases where different runs yield the same pair when modified
(Example 3). In order to avoid adding an alternative pair multiple times, we only consider
unique pairs. Previously shown bounds are still applicable due to the following lemma
(proven later) which shows that an alternative pair has more probability mass than that
of all the (run, tree)-pairs it originated from combined.

Lemma 2. Let κ1, . . . , κk be different runs in RjA(ξ), and (κ′, ξ′) be a pair belonging to⋂k
i=1 Alt(κi, j). Then PrA(κ

′, ξ′) ≥
∑k

i=1 PrA(κi, ξ).

14

3.1. Probable tress are shallow

σ

γ

γ

γ

α

σ

α α

q1

q3

q3

q2

q3

q1

q3 q3

(a) κ1 ∈ R3
A(ξ).

σ

γ

γ

γ

α

σ

α α

q1

q3

q2

q3

q3

q1

q3 q3

(b) κ2 ∈ R3
A(ξ).

σ

α σ

α α

q1

q3 q1

q3 q3

(c) (κ′, ξ′) ∈ Alt(κ1, 3) ∩Alt(κ2, 3).

Figure 4.: Two different runs with the same alternative (run, tree)-pair (Example 2).

Example 3. Let A = ({ q1, q2, q3 }, {σ(2), γ(1), α(0) }, µ, ν) be a probabilistic tree automa-
ton and ξ = σ(γ(γ(γ(α))), σ(α, α)) ∈ TΣ a tree. Given runs κ1, κ2 ∈ R3

A(ξ), Figure 4
shows that both runs share an alternative (run, tree)-pair (κ′, ξ′) ∈ Alt(κ1, 3)∩Alt(κ2, 3)
when cut from position pk = 1 to position pk′ = 1111. 4

Let U =
⋃
κ∈RjA(ξ)

Alt(κ, j) be the set of all unique alternative (run, tree)-pairs for
runs in RjA(ξ). Summing over the probability of all pairs in U yields:∑

(κ′,ξ′)∈U

PrA(κ
′, ξ′) ≥

∑
(κ′,ξ′)∈U

∑
κ∈RjA(ξ):

(κ′,ξ′)∈Alt(κ,j)

PrA(κ, ξ) (Lemma 2)

=
∑

κ∈RjA(ξ)

∑
(κ′,ξ′)∈Alt(κ,j)

PrA(κ, ξ)

≥
∑

κ∈RjA(ξ)

(
h

n
− 1

)
· PrA(κ, ξ) (Equation 2)

≥
(
h

n
− 1

)
· p
n
. (Equation 1)

Each pair (κ′, ξ′) ∈ U represents a run κ′ of the pta A on ξ′. Note that all of these are
distinct and none represent a run on the original tree ξ. Since the tree series rA ∈ S〈〈TΣ〉〉
is consistent

(∑
ξ∈TΣ PrA(ξ) = 1

)
, we can safely add the probability PrA(ξ) = p to

PrA(U) without exceeding 1:

15

3. Tree size properties

∑
(κ′,ξ′)∈U

PrA(κ
′, ξ′) + PrA(ξ) ≤ 1

⇒
(
h

n
− 1

)
· p
n
+ p ≤ 1

⇔ (h− n) · p+ pn2 ≤ n2

⇔ h− n ≤ n2 · (1− p)
p

⇔ h ≤ n2 · (1− p)
p

+ n

≤ n2

p
.

It remains to provide the proof for Lemma 2. As this requires another helping statement,
we shall give that first. The following lemma states that the weight of all runs with the
same root state, does not exceed one.

Lemma 3. Let A = (Q,Σ, µ, ν) be a pta and X = {x1, x2, . . . } a set of variables. Then,
for every tree ξ ∈ TΣ(X) and q ∈ Q the sum over all possible runs on ξ with root state q
is less than one: ∑

κ∈RA(ξ):
κ(ε)=q

wt(κ) ≤ 1.

Proof. We prove the statement by structural induction on ξ.

Induction hypothesis: Let ξ ∈ TΣ(X). Then it holds that∑
κ∈RA(ξ):
κ(ε)=q

wt(κ) ≤ 1. (IH)

Induction base: For every x ∈ X, q ∈ Q:∑
κ∈RA(x):
κ(ε)=q

wt(κ) = 1. (Definition of wt(x) for x ∈ X)

16

3.1. Probable tress are shallow

Induction step: Let k ∈ N, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ(X) and ξ = σ(ξ1, . . . , ξk) ∈ TΣ(X).
Then,

∑
κ∈RA(ξ):
κ(ε)=q

wt(κ) =
∑

q1,...,qk∈Q
µσ((q1, . . . , qk), q) ·

∑
(κ1,...,κk)∈

RA(ξ1)×···×RA(ξk):
∀i∈[k]:κi(ε)=qi

k∏
i=1

wt(κi)

=
∑

q1,...,qk∈Q
µσ((q1, . . . , qk), q) ·

∑
κ1∈RA(ξ1):
κ1(ε)=q1

. . .
∑

κk∈RA(ξk):
κk(ε)=qk

wt(κ1) · . . . · wt(κk)

=
∑

q1,...,qk∈Q
µσ((q1, . . . , qk), q) ·

 ∑
κ1∈RA(ξ1):
κ1(ε)=q1

wt(κ1)

 · . . . ·
 ∑
κk∈RA(ξk):
κk(ε)=qk

wt(κk)


=

∑
q1,...,qk∈Q

µσ((q1, . . . , qk), q) ·
k∏
i=1

∑
κi∈RA(ξi):
κi(ε)=qi

wt(κi)

≤
∑

q1,...,qk∈Q
µσ((q1, . . . , qk), q) ·

k∏
i=1

1 (IH)

≤ 1. (µ proper)

Proof of Lemma 2. Let κ̃ ∈ RjA(ξ) be a run. Note that each pair (κ̃′, ξ̃′) ∈ Alt(κ̃, j) has
κ̃′(ε) = κ̃(ε) because building an alternative (run, tree)-pair never changes the state
at the root position ε. Since all runs κ1, . . . , κk share an alternative (run, tree)-pair
(κ′, ξ′) ∈

⋂k
i=1 Alt(κi, j), we can infer that for all i ∈ [k] : κi(ε) = κ′(ε).

For an alternative run (where qj is the most used state), a run is cut from the first
position with state qj to a subsequent occurrence of qj . Therefore, the first time qj is
seen on the specified path in a run corresponds to the first occurrence of the state in
one of its alternative runs. Let p be the first position in κ′ such that κ′(p) = qj . In
consequence, for all i ∈ [k], we have κi(p) = qj . As (κ′, ξ′) ∈

⋂k
i=1 Alt(κi, j), all κi are

cut starting from position p and, in order to yield the same alternative (run, tree)-pair,
are cut up to the same position p′.

Hence, the parts unique to each κi can be defined as runs κp
′

i |p (∀p′′ ∈ pos(ξ[x]p′) :
κp

′

i (p
′′) = κi(p

′′)) on the same tree ξ[x]p′ |p ∈ TΣ({x }) and their weight wt(κp
′

i |p) is com-
posed of those transition weights that are part of wt(κi) but not wt(κ′). In consequence,

17

3. Tree size properties

the probability of κi is separable as follows:

PrA(κi, ξ) = wt(κi) · νκi(ε)

= wt(κ′) · wt(κi)
wt(κ′)

· νκ′(ε)

= wt(κ′) · wt(κp
′

i |p) · νκ′(ε). (3)

The runs κp
′

i |p are all different runs for the same tree and have the same state at the
root position. Due to Lemma 3 we conclude that

∑k
i=1wt(κ

p′

i |p) ≤ 1 and can deduce a
bound on PrA(κ

′, ξ′):

PrA(κ
′, ξ′) = wt(κ′) · νκ′(ε)

≥ wt(κ′) · νκ′(ε) ·
∑

κ∈RA(ξ[x]p′ |p):
κ(ε)=κ′(ε)

wt(κ) (Lemma 3)

≥ wt(κ′) · νκ′(ε) ·
k∑
i=1

wt(κp
′

i |p)

= wt(κ′) · νκ′(ε) ·
k∑
i=1

wt(κi)

wt(κ′)
(Equation 3)

=
k∑
i=1

wt(κi) · νκi(ε)

=

k∑
i=1

PrA(κi, ξ).

Even though the proofs are quite similar, in some places non-trivial adjustments had
to be made as the original proof is somewhat awry. Nevertheless, we have shown that
the original proposition for pfa is generalisable to pta. A stronger bound, that depends
on the tree’s size instead of its height, would have been preferable. Especially, since the
bound proves to be useful in the time complexity analysis of Section 5.3. The current
proof technique of cutting trees on a path to get a set whose probability we know, seems
to be inadequate for that task, though.

18

3.2. A most probable tree of superpolynomial size

3.2. A most probable tree of superpolynomial size

The most probable tree of a probabilistic tree automaton does not necessarily have to be
small and can in fact be quite large. We provide a pta for which the size of the most
probable tree is more than polynomial in the size of the automaton. The construction is
based on a probabilistic finite automaton which is presented by de la Higuera 1997 and,
more recently, by de la Higuera and Oncina 2014.

For the proof, we begin by building probabilistic tree automata that recognise monadic
trees over ranked alphabet {α(0), γ(1) }. More specifically, these pta Ai only give non-
zero probabilities to trees whose size is one plus a multiple of ψi ∈ N+. Afterwards, we
combine such automata to a new pta. That pta assigns the highest probabilities to trees
whose sizes (minus one) is a multiple of most ψi.

Theorem 2. There is a pta A for which the size of the most probable tree is greater
than polynomial in the size of A.

Proof. Let θ ∈ R+ be a positive real number, Σ = {α(0), γ(1) } a ranked alphabet and
Ψ = {ψ1, . . . , ψz } a set of prime numbers. For each i ∈ [z] we construct a probabilistic
tree automaton Ai = (Qi,Σ, µi, νi) where

Qi = { ij | j ∈ [ψi] },

µiγ = { ((i1), iψi)→ 1− θ },

∪ { ((iu+1), iu)→ 1 | ∀u ∈ [ψi − 1] },

µiα = { ((ε), iψi)→ θ }, and

νiiψi
= 1.

The pta Ai for ψi = 5 is depicted in Figure 5.

Note, that for all trees ξ ∈ TΣ \ { γkψi(α) | k ∈ N } a pta Ai assigns a probability of
zero, i.e., PrAi(ξ) = 0. On the other hand, for k ∈ N, trees that have exactly k times ψi
the symbol γ have a probability of PrAi(γkψi(α)) = θ(1− θ)k.

19

3. Tree size properties

i1

γ

i2
γ

i3

γ

i4

γ
i5

γ

α
θ

1

1

1

11− θ

Figure 5.: The pta for ψi = 5 with the only non-zero root weight νii5 = 1.

Next, we combine the probabilistic tree automata with a new final state. This results
in the pta A = (Q,Σ, µ, ν) where

Q =
⋃
i∈[z]

Qi ∪ { f },

µγ =
⋃
i∈[z]

µiγ ∪
{
((i1), f)→

1

z
| ∀i ∈ [z]

}
,

µα =
⋃
i∈[z]

µiα, and

νf = 1.

The construction for a set of prime numbers { 2, 3, 5, . . . , ψz } is illustrated in Figure 6.
In the following we consider a specific k =

∏
i∈[z] ψi. The probability of a tree in TΣ

with a size of k + 1 can easily be calculated by examining, how much each part (pta for
a prime ψi) contributes:

PrA(γ
k(α)) =

∑
i∈[z]

1

z
· θ(1− θ)

k
ψi

−1
=
θ

z
·
∑
i∈[z]

(1− θ)
k
ψi

−1
.

Since k is the least common multiple of all primes ψi, any tree of size less or equal than
k is not accepted by at least one of the pta. Therefore, for a k′ < k:

PrA(γ
k′(α)) ≤ θ

z
·
∑

i∈[z−1]

(1− θ)
k′
ψi

−1
<
θ

z
·
∑

i∈[z−1]

1 = θ · z − 1

z
.

20

3.2. A most probable tree of superpolynomial size

1

γ
2

γ

γ

1
z

α
θ

1

1− θ
1

γ

2

γ
3

γ

γ 1
z

α
θ

1

1

1− θ

1

γ

2

γ 3

γ

4

γ

5γ
γ

1
z

α
θ

1

1

1

1

1− θ

1

γ
2γ

ψz

γ

γ

1
z

α
θ

1
1

1− θ

f

γ 1
z

Figure 6.: The pta for a set of prime numbers { 2, 3, 5, . . . , ψz }. The only non-zero root
weight is νf = 1. Note that the identifiers for the states are simplified here.
For example: Instead of state i3 (for a prime ψi), we just write 3.

21

3. Tree size properties

For a good value of θ we can show PrA(γ
k(α)) > θ · z−1

z . To this end we first show

PrA(γ
k(α)) =

θ

z
·
∑
i∈[z]

(1− θ)
k
ψi

−1

≥ θ

z
·
∑
i∈[z]

(1− θ)k (k ≥ k
ψi
− 1)

= θ · (1− θ)k

and subsequently determine the required value of θ:

θ · (1− θ)k > θ · z − 1

z

⇔ (1− θ)k > z − 1

z

⇔ (1− θ) > k

√
z − 1

z

⇔ θ < 1− k

√
z − 1

z
.

Accordingly, for θ < 1 − k

√
z−1
z and k′ < k we have PrA(γ

k(α)) > PrA(γ
k′(α)), that

is, no tree of size less than k + 1 can have a higher probability than the tree γk(α).
Consequently, the most probable tree is of size greater than or equal k + 1. Now it
remains to show that the size k+1 =

∏
i∈z ψi+1 of such a probable tree increases faster

than polynomial in the automaton’s size |A| =
∑

i∈z ψi + 1.

We apply the idea of de la Higuera 1997 and construct a specific set of primes. First,
note that for all n ∈ N+ there exists a number ψ ∈ [n, n + n

11
20] that is prime (Heath-

Brown and Iwaniec 1979). In consequence, there is a prime ψi in every interval [2i, 2i+1).
For a j ∈ N+ we construct the set Ψj = {ψi | i ∈ [j] } that contains j primes each of
which is part of a different interval [2i, 2i+1). With such a more specific set of primes,
we can infer an upper bound on the size |A| of the constructed automaton and a lower
bound on the size of the tree γk(α):

|A| = 1 +
∑
ψ∈Ψj

ψ < 1 +
∑
i∈[j]

2i+1 < 2j+2

size(γk(α)) = 1 +
∏
ψ∈Ψj

ψ ≥ 1 +
∏
i∈[j]

2i = 1 + 2
∑
i∈[j] i > 2

j2

2 .

22

3.2. A most probable tree of superpolynomial size

Finally, for any fixed n ∈ N there exists a j0 ∈ N+ such that for all j > j0 it holds that

|A|n < (2j+2)
n
< 2

j2

2 < size(γk(α)).

Let j0 > 6n. Then, for any j > j0, we have

2
j2

2 > 2
j
2
·j0 (j > j0)

> 2
j
2
·6n (j0 > 6n)

= 2n·3j = (23j)
n

≥ (2j+2)
n (j > j0 > 0)

and in conclusion, the size of the tree γk(α) grows faster than any polynomial of the
number of states |A|.

Originally, de la Higuera and Oncina 2014 claimed their string to be exponential in
the size of the constructed pfa. We think that with the proof at hand one can only show
superpolynomial size. However, this suffices to indicate the complexity class of the mpt
problem: Without a special encoding, it would take more than polynomial-time to read
or output the most probable tree. Therefore, the mpt problem cannot be in the class of
problems that are computable in nondeterministic polynomial time on a nondeterministic
turing machine (NP).

23

4. NP-hardness of the most probable tree
problem

In this chapter we provide a short proof for the NP-hardness of the most probable tree
problem for probabilistic tree automata. Theoretically, there are a couple of ways to prove
MPT to be NP-hard: We could relate the most probable parse problem of stochastic
tree substitution grammars, which has been proved NP-hard (Sima’an 2002), to pta.
And alternatively, since the most probable string problem (MPS) for probabilistic finite
automaton is already shown to be NP-hard by Casacuberta and de la Higuera 2000, we
could argue that pta can simulate pfa and therefore that MPT is at least as difficult to
solve as MPS.

Here, we provide a direct reduction from the NP-complete problem 3-SAT to MPT-
decision. The reduction, as it is presented in Section 4.2, is based on Sima’an 2002
(Section 5.2). It represents the proof to the following theorem:

Theorem 3. The most probable tree problem (MPT) for pta is NP-hard.

Proof. The proof is given by a polynomial-time reduction from the NP-complete decision
problem 3-SAT to MPT-decision, i.e., 3-SAT �p MPT-decision. The reduction and an
accompanying example are provided in Section 4.2.

4.1. Further notation

Preliminary for the subsequent section we need to modify the pta definition. We allow a
pta to have transitions that may accept greater parts of a tree with their state behaviour
instead of just a single symbol:

Definition 6. A probabilistic tree automaton A = (Q,Σ, µ, ν) is in extended form if the
family of transition mappings µ = (µσ | σ ∈ Σ) contains for σ ∈ Σ(k) transition mappings

µσ : TΣ(Q)k ×Q→ [0, 1].

This extended form is for convenience. Otherwise, in order to recognise more than
one symbol at once with the same state behaviour, we would be required to introduce a

25

4. NP-hardness of the most probable tree problem

number of new states. Such states would only be used to remember a certain condition
while the bigger, desired tree is recognised.

Basically, such pta in extended form are the equivalent to probabilistic regular tree
grammars (prtg) such as pta are the equivalent to prtg in normal form (cf. Engelfriet 2015,
Definition 3.21). Even though prtg and pta can be used interchangeably (cf. Engelfriet
2015, Theorem 3.25) we want to avoid the additional overhead of introducing prtg.

In the following section a pta in extended form is constructed but we will often simply
refer to it as pta. This does not harm the result of the reduction because in a similar
manner as one can show that for each regular tree grammar there exists a regular tree
grammar in normal form (Engelfriet 2015, Theorem 3.22), it is possible to show the
following:

Corollary 1. Each probabilistic tree automaton in extended form has an equivalent
probabilistic tree automaton.

Proof sketch. Given pta A = (Q,Σ, µ, ν) in extended form. Assume, for a σ ∈ Σ, the
mapping µσ contains a transition ((ξ1, . . . , ξi, . . . , ξk), q) → p where i ∈ [k] and ξi /∈ Q.
Construct a new pta B = (Q∪{ q′ },Σ, µ′, ν ∪{ q′ → 0 }) where q′ /∈ Q and µ′ is obtained
from µ by replacing the transition ((ξ1, . . . , ξi, . . . , ξk), q)→ p in µσ by the two following
transitions: ((ξ1, . . . , q

′, . . . , ξk), q)→ p in µσ and ((ξi|1, . . . , ξi|k′), q′)→ 1 in µξi(ε) where
rk(ξi(ε)) = k′. The associated tree series is preserved, i.e., rA = rB. This process is
repeated finitely often until the resulting pta is not in extended form.

4.2. Reduction

In this section we provide a polynomial-time reduction from the NP-complete problem
3-SAT to the most probable tree decision problem. Thereby, we provide the proof
for Theorem 3. After stating the general approach for this reduction, we show how
to construct a pta in extended form for an arbitrary 3-SAT instance. The specific
probabilities for the pta and the resulting threshold for the decision problem are derived
subsequently. Finally, we briefly demonstrate that the construction is indeed achievable
in polynomial-time and answer preserving.

Intuition For a 3-SAT formula to be satisfiable, two conditions have to be met: First,
each clause has at least one literal that is evaluated to true and thus, the whole clause
evaluates to true. Secondly, each variable is consistently assigned the same value for each
clause. The pta we construct in the following accepts trees that represent the 3-SAT
instance and truth assignments to each literal. There are two kinds of runs for each such

26

4.2. Reduction

tree: Runs that ensure a consistent assignment and runs that guarantee each clause to
be satisfied.

Construction Let X = {X1, . . . , Xn } be a set of variables and k ∈ N+. For i ∈
[k], j ∈ [3], let uij ∈ Lit(X) be literals and ci = (ui1 ∨ ui2 ∨ ui3) clauses. Given 3-SAT
formula f =

∧
i∈[k] ci, let for each j ∈ [n] the number of occurrences of literals xj or sxj

in f be denoted by nj . Furthermore, let p0 = 1 − 2
∑

j∈[n] θ ·
(
1
2

)nj and for j ∈ [n] let
pj = θ ·

(
1
2

)nj for a θ ∈ R+ with constraints that are determined later on. In order to
associate parts of the construction more easily with the original formula, its symbols for
literals and clauses are reused. For formula f , we construct pta Af = (Q,Σ, µ, ν) where

Q = {F } ∪ {Ci | i ∈ [k] } ∪
{
U ij | i ∈ [k], j ∈ [3]

}
,

Σ =
{
f (k)

}
∪
{
ci

(3) | i ∈ [k]
}
∪
{
uij

(1) | i ∈ [k], j ∈ [3]
}
∪
{
>(0),⊥(0)

}
,

µf = { ((C1, . . . , Ck), F)→ p0 } (Type 1)

∪
⋃
j∈[n]

⋃
b∈{>,⊥}

{
((c1(ξ

1
1 , ξ

1
2 , ξ

1
3), . . . , ck(ξ

k
1 , ξ

k
2 , ξ

k
3)), F)→ pj

}
(Type 2)

such that, for each i′ ∈ [k] and j′ ∈ [3], we have

ξi
′
j′ =



ui
′
j′(>) if ui′j′ = xj ∧ b = >

ui
′
j′(⊥) if ui′j′ = xj ∧ b = ⊥

ui
′
j′(⊥) if ui′j′ = sxj ∧ b = >

ui
′
j′(>) if ui′j′ = sxj ∧ b = ⊥

U i
′
j′ otherwise,

µci =

{
((ui1(>), U i2, U i3), Ci)→

1

3

}
∪
{
((U i1, u

i
2(>), U i3), Ci)→

1

3

}
∪
{
((U i1, U

i
2, u

i
3(>)), Ci)→

1

3

}
for each i ∈ [k], (Type 3)

µuij
=

{
((b), U ij)→

1

2
| b ∈ {>,⊥}

}
for each i ∈ [k] and j ∈ [3], and (Type 4)

νF = 1.

A demonstration of how the transitions are built for a specific 3-SAT formula is presented
in Example 4. Figure 7 shows the accompanying visual representations of these transitions
and compatible probabilities.

27

4. NP-hardness of the most probable tree problem

Example 4. For the following specific instance of a 3-SAT formula (Barton, Berwick,
and Ristad 1987), we exemplarily show what transitions are constructed for the reduction:

f = c1 ∧ c2
= (u11 ∨ u12 ∨ u13) ∧ (u21 ∨ u22 ∨ u23)

= (x1 ∨ sx2 ∨ x3) ∧ (sx1 ∨ x2 ∨ sx3).

Note that for this example we replace the abstract symbols for literals by the (negated)
variables themselves, e.g., sx2 instead of u12. Visual representations of the transitions with
suitable probabilities are shown in Figure 7. These transitions are described subsequently:

(a) For each j ∈ [3] and b ∈ {>,⊥}, we add a transition that consistently assigns b
to variable xj at each occurrence of xj . The transition that consistently assigns >
to variable xj , for example, accepts the tree with root f that has children c1 and
c2. Furthermore, for k ∈ [2], i ∈ [3], the children of ck are states Uki , except if the
corresponding literal is xj or sxj : In case it is xj we add child xj(>) and if it is sxj

we add sxj(⊥). Transitions of this kind are depicted in Figure 7a.

(b, c) In order to guarantee that the formula is satisfied, we first include a transition that
recognises f(C1, C2) (Figure 7b). Subsequently, we add transitions that accept for
a state Ck (k ∈ [2]), a tree that ensures that at least one of its literals evaluates
to >. For C2 we add for example a transition that accepts a tree with c2 at its
root and U2

1 , U2
2 and sx3(>) as children. Figures 7b and 7c show the corresponding

illustrations.

(d) Finally, there are positions where the truth assignment does not matter. These are
signified by states Uki (k ∈ [2], i ∈ [3]). For these we include transitions that accept
a tree consisting of the literal and either assignment, e.g., for state U1

2 , the trees
sx2(>) and sx2(⊥). These transitions are shown in Figure 7d.

4

Deriving probabilities and the threshold The probabilities for transitions in µuij
and

µci (i ∈ [k], j ∈ [n]) are 1
2 and 1

3 , respectively. Their choice is relatively straightforward
as the resulting pta is proper and therefore the probabilities of all transitions with the
same target state sum up to 1.

The values p0 = 1− 2
∑

j∈[n] θ ·
(
1
2

)nj and pj = θ ·
(
1
2

)nj (j ∈ [n]) for transitions in µf
are based on the following observations: First, the pta for a formula f accepts trees that

28

4.2. Reduction

f

c1

x1

>

U1
2 U1

3

c2

sx1

⊥

U2
2 U2

3

j = 1
b = >

F
f

c1

U1
1 sx2

⊥

U1
3

c2

U2
1

x2

>

U2
3

j = 2
b = >

F
f

c1

U1
1 U1

2
x3

⊥

c2

U2
1 U2

2 sx3

>

j = 3
b = >

F

f

c1

x1

⊥

U1
2 U1

3

c2

sx1

⊥

U2
2 U2

3

j = 1
b = ⊥

F
f

c1

U1
1 sx2

>

U1
3

c2

U2
1

x2

⊥

U2
3

j = 2
b = ⊥

F
f

c1

U1
1 U1

2
x3

>

c2

U2
1 U2

2 sx3

⊥

j = 3
b = ⊥

F

(a) pj = 2
13

f

C1 C2

F

(b) p0 = 1
13

c1

x1

>

U1
2 U1

3

j = 1
C1

c1

U1
1 sx2

>

U1
3

j = 2
C1

c1

U1
1 U1

2
x3

>

j = 3
C1

c2

sx1

>

U2
2 U2

3

j = 1
C2

c2

U2
1

x2

>

U2
3

j = 2
C2

c2

U2
1 U2

2 sx3

>

j = 3
C2

(c) p = 1
3

x1

>

x1

⊥

sx2

>

sx2

⊥

x3

>

x3

⊥

U1
1 U1

1 U1
2 U1

2 U1
3 U1

3

sx1

>

sx1

⊥

x2

>

x2

⊥

sx3

>

sx3

⊥

U2
1 U2

1 U2
2 U2

2 U2
3 U2

3

(d) p = 1
2

Figure 7.: Visual representation of all transitions of the pta created for 3-SAT formula
f = c1 ∧ c2 = (x1 ∨ sx2 ∨ x3) ∧ (sx1 ∨ x2 ∨ sx3).

29

4. NP-hardness of the most probable tree problem

f

c1

x1

>

sx2

⊥

x3

⊥

c2

sx1

⊥

x2

>

sx3

>

F

U1
2 U1

3 U2
2 U2

3

(a) Run for consistent assignment of variable
x1.

f

c1

x1

>

sx2

⊥

x3

⊥

c2

sx1

⊥

x2

>

sx3

>

F

C1 C2

U1
2 U1

3 U2
1 U2

2

(b) Run ensuring each clause is satisfied by
assigning > to x1 and ⊥ to x3.

Figure 8.: Trees with a consistent assignment for x1, x2 and x3 that satisfy formula f .

only differ at the leaf positions, i.e., in their assignment of truth values. Secondly, there
are two kinds of runs for each tree ξ:

1. For a j ∈ [n]: A transition of type 2 is followed by 3k − nj transitions of type 3.
The resulting tree has a consistent assignment of variable xj . As this can be done
for all variables, there are at most n runs of this kind for ξ (Figure 8a). These runs
have a probability of

pj ·
(
1

2

)3k−nj
= θ ·

(
1

2

)3k

.

2. For the second kind of run (Figure 8b), we have a transition of type 1 followed by
k transitions of type 3 such that each clause is satisfied and finally, 2k transitions
of type 4 for the assignment of the remaining literals. There are at most 3k runs of
this kind for ξ because we have 3 different options of satisfying a clause for each
clause. The probability of such runs is

p0 ·
(
1

3

)k
·
(
1

2

)2k

=

1− 2
∑
j∈[n]

θ ·
(
1

2

)nj · (1

3

)k
·
(
1

2

)2k

.

The values for parameter θ and the threshold λ are chosen such that for a tree ξ we have
PrAf (ξ) ≥ λ if and only if ξ represents a satisfying and consistent variable assignment for
formula f . Such a tree ξ has n runs of the first kind (consistent assignment) and at least

30

4.2. Reduction

one run of the second kind (satisfied clauses). For that reason we set the threshold at

λ = n · θ ·
(
1

2

)3k

+

1− 2
∑
j∈[n]

θ ·
(
1

2

)nj · (1

3

)k
·
(
1

2

)2k

.

There are, however, two constraints on parameter θ:

1. The pta is proper and therefore we have for all j ∈ [n] : 0 ≤ pj ≤ 1 and 0 ≤ p0 ≤ 1.

In consequence, 0 ≤ θ ≤ 2nj and 0 ≤ θ ≤
(
2
∑

j′∈[n] ·
(
1
2

)nj′)−1
. As a result of

2
∑
j′∈[n]

·
(
1

2

)nj′
≥
(
1

2

)nj

⇔

2
∑
j′∈[n]

·
(
1

2

)nj′−1

≤ 2nj ,

the latter upper bound is stricter and therefore the first constraint on θ is:

0 ≤ θ ≤

2
∑
j′∈[n]

·
(
1

2

)nj′−1

. (upper bound)

2. In order to infer from the probability of the tree whether it represents a consistent
and satisfying alignment, we have to make sure that runs of the second kind
(satisfied clauses) cannot make up for missing runs of the first kind (consistent
assignment). Since there can be at most 3k of the second kind of runs, we require
that

3k ·

1− 2
∑
j∈[n]

θ ·
(
1

2

)nj · (1

3

)k
·
(
1

2

)2k

< θ ·
(
1

2

)3k

⇔

1− 2
∑
j∈[n]

θ ·
(
1

2

)nj < θ ·
(
1

2

)k

⇔

(1

2

)k
+ 2

∑
j∈[n]

(
1

2

)nj−1

< θ. (lower bound)

The lower bound is strictly smaller than the upper bound. Hence, it is feasible to find a
value for θ satisfying both bounds.

31

4. NP-hardness of the most probable tree problem

Polynomiality Given a formula with k clauses and n variables, the construction of the
corresponding pta is achievable in deterministic polynomial-time in k and n: For the pta
in extended form we have |Q| = 1+ k+3k, |Σ| = 1+ k+3k+2 and 1+ 2n+3k+2 · 3k
transitions. Each transition is of size at most 1 + 5k (counting the involved states and
symbols). Furthermore, the transformation of the pta in extended form to its normal
form can be done in time polynomial in k and n as well. This is because for a transition
at most 3k new states and transitions have to be added. What’s more, the parameter θ
and threshold λ are calculable in polynomial-time and as all accepted trees are of size
1 + 7k, computing their probabilities is possible in polynomial-time, too.

Answer preserving Finally, it has to be shown that the reduction preserves the answers
from the original 3-SAT instance. Therefore, whenever there is a satisfying and consistent
assignment of variables for formula f , there is a tree in pta Af with a probability higher
than the threshold and vice versa.

Corollary 2. Let f be a 3-SAT formula and Af = (Q,Σ, µ, ν) be the corresponding pta
from the reduction with threshold λ. Formula f is satisfiable if and only if there is a tree
ξ ∈ TΣ with PrAf (ξ) ≥ λ.

Proof. We show that, first, formula f is satisfiable implies there is a tree ξ with probability
PrAf (ξ) ≥ λ and, secondly, a tree ξ with PrAf (ξ) ≥ λ implies f is satisfiable:

“⇒”: If f is satisfiable there is a consistent assignment of variables and for each clause
there is at least one literal that evaluates to true. A tree ξ that corresponds to the
assignment has n runs of the first kind that ensure a consistent assignment for each
variable and at least one second kind run where each clause is guaranteed to be
satisfied. Due to the choice of λ, we have PrAf (ξ) ≥ λ.

“⇐”: Having a tree ξ for which PrAf (ξ) ≥ λ implies that ξ has n runs of the first kind
(consistency) and at least one of the second kind (satisfying). This is because
parameter θ has been chosen such that the probability of additional runs of the
second kind cannot make up for missing runs of the first kind. Hence, the assignment
of variables represented by ξ is a consistent and satisfying assignment of variables
for formula f .

This concludes the polynomial-time reduction of the NP-complete problem 3-SAT to
the most probable tree decision problem, i.e., 3-SAT �p MPT-decision. In effect, this
proves MPT to be NP-hard (Theorem 3). Provided the tree is not specially encoded,
Section 3.2 shows that MPT cannot be in NP and therefore not NP-complete: There may
be an instance where the mpt is of a size greater than a polynomial of the size of the pta.

32

5. Most probable tree algorithm

The problem of finding the most probable tree is one of the most interesting problems
for probabilistic tree automata. Unfortunately, as is shown in Chapter 4, this problem is
NP-hard. This result suggests that finding a solution is computationally expensive and
hence, practically intractable. Oftentimes one settles for calculating the best run and
assumes that it is a good approximation of the most probable tree. Probabilistic finite
state automata (pfa) are subject to the same problem since finding the most probable
string has been proved to be NP-hard as well (Casacuberta and de la Higuera 2000).
Nevertheless, de la Higuera and Oncina 2013 devised an algorithm (Algorithm 1) that
computes the most probable string. We adapt this algorithm in order to generalise it to
probabilistic tree automata.

First, we present the algorithm for calculating the most probable string in Section 5.1.
Using this as a foundation, we subsequently generalise the algorithm for use with
probabilistic tree automata and highlight differences (Section 5.2). In Section 5.3 the
corresponding time complexity analysis for the mpt algorithm can be found. How well
this holds up in an implementation is illustrated by experiments in Section 5.4. Some
details regarding the implementation itself follow immediately afterwards (Section 5.5).

5.1. Calculating the most probable string

The algorithm for computing the most probable string of a probabilistic finite automaton
by de la Higuera and Oncina 2013 is based on two concepts: The potential probability of
a string that defines an upper bound to the probability of a string and a priority queue
that helps to track what strings are worth extending.

Let B = (Q,Γ,M, I, F) be a pfa and w ∈ Γ∗ a word over alphabet Γ. The potential
probability of w is defined as PPB(w) = min(PrB(wΓ

∗), |B|
2

|w|) (de la Higuera and Oncina
2013, Definition 2). While the second part is useful during the runtime analysis, the
first part is essential to the algorithm: PrB(wΓ

∗) defines the prefix probability of string
w = w1 . . . wn. It can be easily calculated by means of matrix multiplication (cf. Cognetta,
Han, and Kwon 2018, Section 2.1):

33

5. Most probable tree algorithm

PrB(wΓ
∗) = I ·M(w1) · . . . ·M(wn) ·M(Γ∗) · F,

where M(Γ∗) =
∑∞

i=0M(Γ)i = (1−M(Γ))−1 and 1 denotes the identity matrix of
suitable dimensions.

Algorithm 1: most probable string alg. (de la Higuera and Oncina 2013, Alg. 1)
Input: probabilistic finite automaton B = (Q,Γ,M, I, F)
Data: priority queue Q containing strings w ∈ Γ∗ sorted by PPB(w)
Output: most probable string ŵ ∈ argmaxw∈Γ∗ PrB(w)

1 Q← [ε]
2 ŵ ← ε
3 while not Q.is_empty do
4 w ← Q.pop_best()
5 if PPB(w) > PrB(ŵ) then
6 if PrB(w) > PrB(ŵ) then
7 ŵ ← w
8 foreach a ∈ Γ do
9 if PPB(wa) > PrB(ŵ) then

10 Q.insert(wa,PPB(wa))

11 else
12 return ŵ

13 return ŵ

In Algorithm 1 we gradually build strings and keep a priority queue of those strings
which is sorted according to their respective potential probabilities. Basically, the
algorithm keeps extending the string in the queue with the highest potential probability
until it is worse than the best string found so far. In detail it does the following: First,
the priority queue Q and the current best word ŵ are initialised with the empty string
(lines 1-2). In each iteration of the main loop (line 3-13) the string w with the
highest potential probability in the queue is examined (line 4). In case w has the
potential to be better than the current best string ŵ (line 5), extensions of w are
considered (lines 8-10) and should the string w already have a higher probability than
ŵ, the current best string is updated (lines 6-7). In consequence, a string w cannot
only be taken into consideration as a candidate for the most probable string but one may
even extend w with a symbol a ∈ Γ should wa’s potential probability be high enough.
Should the queue’s best word w have a lower potential probability than the probability
of the current best ŵ, we return ŵ as the most probable string.

34

5.2. Generalisation to trees

5.2. Generalisation to trees

The most challenging element in the adaptation of the most probable string algorithm to
probabilistic tree automata was the definition of potential probability for trees. Even
though the probability bound of de la Higuera and Oncina 2013 (Proposition 1) proved to
be generalisable to pta, the calculation of prefix probabilities does not work as similar for
trees. We failed to find a way to use matrix multiplication to determine the probability of
a prefix tree. Mostly since we could not appropriately incorporate branching transitions
in the multiplication.

In fact, the calculation of prefix probabilities proved to be even simpler for trees. For
a prefix tree ξ ∈ TΣ(X) \ TΣ the difficulty was: There is at least one position p ∈ pos(ξ)
with ξ(p) ∈ X and at some point we have to determine wt(κ|p). Now we simply define
wt(κ|p) = 1. An intuitive explanation for this is that, due to properness, we have

wt(κ|p) =
∑
σ∈Σ

∑
q1,...,qk

µσ((q1, . . . , qk), κ|p(ε)) = 1.

Using the result of Theorem 1, the potential probability of trees is therefore defined as
follows:

Definition 7. Let pta A = (Q,Σ, µ, ν) and ξ ∈ TΣ(X). The potential probability of ξ
given A is

PPA(ξ) = min

(
PrA(ξ),

|A|2

height(ξ)

)
.

As for the algorithm itself: Finding the most probable tree (Algorithm 2) differs
from the most probable string algorithm due to the fact that a tree is either a prefix
or complete. A string can be a candidate for the most probable string and extended at
the same time. A tree is only one of the two: Either a complete tree that could be a
candidate for the mpt or a prefix tree whose variables we can substitute (thus extending
the tree). As a result the mpt algorithm differs from the original algorithm as follows.

Initially, since we cannot instantiate the priority queue with an empty tree, the priority
queue is filled with trees σ(x1, . . . , xk) for k ∈ N, σ ∈ Σ(k) (lines 2-3). In the main
loop (lines 5-15) we have to check if either of two cases is true for the best element
in the queue ξ: If ξ ∈ TΣ (lines 7-8), it is complete and the most probable tree we
were looking for. The latter holds because extending other trees in the priority queue
cannot yield a complete tree ξ′ ∈ TΣ such that PrA(ξ

′) > PrA(ξ) since extending a tree
can never improve its probability. This is because at the position in each run where a
variable is, the weight is 1 but by extending a tree, we apply at that position a transition
with a weight of at most 1 and the total weight can at best stay the same. In case

35

5. Most probable tree algorithm

ξ ∈ TΣ(X)\TΣ (lines 9-15), we look for the first position p ∈ pos(ξ) where ξ(p) ∈ X in
a breadth-first manner and for each k ∈ N, σ ∈ Σ(k) extended trees ξ′ = ξ[σ(x1, . . . , xk)]p

are created (lines 10-11). This tree ξ′ is then inserted into the priority queue given
that its potential probability is not smaller than the current best complete tree ξ̂ ∈ TΣ in
the priority queue (lines 12-15). If also ξ′ ∈ TΣ, then the current best tree is updated
(lines 13-14). An exemplary execution of the algorithm on the pta from Example 2
(cf. Figure 2) is given in Example 5.

Algorithm 2: most probable tree algorithm
Input: probabilistic tree automaton A = (Q,Σ, µ, ν)
Data: priority queue Q containing trees ξ ∈ TΣ(X) sorted by PPA(ξ)
Output: most probable tree ξ̂ ∈ argmaxξ∈TΣ PrA(ξ)

1 Q← []
2 foreach σ ∈ Σ do
3 Q.insert(σ(x1, . . . , xk),PPA(σ(x1, . . . , xk)))

4 ξ̂ ← undefined
5 while not Q.is_empty do
6 ξ ← Q.pop_best()
7 if ξ ∈ TΣ then
8 return ξ
9 else

10 foreach σ ∈ Σ do
11 ξ′ ← ξ.extend(σ)
12 if PPA(ξ

′) > PPA(ξ̂) or ξ̂.is_undefined then
13 if ξ′ ∈ TΣ then
14 ξ̂ ← ξ′

15 Q.insert(ξ′,PPA(ξ
′))

16 return ξ̂

Example 5. Exemplary execution of Algorithm 2 that calculates the most probable
tree for the pta A as it is provided in Example 2 (cf. Figure 2). Each row of the chart
describes the contents of the priority queue Q, the current best complete tree ξ̂ ∈ TΣ and
the queues most probable tree ξ ∈ TΣ(X) after each iteration of the main loop (after
line 15). Except for the first row which displays the initialisation of those values (after
line 4).

36

5.2. Generalisation to trees

q0

q1 q2

σ
1.0

γ
0.3

σ
0.1

γ
0.5

α
0.1

α
0.5

β
0.5

Figure 2.: A depiction of the probabilistic tree automaton as described in Example 2
with root weights νq0 = 0.9 and νq1 = 0.1. (Repeated from Chapter 2 for
Example 5.)

it. Q ξ̂,PPA(ξ̂) ξ,PPA(ξ)

0 [(σ(x1, x2), 0.91),

(γ(x1), 0.08),

(α, 0.01),

(β, 0)]

� �

1 [(σ(γ(x3), x2), 0.728),

(σ(α, x2), 0.091),

(σ(σ(x3, x4), x2), 0.091),

(γ(x1), 0.08),

(α, 0.01),

(β, 0)]

� σ(x1, x2),
0.91

2 [(σ(γ(x3), β), 0.364),

(σ(γ(x3), α), 0.364),

(σ(α, x2), 0.091),

(σ(σ(x3, x4), x2), 0.091),

(γ(x1), 0.08),

(α, 0.01),

(β, 0)]

� σ(γ(x3), x2),
0.728

3 [(σ(γ(x3), α), 0.364),

(σ(γ(γ(x4)), β), 0.182),

(σ(γ(α), β), 0.091),

(σ(α, x2), 0.091),

(σ(σ(x3, x4), x2), 0.091),

(γ(x1), 0.08),

(σ(γ(β), β), 0.06825),

(α, 0.01),

(β, 0)]

σ(γ(α), β),
0.091

σ(γ(x3), β),
0.364

4 [(σ(γ(γ(x4)), β), 0.182),

(σ(γ(γ(x4)), α), 0.182),

(σ(γ(α), β), 0.091),

(σ(α, x2), 0.091),

(σ(σ(x3, x4), x2), 0.091),

. . .]

σ(γ(α), β),
0.091

σ(γ(x3), α),
0.364

5 [(σ(γ(γ(x4)), α), 0.182),

(σ(γ(α), β), 0.091),

(σ(α, x2), 0.091),

(σ(σ(x3, x4), x2), 0.091),

. . .]

σ(γ(α), β),
0.091

σ(γ(γ(x4)), β),
0.182

6 [(σ(γ(α), β), 0.091),

(σ(α, x2), 0.091),

(σ(σ(x3, x4), x2), 0.091),

. . .]

σ(γ(α), β),
0.091

σ(γ(γ(x4)), α),
0.182

37

5. Most probable tree algorithm

As the top of the queue is a complete tree, the algorithm terminates in iteration 7.
This best tree in Q is returned as the tree that is recognised with the highest probability
by pta A: σ(γ(α), β) ∈ argmaxξ′∈TΣ PrA(ξ

′) with PrA(σ(γ(α), β)) = 0.091. 4

5.3. Complexity analysis

For the complexity analysis of Algorithm 2, we begin by eliciting what parts of it dominate
the runtime. After that, we look into what operations are used there and what their time
complexity is. The overall theoretical runtime depends on the size of two values which
we determine subsequently.

Coarse analysis At the beginning of the algorithm (lines 1-4) there are only |Σ|
insertions into the empty priority queue Q. The algorithm’s runtime is therefore dominated
by the main loop (lines 5-15). This main loop terminates either if the mpt ξ̂ has been
found (lines 7-8) or if Q is empty (line 5). Since the latter only happens if the pta
A has no mpt, we determine how many loops there can be until the mpt is found: Let
V = { ξ ∈ TΣ(X) | PPA(ξ) ≥ p̂ } be a set of viable trees whose potential probability is
at least as high as the highest probability p̂. In case the best tree ξ in Q (line 6) has
potential probability PPA(ξ) ≥ p̂ it is viable. If PPA(ξ) < p̂, then it is not in V and we
cannot improve its probability by extending (as we mentioned before). As all trees in Q
have a lower probability, the mpt must have been found already. In conclusion, until the
mpt is found, every best element in Q we look at has to be viable. Therefore, the loop is
executed at most |V | many times.

Operations of the loop The following operations are executed during the main loop:

• ξ.extend and ξ ∈ TΣ
Extending a tree can be accomplished in constant time: Since a tree is extended in
a breadth-first manner we simply keep a list of variables in the tree. Whenever we
extend ξ with a tree σ(x1, . . . , xk), the first variable in the list will be substituted
by that tree and variables x1, . . . , xk are appended to the list. An empty list of
variables indicates that ξ is complete and therefore ξ ∈ TΣ can be done in constant
time as well.

• PPA(ξ)

Let m be the number of transitions in a pta A. By memorising the probability of
each tree, one can calculate the probability of a newly created, extended tree ξ in
time O(|A| ·m · height(ξ)).

38

5.3. Complexity analysis

• Q.insert(ξ,PPA(ξ)) and Q.pop_best()
A simple implementation of a priority queue with a binary heap (Williams 1964)
has a worst case time complexity for pop_best and insert of O(log(|Q|)).

As the priority queue Q grows quite large (cf. Section 5.3.2), pop_best and insert
clearly dominate the runtime of the other operations. Let |Qmax| be the maximum size
of the priority queue. Taking the loop over all symbols (lines 10-15) into account, we
get a time complexity of:

O(|V | · (|Σ|+ 1) · log(|Qmax|)).

In the following, we determine how many viable trees (|V |) there can be and how large
the priority queue can grow (|Qmax|).

5.3.1. Size of viable set

In order to asses how many viable trees there can be, we need to introduce the concept
of ununifiable sets of trees. This is borrowed from the idea of substituting variables
by terms in formal expressions. Here, ununifiability deals with prefix trees that cannot
be extended to the same complete tree and the substitution of variables takes place
independently of other variables. The concept is defined as follows:

Definition 8. A set of trees U ⊆ TΣ(X) is called ununifiable if for two different trees in
U their respective sets of reachable trees (Definition 2) are disjoint, i.e.,

∀ξ, ζ ∈ U : ξ 6= ζ =⇒ TΣ|ξ ∩ TΣ|ζ = ∅.

Since each tree ξ ∈ TΣ has at most one prefix in an ununifiable set of trees, we can
deduce that such sets adhere to the consistency constraint of pta. With that one can
show a bound on the size of ununifiable sets of trees whose elements’ probability has a
known lower bound.

Lemma 4. Let U ⊆ TΣ(X) be an ununifiable set of trees and A a pta. Then∑
ζ∈U PrA(ζ) ≤ 1.

39

5. Most probable tree algorithm

Proof. ∑
ζ∈U

PrA(ζ) =
∑
ζ∈U

∑
ξ∈TΣ|ζ

PrA(ξ) (prefix probability, Section 2.3)

=
∑
ξ∈TΣ

∑
ζ∈U :
ξ∈TΣ|ζ

PrA(ξ)

≤
∑
ξ∈TΣ

PrA(ξ) (U ununifiable)

= 1. (A consistent)

Corollary 3. Let U ⊆ TΣ(X) be an ununifiable set of trees such that ∀ζ ∈ U : PrA(ζ) >

p. Then |U | < 1
p .

Proof. ∑
ζ∈U

PrA(ζ) ≤ 1 (Lemma 4)

⇒ |U | · p < 1 (∀ζ ∈ U : PrA(ζ) > p)

⇔ |U | < 1

p
.

Let A = (Q,Σ, µ, ν) be a pta, p̂ = maxξ∈TΣ PrA(ξ) be the probability of the mpt, and
let k̂ = maxσ∈Σ rk(σ) be the maximum rank of A. We can conclude the following:

(1) Let ξ ∈ V . Due to the definition of potential probability (Definition 7), PPA(ξ) ≥ p̂
implies |A|2

height(ξ) ≥ p̂ and accordingly, height(ξ) ≤ |A|2
p̂ . Furthermore, the size of ξ

is bounded by

size(ξ) ≤
height(ξ)∑
i=0

k̂i

≤ k̂
|A|2
p̂

+1 − 1

k̂ − 1
. (Partial sum of geometric series)

(2) A tree is always extended in a breadth-first manner (from left to right). For example,
the tree σ(x1, x2) could be extended to σ(α, x2) but never to σ(x1, α). As a result,

40

5.3. Complexity analysis

for a complete tree ξ ∈ TΣ, there exist at most size(ξ) many trees ζ ∈ TΣ(X) such
that ξ can be reached from ζ, that is, |{ ζ ∈ TΣ(X) | ξ ∈ TΣ|ζ }| ≤ size(ξ).

(3) Let U ⊆ V be ununifiable. Then all trees ξ ∈ U have a potential probability of
PPA(ξ) > p̂ and therefore a probability of PrA(ξ) > p̂. Due to Corollary 3 it follows
that |U | < 1

p̂ , i.e., there are at most 1
p̂ trees in V that can be extended into pairwise

disjoint sets of complete trees.

Thus, for each tree ξ from the ununifiable subset of Item (3) there at most size(ξ) many
prefixes from which ξ is reachable according to Item (2) and the tree size is bounded
(Item (1)). This leads to the upper bound on the number of different viable trees:

|V | ≤ 1

p̂
· k̂

|A|2
p̂

+1

k̂ − 1
.

5.3.2. Size of priority queue and total time complexity

Let ξ be the first element of the priority queue Q at some iteration of the main loop.
Should ξ not be in V , i.e., PPA(ξ) < p̂, every other element in Q has a smaller potential
probability as well. Complete trees ξ ∈ TΣ therefore are too unlikely to be the mpt
and prefix trees ξ ∈ TΣ(X) \ TΣ can only worsen their probability by extending. In
consequence, until the most probable tree is found, the first element of Q is always viable,
i.e., ξ ∈ V .

In every iteration of the main loop, the first element of the priority queue Q causes at
most |Σ| many insertions. Since we know an upper bound on the number of viable trees,
we can infer the maximum number of insertions into Q and therefore its maximum size:

|Qmax| ≤ |V | · |Σ| ≤
|Σ|
p̂
· k̂

|A|2
p̂

+1

k̂ − 1
.

and consequently the time complexity the queue operations insertion and pop_best
are in

O

log

 |Σ|
p̂
· k̂

|A|2
p̂

+1

k̂ − 1

 .

Finally, the overall worst case runtime complexity of Algorithm 2 is in

O

1

p̂
· k̂

|A|2
p̂

+1

k̂ − 1
· (|Σ|+ 1) · log

 |Σ|
p̂
· k̂

|A|2
p̂

+1

k̂ − 1

 .

41

5. Most probable tree algorithm

5.4. Experiments

Even though Algorithm 2 is theoretically capable of calculating the most probable tree,
its runtime is dependent on a variety of properties: The size of the alphabet |Σ|, the
highest rank k̂, the size of the automaton/the number of states |A| and the probability
of the mpt p̂. That raises the question of how performant the algorithm is for different
tree automata.

Building pta from corpora in the natural language processing domain, like the Penn
Treebank (Marcus, Santorini, and Marcinkiewicz 1993), would require handling possibly
quite large alphabets (|Σ|) and a lot of branching (k̂). Furthermore, depending on the
method of constructing a probabilistic tree automaton from a (subset of a) corpus, the
number of states (|A|) and transitions can be immense. A simple read-off pta (Dietze
2019, Definition 4.3.1), for example, would contain as many states as there are symbols
in the ranked alphabet. Lastly, the probabilities of trees recognised by such pta can get
rather small which would heavily impact the runtime of the algorithm (p̂).

In this section we aim to examine the effect of these properties on the algorithm’s
runtime. For this purpose, we first build a set of synthetic pta with which the performance
of the mpt algorithm is evaluated afterwards. Additionally, it is determined how good of
an approximation the best run is for the most probable tree.

5.4.1. Constructing synthetic automata

In order to ensure that the pta we construct for testing provide a challenge for our
algorithm, we employ the construction of de la Higuera and Oncina 2013, Section 5.2
and modify it to allow for branching automata. The goal of using these structures is to
ensure that the most probable tree is not trivially small and, more importantly, that
there are multiple different runs for most trees and there is a considerable number of
trees whose probability is close to the mpt.

The states of these automata are arranged in levels where each level has a fixed number
of states (multiplicity). Each state of a level n ∈ N+ has transitions coming from all
states of level n′ ∈ [n] with n′ ≥ n − 1 and one initial transition with the special end
symbol ω leads to a state of the highest level. The topology of such a pta is depicted
in Figure 9a. In that drawing, each connection between two nodes stands for multiple
transitions as can be seen in Figure 9b. The probability of each transition is chosen
randomly while adhering to properness. All states have a root weight of 0 except one
state of the first level which has a root weight of 1. The average rank of a pta is defined
as the arithmetic mean of the ranks of all symbols excluding the start symbol ω. More
formally, constructing with a number of levels l ∈ N+ and multiplicity m ∈ N+ yields a

42

5.4. Experiments

ω

(a) The topology of a test pta with 3 levels and
a multiplicity of 2.

β σ γ

(b) Each connection between two nodes
in Figure 9a represents |Σ| transi-
tions, where Σ = {σ(2), γ(1), β(1) }.

Figure 9.: A test pta with 3 levels, multiplicity 2, an alphabet size of 3 and average rank
of 11

3 .

pta A = (Q,Σ ∪ {ω }, µ, ν) where ω /∈ Σ,

Q = { qij | i ∈ [l], j ∈ [m] },

µσ =
⋃
i∈[l]

⋃
j∈[m]

⋃
i′∈[l]:
i′≥i−1

⋃
j′∈[m]

{ ((qi′j′ , . . . , qi′j′), qij)→ p }

∀k ∈ N, σ ∈ Σ(k) where p ∈ (0, 1],

µω = { ((ε), qlm)→ p } where p ∈ (0, 1], and

νq11 = 1.

An example construction with 3 levels, multiplicity of 2, alphabet size of 3 and average
rank of 11

3 (not including special symbol ω) is depicted in Figure 9.
For testing we created random pta with varying parameters. We oriented ourselves by

the test set of de la Higuera and Oncina 2013 in order to assess for what kind of automata
the calculations are feasible. Though, since branching is introduced, smaller automata
had to be used to keep the priority queue from growing to big. Overall, the configurations
include level l ∈ { 2, 3, 4 }, multiplicity m ∈ { 2, 3 }, alphabet size |Σ| ∈ { 2, 3, 4, 5 } and
average rank k ∈ { 1.0, 1.5, 2.0, 2.5 }. The latter may deviate a little (k ± 0.2) depending
on whether the alphabet size allows for an exact average rank of k. For each of these
configuration 10 random pta have been built, resulting in a test set of size 960. For 302

pta of those, the mpt could not be calculated since the size of the priority queue could

43

5. Most probable tree algorithm

not be handled. The calculations exceeded a maximum of 207 insertions which led to a
queue size that required too much memory.

5.4.2. Results

By evaluating the most probable tree algorithm we are mainly interested in how well
the complexity analysis of Section 5.3 holds up against tests on synthetic automata. Of
central importance is of course the total number of insertions into the priority queue
until the mpt is found because this forms the basis of the theoretical runtime analysis.
Additionally, as this algorithm is an adaption of an algorithm for probabilistic string
automata, the effect of branching on the number of insertions is of special interest. Lastly,
due to having the first algorithm for computing the mpt at hand, it becomes possible to
evaluate the quality of the best run approximation.

The mpt algorithm has been implemented in the programming language Rust (Sec-
tion 5.5 provides some details of the implementation). In addition, we implemented
Algorithm 3 that determines the probability of the best run for a tree which has been pro-
posed by Maletti and Satta 2009, Figure 3 and is an adaptation of Knuth 1977, searching
for the shortest path in a functional hypergraph. We, in turn, adapted the algorithm
to support multiple final states: For each state the run with the highest probability is
sought until the best run for all states with non-null root weight have been found. At
the end, considering the root weights themselves, the probability of the tree with the
best run is returned.

Algorithm 3: best run algorithm (Maletti and Satta 2009, cf. Figure 3)
Input: pta A = (Q,Σ, µ, ν)
Output: probability of the best run p̃ = maxξ∈TΣ maxκ∈RA(ξ) PrA(κ, ξ)

1 E ← ∅
2 R← { q ∈ Q | ν(q) 6= 0 }
3 while R 6⊆ E do
4 D ← { q | µσ(q1 . . . qk, q) > 0, q /∈ E , q1, . . . , qk ∈ E }
5 foreach q ∈ D do

6 wt(q)← max
k∈N,σ∈Σ(k),q1,...,qk∈E

µσ(q1 . . . qk, q) ·
k∏
i=1

wt(qi)

7 E ← E ∪ { argmax
q∈D

wt(q) }

8 return maxq∈E wt(q) · ν(q)

As mentioned before, of foremost interest is how good the runtime bound holds up in
testing. Since the runtime complexity is proportional to the number of insertions into

44

5.4. Experiments

the priority queue, we mainly investigate the influences on it. Hence, we start by looking
into whether the previously established bound on the priority queue Q,

|Q| ≤ |Σ|
p̂
· k̂

|A|2
p̂

+1

k̂ − 1
,

is close to the real bound: In Figure 10 the total number of insertions is plotted against
the inverse probability of the mpt for each of the 658 automata that did not exceed 207

insertions and whose mpt could therefore be calculated. This plot shows indeed that, at
least empirically, the bound on the number of insertions is far smaller:

|Q| ≤ 2

p̂
.

This is coincides with the results of de la Higuera and Oncina 2013, Section 5.2 and
similarly, a theoretical bound of |Q| ≤ 1

p̂2
seems likely. Obtaining results this similar

suggests that either the test set is not suitable for testing tree automata, i.e., branching
is not incorporated enough or the number of insertions is even for the mpt algorithm
mainly dependent on the mpt’s probability.

101 102 103 104 105 106 107

1

p̂

102

104

106

108

1010

1012

1014

in
se

rt
io

ns

2

p̂

1

p̂2

automata

Figure 10.: Number of insertions in the priority queue in relation to the inverse probability
1
p̂ of the most probable tree.

45

5. Most probable tree algorithm

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
average transition rank

102

103

104

105

106

107

in
se

rt
io

ns

linear approximation
automata

Figure 11.: Number of insertions relative to the average rank of a transition (including
148 (153) instances of average rank 2.0 (∼ 2.5) that exceed 207 insertions).

Regarding the branching factor: Figure 11 shows that a higher average rank does
influence the number of insertions made. Note that in this plot we included those
automata that exceeded the maximum of 207 insertions. As a consequence, the impact of
branching might be even higher than the depiction suggests: Of the 302 automata that
exceeded the maximum, 148 had an average rank of 2.0 and 153 of ∼ 2.5. To allow for
examining automata with higher average ranks, smaller automata would be necessary
but we refrained from doing so due to the already relatively small size of the test pta.

Lastly, we investigate the quality of the best run approximation p̃ (Algorithm 3).
Naturally, only the 658 instances that yielded a probability p̂ for the mpt are considered.
Of those, 524 (79, 635%) pta have trees associated with the best run that coincide with
the mpt but in only 282 (42, 857%) cases do the probabilities match, i.e., p̂ = p̃. Figure 12
shows the relative error p̂−p̃

p̂ of using the best parse probability p̃ as opposed to the mpt
probability p̂. This demonstrates that the approximation can be off by quite a lot and
suggests that the relative error increases as the probability p̂ decreases. For probabilistic
finite state automata (de la Higuera and Oncina 2013, Figure 4) the probabilities never
coincide. This discrepancy is due to the smaller automata we used: de la Higuera and
Oncina 2013 constructed automata of level 3 to 5, we on the other hand from 2 to 4 and

46

5.5. Implementation

10−7 10−6 10−5 10−4 10−3 10−2 10−1

most probable tree probability

0%

20%

40%

60%

80%

re
la

tiv
e

er
ro

r

p̂− p̃

p̂

Figure 12.: Relative error of the best run probability p̃ given the probability p̂ of the mpt.

in a pta of level 2, the mpt often only has a single run. In all instances with a number of
levels greater than 2 the probabilities differ.

The applicability of the most probable tree algorithm in practice is highly questionable:
The experiments have been conducted on an Intel® Xeon® Silver 4114 CPU with 2.20GHz
and even for our simple test automata, some instances took up to an hour to compute
(cf. Figure 13). More importantly the maximum size of the priority queue is sometimes
as big as 40− 80% of the total number of insertions (mostly depending on the size of the
alphabet). This can result in allocating more than 200GB of memory which makes the
whole algorithm decidedly impractical. Though, given that finding the most probable
tree is NP-hard, this is to be expected.

5.5. Implementation

The algorithms for computing the most probable tree (Algorithm 2) and determining the
best run (Algorithm 3) are implemented in the relatively young and fast programming
language Rust1. The implementation is available here2. Additionally, the corresponding
README file that gives insight into the usage of the program and how to reproduce

1https://www.rust-lang.org/
2https://github.com/cirdeirf/mpt/

47

https://www.rust-lang.org/
https://github.com/cirdeirf/mpt/

5. Most probable tree algorithm

101 102 103 104 105 106 107

1

p̂

10−3

10−2

10−1

100

101

102

103

ru
nt

im
e

in
se

co
nd

s

automata

Figure 13.: Runtime in seconds in relation to the inverse probability 1
p̂ of the most

probable tree.

the results presented in Section 5.4.2 is provided in Appendix A. Since most of the
implementation is relatively straightforward, we will only highlight the use of some
external libraries and differences to the theoretical work.

First of all, all probabilities are represented internally on a logarithmic scale. For
this purpose we make use of a log-domain library3 for Rust. With the help of this
representation we intend to speed up calculation of joint probabilities as we can form
sums over logarithmic probabilities instead of products over probabilities and usually,
additions can be computed more efficiently than multiplications. Additionally, using
the logarithmic presentation increases accuracy for small probabilities due to internal
approximation of real numbers by computers.

Furthermore we employ the so-called integeriser library4. Thereby, we may represent
all states q ∈ Q and symbols σ ∈ Σ internally as integers. In doing so we obtain a better
runtime and have to use less space since we do not have to work with strings for example.

The structure that implements a probabilistic tree automaton can be found in
pta/mod.rs. Among its associated methods are the implementations for the algorithms

3https://github.com/tud-fop/rust-log-domain/
4https://github.com/tud-fop/rust-integeriser/

48

https://github.com/tud-fop/rust-log-domain/
https://github.com/tud-fop/rust-integeriser/

5.5. Implementation

and for computing the probability of a tree. For the most part, these implementations are
quite close to their specifications as shown in this work. The most important difference is
that even though we implemented a method for calculating the potential probability of a
tree, the most probable tree algorithm does not use it. This is supposed to speed up the
algorithm because for a pta A and tree ξ, the bound |A|2

height(ξ) never takes effect for our
test set: Our smallest automaton has |A|2 = (level ·multiplicity)2 = 42 and ξ would have
to have a height of at least 16 such that the bound even can be a probability in [0, 1].
The bound proves to be useful for analysing the runtime complexity of the algorithm but
is not tight enough for practical application.

An important detail regarding the runtime of the mpt algorithm is the memoisation
of probabilities: Each tree ξ (defined in pta/tree.rs) stores for all states q ∈ Q

the probability to be recognised with this state, i.e., it stores
∑

κ∈RA(ξ):κ(ε)=q PrA(κ).
Through that, the probability of each tree is only calculated once even if it appears as a
subtree of another tree. This is necessary as the algorithm would get too slow otherwise.
Unfortunately, quite a lot of trees are stored in memory while searching for the mpt and
the probabilities for all these have to be memorised as well. Thus, the computation needs
a lot of memory which becomes evident in the results of the previous section.

Lastly, although it is possible to implement the operation of extending a tree ξ

(Algorithm 2, line 11) such that it takes only constant time, our implementation of
extend has a worse runtime. It looks at each position in a breadth-first manner until
a variable is found that can be replaced. Despite this taking in theory up to size(ξ)
many steps, the runtime of this method is negligible. The benefit of not remembering all
variable positions for each tree is decreased memory consumption which seems to be the
critical resource.

49

6. Conclusion

In this thesis, we have shown an number of results for probabilistic tree automata related
to the problem of calculating the most probable tree. Most of these are based on previous
results for probabilistic finite automata by de la Higuera and Oncina 2013 and de la
Higuera and Oncina 2014. We managed to generalise these to pta.

As a first theorem, we proved trees with a high probability in pta to be shallow
(Section 3.1). Apart from the necessary steps to accomodate for tree structure instead of
strings, some corrections in the original proof had to be made. Furthermore, we would
have liked to get a bound dependent on the size of a tree instead of only its height.
Especially, since the inferred bound turned out to be useful during the complexity analysis
of our most probable tree algorithm.

Regarding the size of probable trees: We have shown that there are cases where the
most probable tree can be of superpolynomial size in the size of the pta (Section 3.2).
The original proof for pfa implied exponential size but the current proof does not yield
such a result. Still, the proof implies that the problem of finding the most probable tree
is not part of the complexity class NP.

In consequence, NP-completeness for mpt should be unattainable. NP-hardness, on the
other hand can be shown be a direct polynomial-time reduction from the NP-complete
problem 3-SAT which we have provided in Chapter 4. Due to previous NP-hardness
results for probabilistic grammars (Sima’an 2002; Casacuberta and de la Higuera 2000),
it would have been possible to relate pta to these and proof NP-hardness that way.

Finally, we generalised an algorithm for finding the most probable string in a pfa to
probabilistic tree automata (Chapter 5). We additionally provided an implementation
for the mpt algorithm and conducted tests on synthetic pta. Even though, the algorithm
works, it is highly impractical; primarily due its high memory consumption. Moreover,
the theoretical runtime complexity depends on the mpt’s probability. As this is the only
parameter unknown before executing the algorithm, it would be of interest to infer a
bound on this probability given the properties of the probabilistic tree automaton.

51

Bibliography

Barton, G. Edward, Robert C. Berwick, and Eric S. Ristad (1987). Computational
Complexity and Natural Language. Cambridge, MA, USA: MIT Press. isbn: 0262022664.

Casacuberta, Francisco and Colin de la Higuera (2000). “Computational Complexity of
Problems on Probabilistic Grammars and Transducers”. In: Grammatical Inference: Al-
gorithms and Applications, 5th International Colloquium, ICGI 2000, Lisbon, Portugal,
September 11-13, 2000, Proceedings, pp. 15–24. doi: 10.1007/978-3-540-45257-7_2.

Chomsky, Noam (1956). “Three models for the description of language”. In: IRE Trans.
Information Theory 2.3, pp. 113–124. doi: 10.1109/TIT.1956.1056813.

Cognetta, Marco, Yo-Sub Han, and Soon Chan Kwon (2018). “Incremental Computation
of Infix Probabilities for Probabilistic Finite Automata”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pp. 2732–2741. url: https://aclanthology.info/
papers/D18-1293/d18-1293.

Dietze, Toni (2019). “A Formal View on Training of Weighted Tree Automata by
Likelihood-Driven State Splitting and Merging”. Dissertation. TU Dresden.

Engelfriet, Joost (2015). Tree Automata and Tree Grammars. Vol. abs/1510.02036. arXiv:
1510.02036. url: http://arxiv.org/abs/1510.02036.

Fülöp, Zoltán and Heiko Vogler (2009). “Weighted Tree Automata and Tree Transducers”.
In: Handbook of Weighted Automata. Ed. by Manfred Droste, Werner Kuich, and Heiko
Vogler. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 313–403. isbn: 978-3-642-
01492-5. doi: 10.1007/978-3-642-01492-5_9. url: https://doi.org/10.1007/978-
3-642-01492-5_9.

Gécseg, Ferenc and Magnus Steinby (1984). Tree Automata. Akadéniai Kiadó, Budapest,
Hungary. isbn: 963-05-3170-4.

Heath-Brown, D.R. and H. Iwaniec (Dec. 1979). “On the difference between consecutive
primes”. In: Inventiones mathematicae 55.1, pp. 49–69. issn: 1432-1297. doi: 10.1007/
BF02139702. url: https://doi.org/10.1007/BF02139702.

de la Higuera, Colin (1997). “Characteristic Sets for Polynomial Grammatical Inference”.
In: Machine Learning 27.2, pp. 125–138. doi: 10.1023/A:1007353007695. url: https:
//doi.org/10.1023/A:1007353007695.

53

https://doi.org/10.1007/978-3-540-45257-7_2
https://doi.org/10.1109/TIT.1956.1056813
https://aclanthology.info/papers/D18-1293/d18-1293
https://aclanthology.info/papers/D18-1293/d18-1293
https://arxiv.org/abs/1510.02036
http://arxiv.org/abs/1510.02036
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/BF02139702
https://doi.org/10.1007/BF02139702
https://doi.org/10.1007/BF02139702
https://doi.org/10.1023/A:1007353007695
https://doi.org/10.1023/A:1007353007695
https://doi.org/10.1023/A:1007353007695

Bibliography

de la Higuera, Colin and José Oncina (2013). “Computing the Most Probable String
with a Probabilistic Finite State Machine”. In: Proceedings of the 11th International
Conference on Finite State Methods and Natural Language Processing, FSMNLP 2013,
St. Andrews, Scotland, UK, July 15-17, 2013, pp. 1–8. url: http://aclweb.org/
anthology/W/W13/W13-1801.pdf.

– (2014). “The most probable string: an algorithmic study”. In: J. Log. Comput. 24.2,
pp. 311–330. doi: 10.1093/logcom/exs049. url: https://doi.org/10.1093/
logcom/exs049.

Knight, Kevin and Jonathan May (2009). “Applications of Weighted Automata in Natural
Language Processing”. In: Handbook of Weighted Automata. Ed. by Manfred Droste,
Werner Kuich, and Heiko Vogler. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 571–596. isbn: 978-3-642-01492-5. doi: 10.1007/978-3-642-01492-5_14. url:
https://doi.org/10.1007/978-3-642-01492-5_14.

Knuth, Donald E. (1977). “A Generalization of Dijkstra’s Algorithm”. In: Inf. Process.
Lett. 6.1, pp. 1–5. doi: 10.1016/0020-0190(77)90002-3. url: https://doi.org/10.
1016/0020-0190(77)90002-3.

Koller, Alexander and Marco Kuhlmann (2011). “A Generalized View on Parsing and
Translation”. In: Proceedings of the 12th International Conference on Parsing Technolo-
gies, IWPT 2011, October 5-7, 2011, Dublin City University, Dubin, Ireland, pp. 2–13.
url: http://www.aclweb.org/anthology/W11-2902.

Maletti, Andreas and Giorgio Satta (2009). “Parsing Algorithms based on Tree Automata”.
In: Proceedings of the 11th International Workshop on Parsing Technologies (IWPT-
2009), 7-9 October 2009, Paris, France, pp. 1–12. url: http://www.aclweb.org/
anthology/W09-3801.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz (1993). “Building a
Large Annotated Corpus of English: The Penn Treebank”. In: Computational Linguistics
19.2, pp. 313–330.

May, Jonathan and Kevin Knight (2006). “Tiburon: A Weighted Tree Automata Toolkit”.
In: Implementation and Application of Automata, 11th International Conference,
CIAA 2006, Taipei, Taiwan, August 21-23, 2006, Proceedings, pp. 102–113. doi:
10.1007/11812128_11. url: https://doi.org/10.1007/11812128%5C_11.

Sima’an, Khalil (2002). “Computational Complexity of Probabilistic Disambiguation”.
In: Grammars 5.2, pp. 125–151. doi: 10.1023/A:1016340700671. url: https://doi.
org/10.1023/A:1016340700671.

Williams, J. W. J. (1964). “Algorithm 232: Heapsort”. In: Communications of the ACM
7.6, pp. 347–348.

54

http://aclweb.org/anthology/W/W13/W13-1801.pdf
http://aclweb.org/anthology/W/W13/W13-1801.pdf
https://doi.org/10.1093/logcom/exs049
https://doi.org/10.1093/logcom/exs049
https://doi.org/10.1093/logcom/exs049
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1016/0020-0190(77)90002-3
https://doi.org/10.1016/0020-0190(77)90002-3
https://doi.org/10.1016/0020-0190(77)90002-3
http://www.aclweb.org/anthology/W11-2902
http://www.aclweb.org/anthology/W09-3801
http://www.aclweb.org/anthology/W09-3801
https://doi.org/10.1007/11812128_11
https://doi.org/10.1007/11812128%5C_11
https://doi.org/10.1023/A:1016340700671
https://doi.org/10.1023/A:1016340700671
https://doi.org/10.1023/A:1016340700671

List of Figures

1. Prefix and complete tree . 7
2. Example pta . 10
3. Transition and run visualisation . 11

4. Different runs with same alternative (run, tree)-pair 15
5. Prime number pta for ψi = 5 . 20
6. Prime number pta for { 2, 3, 5, . . . , ψz } . 21

7. Visual representation of all transitions of the pta created for 3-SAT formula
f = c1 ∧ c2 = (x1 ∨ sx2 ∨ x3) ∧ (sx1 ∨ x2 ∨ sx3). 29

8. Trees with a consistent assignment for x1, x2 and x3 that satisfy formula f . 30

9. Synthetic pta for experiments . 43
10. Plot – insertions against inverse mpt probability 45
11. Plot – insertions against average rank . 46
12. Plot – relative error of best run . 47
13. Plot – runtime in seconds against inverse mpt probability 48

55

A. Readme file

In the following we append the contents of the README.md file the is included in the
implementation.

Most Probable Tree Algorithm

This is a Rust-based implementation of the most probable tree (mpt) algorithm introduced
in “The Problem of Computing the Most Probable Tree of a Probabilistic Tree Automaton”
and the best run algorithm presented in “Parsing Algorithms based on Tree Automata”
by Andreas Maletti and Giorgio Satta, 2009. More information about the mpt algorithm
and the classes can be found in the thesis itself, in the comments of the source code and
in the rustdoc documentation which can be generated and opened by:

cargo doc --document -private -items --open

This project is licensed unter the terms of the GNU General Public License v3.0.

Setup

This program requires Rust and Cargo (Rust build tool and package manager). Both are
available from the Rust programming language website (https://www.rust-lang.org/).
For even simpler use, we provide a binary (mpt).

Example

The example pta from the thesis is available in
experiments/pta/manually_constructed/example.pta:

root: q0 # 0.9
root: q1 # 0.1
transition: q1 -> α() # 0.1
transition: q2 -> α() # 0.5
transition: q2 -> β() # 0.5
transition: q1 -> γ(q1) # 0.5

57

https://www.rust-lang.org/

A. Readme file

transition: q1 -> γ(q2) # 0.3
transition: q1 -> σ(q1, q2) # 0.1
transition: q0 -> σ(q1, q2) # 1.0

Every root weight/transition not mentioned is assumed to have a probability of zero.
For states and symbols all strings are allowed that do not contain any of the following
characters: '"', ' ', '-', '>', '→', ',', ';', '(', ')', '[', ']', '%'.

The most probable tree for this example pta can be calculated by calling

cargo run

which should print

mpt: σ(γ(α), β)
probability: 0.09100000000000004
insertions: 13
time: 1.226144ms

to the standard output.
Similarly, the best run for the example is computed by calling

cargo run -- --best-parse

which yields

best parse: σ(γ(β), β)
probability: 0.06749999999999999
time: 227.69µs

Ambiguity

Note that the implementation does not choose symbols σ ∈ Σ in the same order every
time it is called. Therefore it can happen that fewer insertions are necessary when a new
current best complete tree has been found that prevents the insertion of another tree,
e.g., for the example: We extend tree ξ = σ(γ(x1), β) to a tree ξ′ = σ(γ(σ(x2, x3)), β)

with probability 0.02275 and afterwards, we extend ξ to σ(γ(α), β) with the higher
probability of 0.091. If we would have extended with α first, we would not have created
ξ′. Additionally, there might be multiple mpt. For the example, the following output is
therefore valid as well:

58

mpt: σ(γ(α), α)
probability: 0.09100000000000004
insertions: 12
time: 1.887662ms

Experiments

The experiments have been conducted on a set of synthetic automata. How these are
constructed is described in Section 5.4.1. A new test set with the parameters from the
thesis (level, multiplicity, alphabet size) can be generated by invoking:

cargo run -- --generate

The specific set of synthetic pta we used can be found in experiments/pta/test1/.
In order to automatically calculate the most probable tree for all these automata, one
has to call the following command:

cargo run --release -- --experiments

Analogously, for the best run with the --best-parse flag. Note that --release is not
necessary but improves the runtime (the binary is compiled with this flag).

The experiments were conducted on an Intel® Xeon® Silver 4114 CPU with 2.20GHz
and the ouput is available in experiments/test1_mpt.log and
experiments/test1_best_parse.log.

Help

The following command line arguments are available:

> cargo run -- --help

mpt 0.1
Pius Meinert <yrr+work@pm.me>
Most probable tree and best parse algorithms for probabilistic
tree automata (pta). Implementation for my master 's thesis:
"The Problem of Computing the Most Probable Tree of a
Probabilistic Tree Automaton". By default , the most probable
tree algorithm is executed.

59

A. Readme file

USAGE:
mpt [FLAGS] <INPUT >

FLAGS:
-b, --best-parse Calculate the tree with the best run

(cf. Figure 3, Maletti and Satta , 2009)
-e, --experiments Calculate the most probable tree/best

run for all pta in the test set:
experiments/pta/test1/.

-g, --generate Generate a number of synthetic
automata with the parameters (level ,
multiplicity , alphabet size) as used
during testing for the thesis. They
are saved in: experiments/pta/.

-h, --help Prints help information
-V, --version Prints version information
-v, --verbose Set level of verbosity:

v: print the pta (root weight mapping
and transitions),

vv: + output current best tree
(only for mpt),

vvv: + print variables after each
iteration of the while loop
(only mpt).

ARGS:
<INPUT > Set the input file to use [default:

experiments/pta/manually_constructed/example.pta]

60

	Introduction
	Preliminaries
	General mathematical definitions and notation
	Alphabets and trees
	Automata
	Complexity theory

	Tree size properties
	Probable tress are shallow
	A most probable tree of superpolynomial size

	NP-hardness of the most probable tree problem
	Further notation
	Reduction

	Most probable tree algorithm
	Calculating the most probable string
	Generalisation to trees
	Complexity analysis
	Experiments
	Implementation

	Conclusion
	Bibliography
	List of Figures
	Readme file

