
Technische Unversität Dresden

Theory and Implementation of IBM
Model 2

Author: Arezoo Kashefi Pour Dezfooli
Supervisor: Toni Dietze

Professor in charge: Professor Heiko Vogler

Declaration

I, Arezoo Kashefi Pour Dezfooli, hereby declare that this thesis
including the text and figures – except for parts explicitly spec-
ified – is my personal work. Furthermore, I have not used any
resources other than those that are duly cited.

Date: 31.07.2013

Signature:

1

Acknowledgement

I would like to take this opportunity to thank all who assisted
in completing this work, specially my supervisor, T. Dietze who
spent a great amount of time and energy in helping me correct
and improve my work. I would also like to thank Prof. H. Vogler
for his invaluable input towards this work. Finally, I would like
to thank my husband for his patience and understanding. Thank
you all.

2

Abstract

In statistical machine translation (SMT), we use statistical mod-
els based on parallel corpora to help translate a sentence from
one language to another. Our SMT requires us to build a model
of the English language, a model for translation based on an
English-French parallel corpus and to used these to find the best
translation of a French sentence to English. These are called the
language model, translation model and the decoder, respectively.

In this work, the inner workings of a SMT system that used a
trigram language model, the IBM model 2 translation model and
a stack decoding algorithm as a decoder, are examined and im-
plemented.

3

Contents

1 Introduction 6

2 Mathematical Preliminaries 8
2.1 Probability Distributions . 8
2.2 Estimation . 10

3 Statistical Machine Translation 12
3.1 Introduction . 12
3.2 The Language Model . 13

3.2.1 n-Gram Language Models 13
3.2.2 Perplexity . 15
3.2.3 Count Smoothing . 16

3.3 The Translation Model . 18
3.3.1 Model 1 . 22
3.3.2 Expectation-Maximization Algorithm 22
3.3.3 Training . 24
3.3.4 Model 2 . 27

3.4 Decoding . 30
3.4.1 Scoring . 31

4 Implementation Details and Results 37
4.1 The Language Model . 37

4.1.1 Creating our own Trigram File 37
4.1.2 Creating our Language Model Database 38

4.2 The Translation Model . 40
4.2.1 Changing Text Files to Integer Files 40
4.2.2 Initializing Model 2 by Model 1 41
4.2.3 Model 2 . 41

4.3 Decoding . 42
4.3.1 Perplexity . 42
4.3.2 Stack Decoding . 42

4

5 Conclusion 45

5

Chapter 1

Introduction

In the field of machine translation, where the intention is to use software to
translate text or speech from one natural language to another, the use of
data-driven techniques and statistical methods is growing. In the sub-field of
statistical machine translation, one main idea is to use statistical models and
find the parameters of such models by making use of and analyzing bilingual
parallel corpora. We will be discussing one such model, namely, IBM model
2, in this work.

In this thesis, we will be working towards building a statistical machine
translation (SMT) system. Our system will make use of the translation
model, IBM model 2, first introduced by Brown et al. [BPPM93], a trigram
language model for which the original idea dates back to Shannons work in
information theory in 1948 [Sha48] and we utilized Chapter 7 of the book
“Statistical Machine Translation” by P. Koehn [Koe10] as the main reference,
and a decoder for which we used the stack decoding algorithm introduced by
Wang and Waibel [WW97].

We will now give an overview of the contents of each chapter in this thesis.
Chapter 1 is our introduction to the topic of this thesis and overview. Chapter
2 contains mathematical preliminaries needed for the better understanding
of the topic. It is split into two sections. Section 2.1 covers probability
distributions and uses [Koe10] as a reference for basic structure. Section 2.2
is about estimation and uses some definitions given by D. Prescher [Pre04].

In Chapter 3, we endeavour to explain in detail the workings of our SMT
system. Chapter 3 contains four sections, section 3.1 is the chapter introduc-
tion and will explain what we need to build our SMT system and why we
need them. The next three sections will then explain in detail, the language
model, translation model and decoding.

In Section 3.2, we define a language model and particularly explain n-
gram language models in detail. We then provide a means to asses the

6

quality of a language model by way of perplexity. And finally, we conclude
the section by explaining the necessity for count smoothing and providing a
simple smoothing method, namely α-smoothing.

Section 3.3 describes the translation model. In this section, we cover
IBM models 1 and 2, we give their parameters and algorithms to estimate
these parameters. To better understand these algorithms, we give a brief
explanation of the Expectation-Maximization Algorithm using [Pre04] as our
main reference. We explain how training works and use model 1 to help
initialize model 2.

Section 3.4 describes a stack decoding algorithm for IBM model 2. This
section describes the algorithm and a method of scoring hypothesis using
IBM model 2.

Chapter 4 follows the same pattern as chapter 3 for its main topic division.
It is split into three sections, each of which explains the manner in which the
language model, the translation model and the decoding were implemented
using Java. We highlight the different steps, the difficulties along the way
and the final results.

Chapter 5 concludes this thesis by giving a summary and discussion on
the topic.

7

Chapter 2

Mathematical Preliminaries

In order to better understand the upcoming text, we will review here some
notions of probability distribution and estimation.

2.1 Probability Distributions

In this section we will give a brief review of notions in probability theory
that we will encounter in the coming text. This section is based mainly on
[Koe10]. We will start with some of the important formal definitions. Let
us start with a countable set Ω known as the sample space. We can define a
function p on the sample space as follows:

p : Ω→ [0, 1] (2.1)

such that: ∑
ω∈Ω

p(ω) = 1 (2.2)

This function is known as the probability function. In an experiment of
chance, Ω is the set of all possible outcomes. Any subset A ⊆ Ω is then
known as an event. The probability of the outcome of the experiment being
event A is then as follows:

p(A) =
∑
a∈A

p(a) (2.3)

Then the pair (Ω, p) is called the probability space.
For example, in throwing a die all the possible outcomes are the die

landing on the numbers 1-6 so we have:

Ω = {1, 2, 3, 4, 5, 6}

8

Since ω has 6 elements and we assume our die is fair and according to equation
2.2 we have that

∑
ω∈Ω

p(ω) = 1, then we can conclude that: ∀ω ∈ Ω: p(ω) = 1
6

We can then have the events A = {2} or B = {a ∈ A | a < 4}. The
probabilities for these events will be:

p(A) =
1

6
and p(B) =

1

2

Definition 1 (Random Variable). Let A be an arbitrary set. The function
X : Ω→ A is called a random variable over A. For all a ∈ A we define:

p(X = a) = p(X−1(a))

In our die throwing experiment we can define X as a random variable
over the events odd and even numbers. Then X(1) = odd, X(2) = even,
X(3) = odd and so on. What if we now want to calculate the probability of
a die landing on a number both even and smaller than 4? We would need to
calculate the intersection of two different event sets even and smaller than 4.

Definition 2 (Probability Distribution). Given a random variable X over
Ω such that it can take all values x1, ..xn ∈ Ω, the probability distribution of
X is the list of probabilities p(xi), 1 ≤ i ≤ n, for all xi ∈ Ω and it satisfies
the following:

(1) 0 ≤ p(xi) ≤ 1

(2)
n∑

i=1

p(xi) = 1

Definition 3 (Joint Probability Distribution). Given the random variables
X1, ..., Xn over a set of events A1, ..., An such that x1 ∈ A1, x2 ∈ A2, ..., xn ∈
An, the joint probability distribution is calculated as follows:

p(X1 = x1, ..., Xn = xn) = p(X−1
1 (x1) ∩ ... ∩X−1

n (xn))

So p(even and smaller than 4) = 1
6
.

Notation 1: From this point on we may refer to elements of events as
directly belonging to the random variable representing the event. So we may
write:
x ∈ X instead of x ∈ A and X is a random variable over A.

Notation 2: From this point on we will write only the elements and not
the random variables in the probability functions. So we may write:
p(a) instead of p(X = a) where X is a random variable over A and a ∈ A.

9

Definition 4 (Variable Independence). Two random variable X and Y are
independent if and only if for all x ∈ X and y ∈ Y , p(x, y) = p(x) · p(y)
holds.

Definition 5 (Conditional Probability Distribution). A conditional proba-
bility distribution is a probability distribution describing the outcome of an
event y given event x has already occurred. It is denoted by p(y | x) and is
defined as:

p(y | x) = p(x,y)
p(x)

Reformulating this definition we arrive at the chain rule:

p(x, y) = p(x) · p(y | x) (2.4)

Adding one more event to this we have:

p(x, y, z) = p(x) · p(y | x) · p(z | x, y)

And we can generalize this to:

p(x1, ..., xn) = p(x1) · p(x2 | x1) · ... · p(xn | x1, ..., xn−1) (2.5)

In order to find the probability of x given y, according to definition 7 and
using the chain rule to replace p(x, y), we have:

p(x | y) =
p(x) · p(y | x)

p(y)
(2.6)

which is known as the Bayes rule.

2.2 Estimation

In this section we will discuss estimation methods used in this text. Starting
with the countable set X , we define a corpus as a real-valued function f : X →
R≥0 where R≥0 is the set of all real numbers greater or equal to zero. All
x ∈ X is known as a type and each value of f is known as a type frequency
and we will then define the corpus size as follows:

|f | =
∑
x∈X

f(x) (2.7)

Let p now be a probability distribution on X . We define the relative-frequency
estimate on f as follows:

p(x) =
f(x)

|f |
(2.8)

10

Definition 6 (Probability Model). Let X be a set of types and let M be
a set of probability distributions on X . M is called a probability model
on X and elements of M are known as instances of the model. The set
of all probability distributions on X , denoted by M(X), is known as the
unrestricted probability model. A model is known as restricted otherwise.

Definition 7 (Likelihood Estimate). Let X be a set of types, f a finite corpus
and p a probability distribution over X . We define the likelihood of f under
p as:

L(f ; p) =
∏
x∈X

p(x)f(x)

Definition 8 (Maximum-Likelihood Estimate). Let X be a set of types, f a
finite corpus, M a probability model on X and L(f ; p) the likelihood of the
corpus. The maximum-likelihood estimate of f with respect to M is then
defined as:

argmax
p∈M

L(f ; p)

11

Chapter 3

Statistical Machine Translation

3.1 Introduction

In statistical machine translation we wish to translate sentence f from a
source language F (e.g. French) to a sentence e in a target language E (e.g.
English) using statistical models.

We start with the basic assumption that any sentence e can, with a certain
probability, be the translation of f . In order to narrow it down, we will need
to know “How likely is e as the translation, given f?” in other words we need
p(e | f). Obviously the best translation will then be the e that maximizes
p(e | f), i.e. argmax

e∈E
p(e | f).

We use the Bayes rule to break our problem into smaller sub-problems as
follows:

p(e | f) =
p(e) · p(f | e)

p(f)
(3.1)

Maximizing p(e | f) depends only on finding the right e and since the
denominator is independent of e, we must maximize the numerator, i.e.
argmax

e∈E
p(e) · p(e | f). The numerator consists of two probabilities. The

first part, p(e) is known as the language model. It assigns to all sequences of
English words the probability that they form an English sentence spoken by
a native.

The second part, p(f | e) is known as the translation model. This model
assigns probabilities to French strings being translations of English strings.
Though this may seem like it is adding to our work to estimate two probability
models instead of our original one, it is not. Since we will be translating
from French to English we care whether our final e is a well-formed English
sentence but when estimating p(f | e), our French sentences need not be.

12

Once we have our probability models, we will need to search for the e that
will maximize this product. The process of finding an efficient and optimal
search is known as Decoding.

In the following sections we will discuss each of these problems in more
detail.

3.2 The Language Model

In this section we will discuss the language model, which is necessary for any
statistical machine translation system. We wish for our translations to be
fluent sentences spoken in English. For this purpose we need to know how
probable it is that a sequence of words form a sentence of a native speaker.
A good language model should give a sentence with the correct word order a
higher probability than a sentence containing the same words in the wrong
order.

For example, consider a sentence with the correct translation of “the
house is small”, but a word for word translation of “small the is house”. Our
language model p should have a higher probability for the former and a lower
one for the latter, meaning

p(the house is small) > p(small the is house).

Correct word order is not the only job of the language model. In the cases
of words with multiple possible translations, it is the language models duty
to pick the correct translation. If, for example, the choice was between the
sentences “I’m going home” and “I’m going house”, the former should have
the higher probability.

Definition 9 (Language Model). Let A be a finite non-empty set called an
alphabet. A Language E over A is a subset of A∗, E ⊆ A∗. A Language
Model is then a probability distribution p: E → [0, 1].

3.2.1 n-Gram Language Models

An n-gram is a sequence of n items, in our case words. By analyzing large
amounts of English text we can check how probable it is for a group of n
words to occur in a certain sequence. Then we use these statistics to for
example see that the word “home” follows “going” far more often than that
word “house” does so. In doing so, we have an n-gram language model.

Let w be a sequence of words w = w1...wm, we calculate p(w) by analyzing
large amounts of texts and go through it and count how often w appears.

13

Even though we would like it if our language model could perfectly predict the
exact probability of every sequence of possible words, that is unfortunately
not possible. Our model is limited by the amount of text we have to analyze
and the context of that text.

Also most longer sequences may never appear in our text. However, we
may be able to collect sufficient data for shorter sequences, so it is prudent
to break the problem of finding the probability of w into smaller problems,
namely we will try to predict one word at a time. This means predicting w1

being the start of the sequence, that w2 will follow given w1, that w3 will
follow given w1 and w2 and so on. In other words we can break our probability
of w down using the chain rule where the final probability ensures a sequence
of length m:

p(w) = p(w1w2...wm)

= p(w1) p(w2 | w1)... p(wm | w1w2...wm−1) p(m|w1...wm) (3.2)

In order to estimate the word probability distributions that make up p(w)
we will limit ourselves to the previous n− 1 words for history assuming only
those words affect the probability of the next word. So we get:

p(wm | w1w2...wm−1) = p(wm | wm−n+1...wm−2wm−1) (3.3)

This is strictly untrue but because of data sparsity, reliable statistics can
only be collected for shorter word histories. Our models are then named for
the number of words they take into account and this is their order meaning
an n-gram model has an order of n.

In practice we will have # symbols to mark the start and end of our
sentences. This helps us better determine which words are more likely to
appear at the beginning or end of a sentence. So in the case of bigrams
where n is one, in Equation 3.2 we replace p(w1) by the equivalent b(w1 | #)
and p(m|w1...wm) by b(# | m). The probabilities in between will be split into
conditional probabilities with only a one word history. Thus, our probability
model will be as follows for the bigram model b:

p(w) = p(w1...wm) (3.4)

= b(w1 | #) · b(w2 | w1) · ... · b(wm | wm−1) · b(# | wm) (3.5)

= b(w1 | #) · (
m∏
i=2

b(wi | wi−1)) · b(# | wm) (3.6)

The n we will use in our work here is 2, meaning we will use the word
sequence w1w2 to predict w3. This will be a trigram model.

14

Definition 10 (Trigram Language Model). Given the English words w1, w2,
..., wm and the sequence w = w1w2...wm, a trigram language model gives
p(w), i.e. the probability of the words w1, w2, ..., wm occurring in exactly the
sequence w in the English language.

p(w) = p(w1 | ##) · p(w2 | #w1) · (
m∏
i=3

p(wi | wi−2wi−1)) · p(# | wm−1wm)

Since we are only taking a limited history into account our model is a type
of Markov Chain [Nor98]. What is usually the case with Markov chains is
that for transitioning between states only the information of the current state
is utilized without looking at previous states. In our case, we could group
words into single states, essentially considering our limited word history as
that states property.

We will go through the texts available counting how many times w3 follows
the sequence w1w2. Let w1, w2, w3, w

′ be words in language E. Using the
maximum likelihood estimation we have:

p(w3 | w1w2) =
count(w1w2w3)∑

w′∈E
count(w1w2w′)

(3.7)

In reality E is limited to our available text. For example, in the Europarl
corpus [Koe05], the number of trigrams starting with the phrase “the red”
is 255, in 123 cases, this phrase is followed by the word “cross”. So we can
compute p(cross|the red) = 123

255
' 0.547.

3.2.2 Perplexity

As previously mentioned, language models are not perfect and can be very
different considering the amount of text they were trained on and what order
n-gram was used and so on. It is essential that we have a way to compare
models and to measure their quality. This is where perplexity comes in.

When we defined a language model, we said that it should give higher
probabilities to correct English sentences. In other words, probability mass
shouldn’t be wasted on sentences that would never occur in English language
so there is more probability left over for more correct sentences.

We define the perplexity PP as a transformation of the cross-entropy H
given by the formula below:

H(p, w1...wn) = − 1

n
log p(w1w2...wn) (3.8)

= − 1

n

n∑
i=1

log p(wi | w1...wi−1) (3.9)

15

Then for perplexity we have:

PP(p) = 2H(p) (3.10)

The value for perplexity is an indication of how confused a language model
is about the correctness of a sentence. Therefore, the lower the perplexity
for a model, the better the model is at giving correct sentences. For n-gram
language models with a higher order, the perplexity is generally less, but
of-course there is a trade-off between perplexity and the data sparsity that
comes with n-gram language models when n is too large.

The language model we implemented for this work, (for implementation
details, see Chapter 4), has an average perplexity of 25.484 over all the sen-
tences of the training data. This means, the confusion of the model is the
same as having the choice between 25.484 different words for each word in a
sentence.

Let us now look at an example of how perplexity is calculated for one
sentence. The example sentence is: “It will, I hope, be examined in a positive
light.” The preprocessing done on the sentence removes punctuation, lower
cases all the text and adds # s to the beginning and end of the sentence,
(as indicated by Definition 10) and so the sentence we are calculating the
perplexity for is: “# # it will i hope be examined in a positive light # ”.

In Table 3.1, in the first column you will find the probability form of the
trigrams in this sentence and in the second column the value of them that
was calculated using the α-smoothing technique with α = 0.0001, we will
explain smoothing in the next section. In the bottom row of the table, the
average of these values, which is the cross-entropy can be seen.

Having the cross-entropy, we can now calculate the perplexity for this
sentence:

PP(p) = 2H(p) = 24.403606271009044 = 21.1649660740799

The perplexity for this sentence is slightly less than our overall average.

3.2.3 Count Smoothing

It is highly unlikely that a language model will have seen every linguistically
possible n-gram during training. This problem is specially concerning in
models of higher order, where most n-grams occur only once or at most a
few times in a large training corpus. Simply put, our empirical count which
is our exact observation of n-grams in training, is insufficient to determine
the expected counts of n-grams in unseen texts.

16

Table 3.1: The probabilities of trigrams and the cross-entropy for the sentence
“# # it will i hope be examined in a positive light # ”.

p(it | # #) 0.06077947197038887
p(will | # it) 0.03609514913620813
p(i | it will) 8.735677965915312× 10−4

p(hope | will i) 0.33285914151997104
p(be | i hope) 0.0026647355022889224
p(examined | hope be) 0.013787104280743548
p(in | be examined) 0.20247675336426466
p(a | examined in) 0.04907237624458777
p(positive | in a) 0.007489755136792163
p(light | a positive) 0.010006683364620813
p(# | positive light) 0.3350513967129334

Average/cross-entropy 4.403606271009044

If we were to use the formula of maximum likelihood then we would end up
with a zero for all unseen n-grams and therefore for any sentence containing
an unseen n-gram we will also have zero. This would mean that if all the
translations of a sentence contain unseen n-grams we cannot compare their
quality. In the models with higher orders, n-grams seen only once or a few
times would end up with very low probabilities if only the empirical count
are considered.

This is where we introduce a count smoothing method for adjusting em-
pirical counts to zero probability sentences in unseen texts.

Add-One Smoothing

In this method our aim is to get rid of zero probabilities for unseen n-grams.
The easiest way to do this is by adding a fixed number to every count. If
we add one to every count, we assume that every n-gram possible has been
seen at least once. So if our maximum likelihood estimation of probability is
p(w1w2w3) = count(w1w2w3)∑

w∈V
count(w1w2w)

where V is the set of all possible words, it will

be adjusted to:

p(w1w2w3) =
count(w1w2w3) + 1∑

w∈V
(count(w1w2w) + 1)

(3.11)

17

To make it a little neater, we bring the constant out of the sum:

p(w1w2w3) =
count(w1w2w3) + 1

(
∑
w∈V

count(w1w2w)) + |V |
(3.12)

The problem with adding one is that most possible n-grams shouldn’t be
given such a high probability as they will never be seen and the count is an
undeserving one. So the solution then is to add a smaller number α < 1 to
the count:

p(w1w2w3) =
count(w1w2w3) + α

(
∑
w∈V

count(w1w2w)) + α · |V |
(3.13)

The α used in practice can be determined with experimenting. Meaning
trying different values and seeing which best optimizes perplexity in a certain
test set.

3.3 The Translation Model

In this section we will describe two IBM translation models (Brown et al.
1993) and the methods of estimating their parameters. This section is mostly
based on [BPPM93] and [Col11].

Recall that a translation model will try to compute the conditional prob-
ability p(f | e), which is the probability of sentence f being the translation
for sentence e.

Calculating this probability depends on a few parameters, for most of
which the values must be estimated during training. We will initially guess
values then use the EM algorithm to approach a local maximum in our
training data set of translations.

Both models discussed here make the assumption that any reasonable
length sentence for sentence f is equally likely. Model 1 then makes the
further assumption that word order in the sentence does not affect p(f | e).
This further assumption is not made in model 2. The attempt is then made
to make an alignment between the sentences, in other words, connect each
position in f with a position in e. More formally, an alignment is a set of
connections from words in one sentence to the words in the other. We use
“words” freely here and the definition is not “words” as we have them in
natural language but a larger concept of “words” as a (possibly empty) set
of words from a natural language. An example of an alignment can be seen
in Figure 3.1.

We will be looking for the probability that sentence f is the translation
of sentence e and the “words” are connected using alignment a. Formally,

18

Figure 3.1: In this figure from [BPPM93], there is an alignment between an
English sentence (top) and a French sentence (bottom). As can be seen ‘And’
in the English sentence is aligned with the ‘empty word’ and ‘implemented’
is aligned to a set of French words.

we will be looking at the conditional probability distribution p(F = f, A =
a | E = e).

For any two sentences f and e there is a finite number of possible align-
ments. In order to calculate p(f | e), we need to sum over all the possible
alignments between the two sentences. The reasoning behind the quantifica-
tion is explained below. Therefore:

p(f | e) =
∑

ai∈{0,...,|e|}
i∈{1,...,|f |}

p(f, ai | e) (3.14)

We will assume that the “words” in the alignments made here are either
single words or empty, meaning each word in sentence f is connected to at
most one word in sentence e. In doing this, we can label the “words” as
sentence positions with the empty word as position zero.

Let e be a string with l positions (words) e = e1e2...el denoted by el1,
meaning words in sentence e from 1 to l, and f a string with m positions
f = f1f2...fm denoted by fm

1 . We can define an alignment of m values
a = a1a2...am ,denoted by am1 , so that each ai, 0 ≤ i ≤ m takes a value
0 ≤ j ≤ l such that if the ith position in f is connected to the jth position in
e then ai = j and if it is not connected then ai = 0.

We can write p(f, a | e) as the following product of conditional probabil-
ities using the chain rule:

p(f, a | e) = p(m | e)
m∏
i=1

p(ai | ai−1
1 , f i−1

1 ,m, e) · p(fi | ai1, f i−1
1 ,m, e) (3.15)

Lets take a look at the intuition behind this formula that is given in
[BPPM93]. We can view equation 3.15 in the following way; in generating

19

a French string, f , together with an alignment, a, from an English string,
e, we can first choose the length of f depending on e, namely p(m | e).
Next we make the choice of where our first alignment connection should be
depending on our knowledge of e and the length we have for f , namely m.
Finally, we can choose what identity to give the first word in f , depending
on our knowledge of e, the length of f and the alignment connection we
made between the first position of f and a position in e. We continue and
do the same for the next positions in f , always taking into account our full
knowledge of e and all previous choices made for alignment connections and
identities in f .

While this is a good equation for understanding the intuition, it is a little
difficult to work with when it comes to implementation. So, here we will give
another way of expanding p(f, a | e) that is given in [Col11].

In this version of p(f, a | e), we will split our string e into its set of words
and its length and have them separately in the expansion. In essence, this
expansion will not have a different meaning from equation 3.15, but taking
it farther into the next steps and then training will be easier to comprehend.

We will introduce some random variables here, so that we can later make
some independence assumptions between them. So let L be a random variable
for the length of the English sentence and let E1, ..., El be a sequence of
random variables denoting the words in the English sentence. In the same
manner, let M be a random variable for the length of the French sentence
and let F1, ..., Fm be a sequence of random variables denoting the words in
the French sentence. Also, let A1, ..., Am be a sequence of random variables
denoting the alignment variables. Our goal is to find p(F1 = f1, ..., Fm =
fm, A1 = a1, ..., Am = am | E1 = e1, ..., El = el, L = l,M = m).

The first thing we can do now, is to use the chain rule to get the following:

p(F1 = f1, ..., Fm = fm, A1 = a1, ..., Am = am |
E1 = e1, ..., El = el, L = l,M = m)

= p(A1 = a1, ..., Am = am | E1 = e1, ..., El = el, L = l,M = m) (3.16)

× p(F1 = f1, ..., Fm = fm |
A1 = a1, ..., Am = am, E1 = e1, ..., El = el, L = l,M = m) (3.17)

Next we will consider each of the two term 3.16 and 3.17 in turn. First
for Term 3.16, we will write it as a product of all its separate probabilities,
Equation 3.18, and then make the strong independence assumption that no
Ai depends on the words of e and that all Ai are independent of Aj for
j ∈ {1, ..., |e|}\{i}. Therefore they solely depend on the random variable M
and L, as is shown in equation 3.19.

20

p(A1 = a1, ..., Am = am | E1 = e1, ..., El = el, L = l,M = m)

=
m∏
i=1

p(Ai = ai | A1 = a1, ..., Ai−1 = ai−1, E1 = e1, ..., El = el,

L = l,M = m) (3.18)

=
m∏
i=1

p(Ai = ai | L = l,M = m) (3.19)

Our final assumption is that p(Ai = ai | L = l,M = m) = q(ai | i, l,m)
and that all q(ai | i, l,m) are parameters for our translation model. The
added i within the parameter q(ai | i, l,m) is used to separate the random
variables Ai for each individual i.

Now we do the same for Term 3.17, namely we will write it as a product
of probabilities, Equation 3.20 , and then make the strong assumption that
Fi only depends on Eai , meaning it only depends on the English word that
is aligned with Fi and is completely independent of L and M . This is shown
by equation 3.21.

p(F1 = f1, ..., Fm = fm |
A1 = a1, ..., Am = am, E1 = e1, ..., El = el, L = l,M = m)

=
m∏
i=1

p(Fi = fi | F1 = f1, ..., Fi−1 = fi−1, A1 = a1, ..., Am = am,

E1 = e1, ..., El = el, L = l,M = m) (3.20)

=
m∏
i=1

p(Fi = fi | Eai = eai) (3.21)

As we did before, we now make one more assumption that for all i, p(Fi =
fi | Eai = eai) = t(fi | eai) and that all t(fi | eai) is are parameters in our
translation model. In the following, it will become clear exactly what these
parameters correspond to from equation 3.15.

Considering all these assumptions we have:

p(f, a | e) =
m∏
i=0

q(ai | i, l,m) · t(fi | eai) (3.22)

21

3.3.1 Model 1

Equation 3.15 is much simplified in model 1. The assumptions in model 1
are the following:

- p(m | e) does not depend on e and m so we take p(m | e) = ε as some
small fixed number

- q(ai | i, l,m) = p(ai | ai−1
1 , f i−1

1 ,m, e) called the alignment probability
depends only on the length of e,i.e. l and is therefore 1

l+1
and,

- p(fi | ai1, f i−1
1 ,m, e) is dependent on fi and eai and so we have p(fi |

ai1, f
i−1
1 ,m, e) = t(fi | eai) which we call the translation probability of

fi given eai .

Putting these assumptions within the equation we have:

p(f, a | e) =
ε

(l + 1)m

m∏
i=1

t(fi | eai) (3.23)

We can use equation 3.14 and sum over the alignments so that we have
an equation for p(f | e). To specify the alignment sum we must specify the
values of ai for all 0 ≤ i ≤ m. Recall that their values can be from 0 to l.
Thus:

p(f | e) =
ε

(l + 1)m

l∑
a1=0

...
l∑

am=0

m∏
i=1

t(fi | eai) (3.24)

In this model there really is only one parameter we must estimate, namely
t. To train our model we will use a corpus containing a set of n translations
{(f (1), e(1)), (f (2), e(2)), ..., (f (n), e(n))} which we will denote by {f (k), e(k)}nk=1,
where k is used to indicate the number of the translation.

Now, we can see that there is a problem, namely, our corpus contains no
alignment information. The fact is, it would be too costly and eventually
ineffective if we were to annotate all alignments manually for every corpus.
So the problem then is how to estimate the parameter(s) without having
all the data. This is why we will have to use the Expectation-Maximization
algorithm.

3.3.2 Expectation-Maximization Algorithm

Here, we will give a brief definition of the Expectation-Maximization algo-
rithm or EM algorithm then specify how we will use it in practice.

22

The goal of the EM algorithm is to find maximum-likelihood estimates
where one does not have all the necessary data. The EM algorithm is given
an incomplete data corpus and aims to map it to a complete data corpus
where it is known how we can perform the maximum likelihood estimation.
It does this by what is known as the symbolic analyzer.

In the following, allow X and Y to be two countable non-empty sets. We
will define a symbolic analyzer as a function A : Y → 2X and name A(y) for
all y ∈ Y as sets of analyzes. The sets A(y) form a partition on X meaning
they are pairwise disjoint and their union is complete, i.e. X =

∑
y∈Y
A(y).

Here we can conclude that for each x ∈ X exists a unique y ∈ Y such
that x is an analysis of y and y is then called the yield of x, i.e. y = yield(x)
iff x ∈ A(y).

If we now pair our symbolic analyzer with a probability distribution p on
X we will have what is called a statistical analyzer. This analyzer will help
us induce probabilities on the set Y as follows. For all y ∈ Y :

p(y) =
∑

x∈A(y)

p(x)

Now, we can see what we need to input into our EM algorithm and
how it all comes together. Obviously we need our incomplete data corpus
and our symbolic analyzer. Then we need our complete probability model
M ⊆ M(X) (Definition 6). This means that an incomplete data model
M ⊆ M(Y) is implied. It is induced by the symbolic analyzer and the
complete probability model. The symbolic analyzer becomes a statistical
analyzer and then induces instances of the incomplete probability model as
such:

p : Y → [0, 1] and p(y) =
∑

x∈A(y)

p(x)

Finally we also need a random starting point p0 of the complete probability
model.

Now we move onto the procedure of the EM algorithm. The procedure
has two main steps, the expectation step (E) and the maximization step (M).
The procedure is as follows:

- for each i = 1, 2, 3, ... do

- q = pi−1

- E-step: compute the complete data corpus fq : X → R expected
by q

23

fq(x) = f(y) · q(x | y) where y = yield(x)

- M-step: compute a maximum-likelihood estimate p′ of M on fq

L(fq; p
′) = max

p∈M
L(fq, p)

- pi = p′

- end for each i

- print p0, p1, p2, ...

3.3.3 Training

Now we will describe how to use this algorithm for the IBM model 1.
Lets simplify things first and imagine our data are not incomplete and

we do indeed have alignment variables for all our translations. Let us define
our corpus as follows. Let F , E ,A be three non-empty sets denoting the sets
of French sentences, English sentences and possible alignments respectively.
We define corpus C as C : F × E × A → R≥0. For easier use we define the

set T = {f (k), e(k), a(k)}nk=1 where C(t) =

{
1 if t ∈ T
0 otherwise

. Using set T as our

working translation set, we have for each t ∈ T of k translations:

- a French sentence f (k) = f
(k)
1 , ..., f

(k)
mk

- an English sentence e(k) = e
(k)
1 , ..., e

(k)
lk

and

- an alignment a(k) = a
(k)
1 , ..., a

(k)
mk

Given all these, calculations are very simple but we will describe this case
keeping in mind our intention to develop it further later on. So we first define
the following:

- cT (e, f) will be the number of times there is an alignment between word
e and word f

- then cT (e) is the number of times e has an alignment with any french
word

- cT (j | i, l,m) is the number of times an English sentence of length l is
the translation of a French sentence of length m where word i in French
is aligned to word j in English

24

- then cT (i, l,m) is the number of times we have a French sentence of
length m and an English sentence of length l

Having defined these we can go back to the parameters of model 1. Even
though for model 1 only one parameter needs estimating we will describe the
other in interest of developing this for model 2 later on.

So now we define our translation probability and alignment probability
of before as follows:

tT (f | e) =
cT (e, f)

cT (e)
(3.25)

qT (j | i, l,m) =
cT (j | i, l,m)

cT (i, l,m)
(3.26)

Now in the case of a training corpus with alignment variables, the ob-
jective will be to count all the above and calculate. So we will have to go
through all translations and find all possible word pairs that could be aligned,
i.e. for a triple (k, i, j) where 1 ≤ k ≤ n, 1 ≤ i ≤ mk and 1 ≤ j ≤ lk we

have a
(k)
i = j if the two words are aligned. We will define a function δ(k, i, j)

to help us calculate these counts, this function is defined as follows for the
complete case:

δ(k, i, j) =

{
1 if a

(k)
i = j

0 otherwise
(3.27)

Meaning that, as you can see in figure 3.2, the purpose will be simply to
increment if there is an alignment and not to, if not.

Now for the case in which we have no alignment variables. We will now
use the EM algorithm described above. Naturally, this means an iterative
algorithm that will run for a predefined number of times, that is R in figure
3.3, or until it converges (that is not shown in the figure for better clarity
in the pseudo-code), whichever happens first. In each iteration, our model
parameter, namely t, will be updated for the next step using its current value.
Our starting point will be random.

Our training set will be T = {f (k), e(k)}nk=1 so this will be the incomplete
data corpus we will be trying to complete. To do that we need to somehow
add the alignment variables. This can be done probabilistically.

We will first redefine δ(k, i, j) for the incomplete case as follows:

δ(k, i, j) =
q(j | i, lk,mk) · t(f (k)

i | e(k)
j)

lk∑
j=0

q(j | i, lk,mk) · t(f (k)
i | e(k)

j)

(3.28)

25

Input: A training corpus T = {f (k), e(k), a(k)}nk=1 where f (k) = f
(k)
1 ...f

(k)
mk ,

e(k) = e
(k)
1 ...e

(k)
lk

, a(k) = a
(k)
1 ...a

(k)
mk .

set all counts cT (...) = 0
for k = 1...n do

for i = 1...mk do
for j = 0...lk do

if a
(k)
i = j then
δ(k, i, j) = 1

else
δ(k, i, j) = 0

end if

cT (e
(k)
j , f

(k)
i)← cT (e

(k)
j , f

(k)
i) + δ(k, i, j)

cT (e
(k)
j)← cT (e

(k)
j) + δ(k, i, j)

cT (j | i, l,m)← cT (j | i, l,m) + δ(k, i, j)
cT (i, l,m)← cT (i, l,m) + δ(k, i, j)

end for
end for

end for

Output: ∀e, f ∈ T set tT (f | e) = cT (e,f)
cT (e)

and ∀j, i, l,m set qT (j | i, l,m) =
cT (j|i,l,m)
cT (i,l,m)

Figure 3.2: In this figure, we can see how the parameters are estimated with
a complete corpus that includes alignment variables.

26

This is in fact giving us a probability of alignment variable a
(k)
i being

equal to j. To see this let us note the following identity:

p(Ai = j | e1...el, f1...fm,m) =
q(j | i, l,m) · t(fi | ej)
l∑

j=0

q(j | i, l,m) · t(fi | ej)
(3.29)

In this way the alignment variables will be filled probabilistically using cur-
rent parameter estimates in each iteration.

Now, of course, for model 1, we stated that the alignment probability
depends only on the English sentence length, so we modify our δ as follows:

δ(k, i, j) =

1
(l(k)+1)

t(f
(k)
i | e(k)

j)

lk∑
j=0

1
(l(k)+1)

t(f
(k)
i | e(k)

j)

=
t(f

(k)
i | e(k)

j)
lk∑
j=0

t(f
(k)
i | e(k)

j)

(3.30)

The algorithm for estimating t(f | e) is shown in figure 3.3.
In this version of the EM algorithm, one can say that the E-step consists

of the inner for loops k, i and j and the M-step is the outer loop r.
The good thing about IBM model 1 is, that despite its naivety in its

assumptions, using the algorithm in figure 3.3, it will always converge to
the global maximum and therefore provides a good starting point for model
2 [BPPM93].

3.3.4 Model 2

The mathematical form used for model 1, provides us with a unique global
maximum after a series of EM iterations, so the derived parameter does not
depend on our initial guess. We will now use the results of model 1 as an
initial estimate in model 2.

Our algorithm and conditions will be much the same as before with T =
{f (k), e(k)}nk=1 and our δ returning to its original form in equation 3.28.

As seen in figure 3.4 iterations will happen for a total of R times or until
convergence (not shown in pseudo-code). Unlike model 1, model 2 may have
many local maximums and therefore the possibility of converging to a local
maximum rather than the global maximum exists.

Having these parameters we can can now calculate the conditional prob-
ability of IBM model 2 as follows:

p(f1...fm, a1...am | e1...el,m) =
m∏
i=1

qT (ai | i, l,m) · tT (fi | eai) (3.31)

27

Input: A training corpus T = {f (k), e(k)}nk=1 where f (k) = f
(k)
1 ...f

(k)
mk , e(k) =

e
(k)
1 ...e

(k)
lk

.

Initialize tT (f | e) randomly.
for r = 1...R do

set all counts cT (...) = 0
for k = 1...n do

for i = 1...mk do
for j = 0...lk do

δ(k, i, j) =
tT (f

(k)
i |e

(k)
j)

lk∑
j=0

tT (f
(k)
i |e

(k)
j)

cT (e
(k)
j , f

(k)
i)← cT (e

(k)
j , f

(k)
i) + δ(k, i, j)

cT (e
(k)
j)← cT (e

(k)
j) + δ(k, i, j)

end for
end for

end for
∀e, f ∈ T set tT (f | e) = cT (e,f)

cT (e)

end for

Output: parameter tT (f | e)

Figure 3.3: In this figure, we can see how the parameter tTS(f | e) is estimated
using a version of the EM algorithm.

28

Input: A training corpus T = {f (k), e(k)}nk=1 where f (k) = f
(k)
1 ...f

(k)
mk , e(k) =

e
(k)
1 ...e

(k)
lk

.

Initialize tT (f | e) to the value gained from IBM model 1. Initialize
qT (j | i, l,m) randomly.
for r = 1...R do

set all counts cT (...) = 0
for k = 1...n do

for i = 1...mk do
for j = 0...lk do

δ(k, i, j) =
qT (j|i,lk,mk)tT (f

(k)
i |e

(k)
j)

lk∑
j=0

qT (j|i,lk,mk)tT (f
(k)
i |e

(k)
j)

cT (e
(k)
j , f

(k)
i)← cT (e

(k)
j , f

(k)
i) + δ(k, i, j)

cT (e
(k)
j)← cT (e

(k)
j) + δ(k, i, j)

cT (j | i, l,m)← cT (j | i, l,m) + δ(k, i, j)
cT (i, l,m)← cT (i, l,m) + δ(k, i, j)

end for
end for

end for
∀e, f ∈ T set tT (f | e) = cT (e,f)

cT (e)
and ∀i, j, l,m set qT (j | i, l,m) =

cT (j|i,l,m)
cT (i,l,m)

end for

Output: parameters tT (f | e) and qT (j | i, l,m)

Figure 3.4: In this figure, we can see how the parameters t(f | e) and q(j |
i, l,m) are estimated for IBM model 2 using a version of the EM algorithm.

29

To find p(f | e), which is our primary goal, we now need to sum up over the
alignments to get:

p(f | e) =
l∑

a1=0

...

l∑
am=0

m∏
i=1

qT (ai | i, l,m) · tT (fi | eai) (3.32)

We can simplify this slightly by replacing ai by the counter j and it can easily
be shown that the below equation is equivalent to the above. An example
for this can be found above Equation 16 in [BPPM93].

p(f | e) =
m∏
i=1

l∑
j=0

qT (j | i, l,m) · tT (fi | ej) (3.33)

3.4 Decoding

The following section is based on the work of Ye-Yi Wang and Alex Waibel,
[WW97]. In this section we will discuss decoding for this statistical machine
translation system. What is meant by the term decoding, is the search pro-
cess performed on a given translation model and language model to find the
best approximated translation for a given sentence. It was proven by K.
Knight, [Kni99], that performing this process and decoding for such trans-
lation systems is NP-complete, so any decoding algorithm will strive to find
the best approximation of a translation it can.

Recall that our statistical machine translation system is trying to find
argmax

e∈E
p(e) · p(e | f). In previous sections we covered how to build a lan-

guage model p(e), and a translation model p(e | f). Now we will discuss an
algorithm that can help us find the best e.

Decoding is important because it directly impacts the performance of the
entire system and the quality of the resulting translations. The algorithm
we will discuss here is the stack decoding algorithm presented by Wang and
Waibel, [WW97].

The basic idea of a stack algorithm is to start with a guess or hypoth-
esis and a score for this hypothesis, both notions will be further explained
below. Then we extend the hypothesis by adding words and re-scoring, al-
ways keeping the hypothesis with the highest score, until we have a complete
sentence.

In other words the algorithm can be written as:

1. Initialize the stack with a null hypothesis.

2. Pop the hypothesis with the highest score as current-hypothesis.

30

3. If current-hypothesis is a complete sentence, then output it and
terminate.

4. For all words w in V from Equation 3.12, extend current-hypothesis

by adding w to its end and compute new score. Insert all new hypoth-
esis into stack.

5. Go to 2.

3.4.1 Scoring

Let us define a hypothesis H as H = l : e1e2...ek where l is the length of
sentence e and e1e2...ek is the sequence of the first k words in e. The score
for H namely fH is composed of two parts, fH = gH + hH , where gH is the
prefix score or the score for what we have so far, namely e1...ek and hH is
the heuristic score for words that have yet to be appended to complete the
sentence, namely ek+1...el.

This score needs to give us an idea of how well we are building our trans-
lation. To this end, we need to calculate separately, the probability given by
the language model for words so far, the probability given by the language
model for potential words to come and the same for the translation model.
This makes four different values and since we would like to be able to just
sum them up neatly at the end, we will use the logarithms of these models.
The process of finding fH begins as follows and later it can be seen how we
split fH into its two composing parts:

fH = argmax
e∈E

(p(e) · p(e | f))

= argmax
e∈E

(log(p(e) · p(e | f)))

= argmax
e∈E

(log p(e) + log p(e | f))

This can be done because the logarithm function is monotone increasing.
Next we will replace p(e) with a condensed version of the formula from Def-
inition 10. Please note that n is the order of n-gram used in the language
model and the first n − 1 probabilities must be listed separately to avoid
negative js, in reality they are the probabilities containing sentence markers
(#). However, here we choose to write it as one product for more readabil-
ity. We also replace p(f | e) with its equivalent in Equation 3.33. So we now

31

have:

fH = argmax
e∈E

(
log

l∏
j=0

p(ej | ej−n+1...ej−1) + log
m∏
i=1

l∑
j=0

q(j | i, l,m) · t(fi | ej)
)

= argmax
e∈E

(l∑
j=0

log p(ej | ej−n+1...ej−1)

+
m∑
i=1

log
l∑

j=0

q(j | i, l,m) · t(fi | ej)
)

What we have so far is for a complete sentence, but our hypotheses are
incomplete, so at this point we need to split our models into the first k words
which are known, and the next k + 1 to l words which are yet to be added
to the sentence. Thus we continue as follows:

fH = argmax
e∈E

(

(a)︷ ︸︸ ︷
k∑

j=0

log p(ej | ej−n+1...ej−1) +

(b)︷ ︸︸ ︷
l∑

j=k+1

log p(ej | ej−n+1...ej−1)

+
m∑
i=1

log(

(c)︷ ︸︸ ︷
k∑

j=0

q(j | i, l,m) · t(fi | ej) +

(d)︷ ︸︸ ︷
l∑

j=k+1

q(j | i, l,m) · t(fi | ej)))

(3.34)

Parts (a) and (c) are represent the known part of our sentence and will
be used in calculating the gH part of our score. Parts (b) and (d) cannot
be calculated as the words are not yet known. Therefore, we need to define
heuristics that can approximate these values well and the heuristics for these
two parts will be used in calculating hH for our score.

Calculating the score gH

To better understand the scoring method let us now interpret the IBM trans-
lation model 2 in the following way. Each word ej in the hypothesis, con-
tributes the amount q(j | i, l,m) · t(fi | ej) to the probability of fi. We will
use SH(i) to denote the probability for the word fi contributed by the words
currently in the hypothesis. Therefore we have:

SH(i) =
k∑

j=0

q(j | i, l,m) · t(fi | ej) (3.35)

32

Now, we replace the inner sum of Equation 3.33 with SH(i) and take the

logarithm as shown, and we have
m∑
i=1

logSH(i) which is the contribution of

the translation model to the gH part of our score.
We now have to consider the contribution of the language model to the

hypothesis score. So, we also take the logarithm of the language model
probability of the hypothesis and we get:

gH =
m∑
i=0

logSH(i)+

k∑
j=0

log p(ej | ej−n+1...ej−1) (3.36)

where n is the order of the n-gram model. To calculate gH , in each step,
we want to be able to use the g-score of its parent hypothesis which we will
call P . In other words we would like to calculate the g-score for a hypothesis
H = l : e1...ek using the hypothesis P = l : e1...ek−1, therefore the value SH(i)
is separated into the value for the parent hypothesis and the contribution of
ek and so we have SH(i) = SP (i) + q(k | i, l,m) · t(fi | ek). The same is

33

applied to the language model probability and our new gH then is:

gH =
k−1∑
j=0

log p(ej | ej−n+1...ej−1) + log p(ek | ek−n+1...ek−1)

+
m∑
i=1

log

SP (i)︷ ︸︸ ︷
(
k−1∑
j=0

q(j | i, l,m)t(fi | ej) +q(k | i, l,m)t(fi | ek))

=
k−1∑
j=0

log p(ej | ej−n+1...ej−1) + log p(ek | ek−n+1...ek−1)

+
m∑
i=1

logSP (i) · (1 +
q(k | i, l,m)t(fi | ek)

SP (i)
)

=

gP︷ ︸︸ ︷
k−1∑
j=0

log p(ej | ej−n+1...ej−1) + log p(ek | ek−n+1...ek−1)

+

gP︷ ︸︸ ︷
m∑
i=1

logSP (i) +
m∑
i=1

log(1 +
q(k | i, l,m)t(fi | ek)

SP (i)
)

= gP + log p(ek | ek−n+1...ek−1)

+
m∑
i=1

log(1 +
q(k | i, l,m)t(fi | ek)

SP (i)
) (3.37)

To avoid having a zero denominator in the initial stages of the algorithm, the
null hypothesis H0 will have a small value π as its score, rather than zero.

Calculating the heuristic hH

The first thing to consider for our heuristic function, is how far to extend
a hypothesis. If we underestimate the value of extending our hypothesis,
the search may end too early without giving an optimal result, and if we
overestimate and extend it too much, the algorithm will waste a lot of time
to safeguard optimality. So a balance must be reached here.

It is stated by N. Nilsson, [Nil71], that in order to guarantee an optimal
search result the heuristic function must be an upper-bound of the score for
all possible extensions ek+1...el.

Calculating hH will follow a similar pattern to calculating gH , namely, we
must estimate the contributions of the language model and the translation

34

model in the extension.
For estimating the heuristic score for the language model, hLMH , we will use

the negative of the perplexity of our language model over the training data,
PPtrain . This will be the logarithm of the average probability of predicting a
new word in the extension. We assume that, on average, PPtrain overestimates
the likelihood of the next word. We will also use a constant C to help avoid
underestimating the likelihood of the next word. So we will define hLMH as
follows:

hLMH = −(l − k) · PPtrain +C (3.38)

We can see in Equation 3.38, that the dominating expression is determined
by k. Meaning, that when k is much smaller than l, the expression −(l−k) ·
PPtrain plays a more significant role and hLMH has a value closer to the average
perplexity. However, when k gets closer to l and there are only a few words
left, the language model probability for the words left may be much higher
than average and so we need to choose a constant that will help us avoid
underestimation. The constant that was chosen is C = PPtrain + log pmax ,
where pmax is the maximum n-gram probability in the language model.

Now we move onto calculating the heuristic for the contribution of the
translation model. To this end, we will introduce a variable vjl(i) to denote
the maximum probability of fi given any possible word from V at any position
between j and l, where V is the set of all possible different words in our
language. Therefore we have:

vjl(i) = max
j≤k≤l
e∈V

q(k | i, l,m) · t(fi | e) (3.39)

It is enough to calculate vjl(i) once for a given target sentence as it is in-
dependent of hypotheses. Now, we need to calculate the maximum that a
new word can contribute to the likelihood of the i-th target word so we take
the logarithm of the variable vjl(i) when j = k + 1 and subtract from it the
logarithm of the probability mass for the i-th word given by words in the
hypothesis, namely SH(i), so we have:

log(v(k+1)l(i))− logSH(i) (3.40)

Expression 3.40 can have a negative result so we will keep the maximum
between it and 0. Our final hH when k < l is then:

hH =
m∑
i=1

max{0, log(v(k+1)l(i))− logSH(i)}

− (l − k) · PPtrain +C (3.41)

35

When k = l, no more words can be added to extend the hypothesis and since
hH only considers words yet to be added, it is clear that hH = 0 for this
case. By adding gH and hH we can compute the score fH for a hypothesis
H = l : e1...ek:

fH = gH + hH

= gP + log p(ek | ek−n+1...ek−1)

+
m∑
i=1

log(1 +
q(k | i, l,m)t(fi | ek)

SP (i)
)

+
m∑
i=1

max{0, log(v(k+1)l(i))− logSH(i)} (3.42)

− (l − k) · PPtrain +C (3.43)

Expression 3.42 and Expression 3.43, represent approximations of parts
(d) and (b) of Equation 3.34 respectively.

36

Chapter 4

Implementation Details and
Results

In this chapter we will go through the programming techniques used in order
to implement our statistical translation system. All the programming is done
using the programming language Java and the finished programs were run
on a personal laptop. All implementation code and some files can be found at
this web address: (https://www.dropbox.com/sh/hc8wffhjhk32h0c/SA9UU5TUaR)

4.1 The Language Model

In this section we will specify how we created our trigram file from Europarls
English data files. We decided to create our own trigram file rather than use
available ones online in order to have better control over the exact forms our
trigrams take. Of course, this means that we are working from a much more
limited data set.

4.1.1 Creating our own Trigram File

The main thing to think about when writing a program to create our trigram
file is the amount of data we have to deal with. The task appears to be a
relatively simple one; when given a file containing one sentence per line, split
the line into its trigrams, adding special characters to the beginning and end
of the sentence, count them, and write the results in a new file.

It may seem at first glance that the task can be done in any number
of ways and that is true when working with only a small amount of data.
But some methods cost more time and memory as the amount of data gets
larger. To help deal with these large amounts of data we will be using a Java

37

structure known as a HashMap.
A HashMap is an object that stores pairs of keys and values in a table

within the RAM. The key is unique and this structure has a constant time
performance for its basic get and put functions, retrieving and adding to the
HashMap respectively. The only problem with using HashMap is again related
to the amount of data. The more data, the more memory space needed.
In our particular case we had to manually increase the amount of memory
allocated to our JVM and stack in order to store the full HashMap in memory.
We used the Europarl English text v7. [Koe05] to make this trigram file. Our
text file was spilt into lines, where each line was a complete sentence.

The algorithm we used was as follows:

- for every line in the file do the following:

- split the sentence into a List of words

- for each word make the trigram of previous and/or following words
and place into a second List

- for each trigram in the List do the following:

- create the key using the formula:
word1+" "+word2+" "+word3

- search for the key in the HashMap

- if the key does not exist, then put it in the HashMap with a
value of 1

- if the key does exist, then put in the key with the new value

of the old value plus one

- write all key and value pairs to a new file

The file that is built is in the format frequency followed by the three words
separated by tabs. This algorithm has linear time complexity with respect
to the number of words.

Our final file of trigrams in this case contained 15,484,624 trigrams and
their frequencies.

4.1.2 Creating our Language Model Database

To create our language model database, we read the trigram file we made
in the previous, place it once more in a different HashMap and use that to
calculate the maximum likelihood with and without smoothing. The final
result is then placed in a Lucene Database for faster later retrieval.

38

The Lucene Database [luc11], is a full-featured text search engine library
written entirely in Java. The database contains an index of documents. For
our purposes, each document added to the index will be of one trigram and
its frequency taken directly from our trigram file, the calculated maximum
likelihood without smoothing and the maximum likelihood with a number of
different alphas used for add-α smoothing.

To be able to calculate maximum likelihood for each trigram t, we will
need two main components that we do not have in our trigram file. The first
component is the total of all frequencies of trigrams that have the same first
two words as t. The second component we will need, is the total number of
those trigrams with the same first two words as t. The latter is used during
smoothing.

Let us explain the difference between the two with a small example. If
a file contained only the two trigrams (x, y, x) with frequency a and (x, y, z)
with frequency b, then it can be seen that both have the same first two words
so the total frequency for these trigrams is a + b while the total number is
3. The reason the total number is 3 is because with the given words in this
file, we can have the trigram (x, y, y) with the frequency 0 and this would
make our |V | from Equation 3.12 equal 3. This |V | is the total number and
is in fact equal to the number of different words the file contains because
the number of different words in the file determine the number of possible
trigrams with the same first two words. In the case of our file, the number
of different words in our V is 277,875.

Recall that our trigram file contained the frequencies followed by the
three words. Reading from that file we get for each trigram t, the three words
word1,word2,word3 and the frequecy f. Now we will create a HashMap using
the first two words of our trigrams as the key and an Integer denoting total
frequency as the value. The algorithm for calculating this total is as follows:

- For every trigram t do:

- Set key as word1+" "+word2

- if key is in HashMap then value is set to a new Integer such
that:
totalfrequency= “old total frequency”+f

- else if key does not appear in HashMap then value is set to a
new Integer such that:
totalfrequency =f

Using the HashMap described above, we now go through our trigram
file again this time calculating the maximum-likelihood with and without

39

smoothing factors and place all these in a new document which is then added
to our Lucene index. Since at this point we don’t know which smoothing
factor will give the best results we calculated maximum likelihood with the
following smoothing factors: 1, 0.1, 0.01, 0.001, 0.0001 and 0.00001.

As an example, document 54 in the index we created, is for the trigram
“services have opened” and contains the following information:

- frequency = 2,

- word1 = services,

- word2 = have,

- word3 = opened,

- max-likelihood (no smoothing) = 0.006896551724137931,

- with smoothing (max-likelihood, alpha used):

- (1.078496575773372E-5,1),

- (7.479298370581427E-5,0.1),

- (6.549898167006109E-4,0.01),

- (0.003523662777900066,0.001),

- (0.006293828423081462,0.0001),

- (0.006831131016168353,0.00001)

4.2 The Translation Model

Writing the program for the translation model was achieved in three parts
which we will discuss below.

4.2.1 Changing Text Files to Integer Files

In implementing this project, our resources were limited to a personal laptop
with a 4GB RAM. We therefore had to create a way to make the most of our
limited memory space. For this we switched both the French and English
text files from the Europarl parallel corpus, [Koe05], to files containing integer
numbers. We created files that would replace each word with an integer. This
would make the HashMaps we later create take less space. For each file we
saved a dictionary that can map the files back to their original state if
needed.

40

4.2.2 Initializing Model 2 by Model 1

We discussed in the previous chapter that initializing model 2 with the trans-
lation probabilities, or the t parameter, from model 1 would, in most cases,
give better results. For that reason the implementation of model 1 found in
our project is limited to finding only the translation probabilities and does
not calculate the end sentence probabilities of the model. In other words,
model 1 is used only as an initialization tool and not as an actual working
model for translation. The algorithm we followed for calculating the t param-
eters of model 1 is found in Figure 3.3. To keep track of the counts and the
t parameter we created three HashMaps. Two of these keep track of c(e, f)
and c(e) and the other keeps track of t(f | e).

In the programming, t is initialized to 0.5 for all f and e. This technically
doesn’t matter as parameter values in model 1 converge to the only local
maximum of the model. The program goes through a maximum of 10 full
iterations to achieve convergence. The HashMaps for c(e, f) and t(f | e)
become very large very quickly due to the need to record every pairing of
words for every sentence. Unfortunately even with our transference of texts
to integers, our limited resources did not allow for the full English and French
Europarl files, from [Koe05], to be utilized in our model and we had to settle
for sentences containing no more than 20 words. At the end that meant a
total of 290,991 sentences from these files were used in creating the translation
probabilities for model 1.

4.2.3 Model 2

The algorithm for calculating the parameters of model 2 is seen in Figure 3.4.
Implementation of this algorithm took the creation of six HashMaps, three of
which are the same as in model one and the other three keep track of the
counts c(j | i, l,m), c(i, l,m) and q(j | i, l,m).

The program uses the t parameters from model 1 to initialize the t param-
eters for model 2 and the alignment probabilities, parameter q, is arbitrarily
set to 0.5 for initialization. Unlike in model 1 where the initialization value
had no effect on the end result, the chosen value here may have affected the fi-
nal results as model 2 does not have a single local maximum. The algorithm
may have become stuck in a local maximum instead of finding the global
maximum in some cases. The program again goes through 10 iterations to
achieve convergence.

Again, our limited resources and also our initialization of parameter t
force us to limit the programming to only sentences with no more than 20
words. The final results were calculated using our newly found t and q

41

parameters and Equation 3.33. We kept the results in the following way; a
file to keep all translation probabilities t which is named Model2tparameters,
a file to keep all alignment probabilities q named Model2qparameters and
a file keeping all sentence pairs and their translation model probability as
found by Equation 3.33 named TranslationModel2.

4.3 Decoding

4.3.1 Perplexity

We have chosen to explain the implementation of the perplexity here, because
we will be using the average perplexity of our training data in our heuristics.
The class, PPandPMax, in the Decoder package, calculates both the average
perplexity and the maximum probability in the language model.

Finding the maximum probability was a simple matter of searching through
the index for it. For the perplexity, we again defined a HashMap and put into it
from the index, each unique trigram from the language model as the key and
the maximum likelihood of that trigram with α-smoothing when α = 0.0001
as the value. Experiments showed, that this α between those that we had
previously calculated gave the lowest average perplexity.

We used this HashMap as a quick way to search for our trigrams. The
algorithm, then went through our original training file one sentence at a
time and calculated the perplexity for that sentence using Equation 3.10.
There was some preprocessing involved here to add the beginning and end
sentence markers. Then we calculated the average perplexity of the language
model by taking the average of the individual sentence perplexities over all
sentences in the model.

The end result of this was pmax = 0.9989130381798151 and Average

Perplexity= 25.484278727716106. In the program, the values were used
as is and have not been rounded.

4.3.2 Stack Decoding

The algorithm for a stack decoder was implemented using a Red-Black bia-
nary search tree, [CLR90], instead of an actual stack as this can search more
efficiently and has a complexity of O(log(n)) in the worst case. We used
an implementation of the Red-Black Tree by Robert Sedgewick and Kevin
Wayne available online.

To implement our decoder, we need to have the probabilities from our
language model, and the t and q parameters of our translation model at

42

hand and ready for search. To this end we created three HashMaps containing
the probabilities as values. The key for each is of the type String, Pair
and tuple4 for the language model, t parameters and the q parameters,
respectively where Pair and tuple4 are simple Java classes defined to keep
the values we need. Pair contains two words in integer form for any t and
tuple4 similarly keeps the values for j, i, l,m for any q.

We define a Java class called Hypothesis and in this class, we keep the
values of the hypothesised sentence, this is an integer list, the length l, the
values gH and hH and the array SH . We use this array to calculate the array
in the next hypothesis and in calculating gH .

The class RedBlackBST which implements the Red-Black tree has nodes
with a key and a value. The key is what the maximum and minimum
functions are based on. Since we want to find the best score, we will have fH
for each Hypothesis be its key. The value is then an instantiation of the
class Hypothesis.

Our decoder implementation now divides into three main classes (not
counting the Red-Black tree class). We will describe them one by one here.

In the class CalculateScore we use the equations in Section 3.4 to cal-
culate the score for a given Hypothesis. This class is given a Hypothesis,
the afore mentioned HashMaps and the french sentence to be translated.

It has four methods, one each for calculating gH , hH and fH where fH
just adds the results of the previous two, and a static function to calculate
v(k+1)l(i). In the method for calculating gH , we also update our SH .

Next, we have the class StackDecoder. This class, given the HashMaps,
the french sentence and a Red-Black tree tries to create a new tree. In actual
fact it is implementing the step of adding one additional word e, calculating
the score and adding it to the tree.

It first checks for a complete sentence, if we have a complete sentence,
then the method returns without making any changes to the tree. When the
sentence is incomplete, it checks whether k has reached l. If that is the case,
it adds the sentence end marker (#) to the end of the sentence and calculates
scores for it and adds it to the tree.

If not, then it adds to the hypothesis, every e ∈ V , creating a new hy-
pothesis for each. These hypothesis must also have their scores calculated
and be added to the tree. For the sake of efficiency in both time and space,
we sacrifice some weaker hypothesis in favour of stronger ones here.

Before adding a hypothesis to a tree we check the size of the tree. If the
tree has grown bigger than a size M , then we compare any new hypothesis
score with the minimum score in the tree, if the new score is larger than the
minimum, the minimum is deleted and the new hypothesis added. If not,
the hypothesis is ignored. The M used in this work was 20000.

43

The last class we implemented is called MultiStackDecoder. This class
does the initialization for trees for each l and runs an instantiation of the
StackDecoder class. Here, we had to decide for how long we would search
in the tree and continue updating it. For lack of time, as the run time is
very long, we decided to search 10l many times. This is likely not long
enough to produce good results. In their paper, [WW97], Wang and Waible
had suggested searching for as many as 6000 times for each sentence length,
however here the choice was made to search longer for longer sentences.

Having a different tree for each possible length helps balance out some of
the bias this algorithm has towards longer sentences. We keep the bestHypothesis
for each length l and choose the translation from among them. When making
this choice, we consider a minimum distance between l and the length of the
french sentence being translated.

Unfortunately, even after many attempts at making the program more
time efficient, the sheer amount of data that needed to be examined caused
running time to be longer than ten hours per sentence. Due to this, and
lack of time for concluding this work, testing could not be done on an exten-
sive amount of data. We only tested the algorithm for a few sentences and
never got a perfectly translated sentence. We had some partial sentences as
results. It is possible that should the search have been allowed to continue,
the algorithm would have given the correct translations.

Unfortunately however, at this time and using our limited resources, it is
not possible to produce definite results and estimate how well the algorithm
performs.

What can be said, is that the decoder was based solely on Wang and
Waibels’ work, [WW97], and since the algorithm was followed as precisely
as possible when implementing, given sufficient resources, it should perform
with results close to theirs. Their results were, that the algorithm produced
correct translations with 54.2% accuracy.

44

Chapter 5

Conclusion

In summary, this work provided a demonstration of a SMT system that
implements the translation model, IBM model 2. We explained the inner
workings and idea behind a SMT system and then proceeded to explain each
part separately and implement these ideas using Java.

We explained how we can model a language using n-grams, and imple-
mented a trigram model with α-smoothing. Then, we described the trans-
lation models, IBM model 1 and 2. We implemented both these models,
using the results for model 1 as initialization for model 2. In calculating the
parameters for these models, we gave a brief explanation of the Expectation
Maximization algorithm and used it in implementation.

We next, explained how these results can be used to build a stack decoder.
We proceeded to explain how we can form hypotheses for a translation and
how to give each hypothesis a score so they can be judged. The hypothesis
with the best score is our final translation.

Like any system that depends on data quantity, our SMT suffers from
a data sparsity problem, preventing us from getting good results. Another
problem we encountered, was dependant on physical resources. The resources
we had at our disposal were not large or powerful enough. Thus, to save
space and time, we were forced to use even less data and sacrifice accuracy
for efficiency. Even with limiting our data, the final decoder had a very long
run time for a single sentence and lack of time prevented us from producing
substantial results in the final decoding stage of this work.

45

[]

46

Bibliography

[BPPM93] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra,
and Robert L. Mercer. The mathematics of statistical machine
translation: Parameter estimation. Computational linguistics,
19(2):263–311, 1993.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIt Press, 1990.

[Col11] Michael Collins. Statistical machine translation: Ibm models 1
and 2, 2011. Lecture notes, Columbia University.

[Kni99] Kevin Knight. Decoding complexity in word-replacement trans-
lation models. Computational Linguistics, 25(4):607–615, 1999.

[Koe05] Philipp Koehn. Europarl: A parallel corpus for statistical ma-
chine translation. In MT summit, volume 5, 2005.

[Koe10] Philipp Koehn. Statistical Machine Translation. Cambridge Uni-
versity Press, 2010.

[luc11] Apache lucene core. http://lucene.apache.org/core/, 2011.
Version 3.5.

[Nil71] Nils J. Nilsson. Problem-solving methods in artificial intelligence.
McGraw-Hill computer science series. McGraw-Hill, 1971.

[Nor98] James R. Norris. Markov Chains. Number Nr. 2008 in Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 1998.

[Pre04] Detlef Prescher. A tutorial on the expectation-maximization al-
gorithm including maximum-likelihood estimation and em train-
ing of probabilistic context-free grammars. arXiv preprint
cs/0412015, 2004.

47

http://lucene.apache.org/core/

[Sha48] Claude E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27(3):379–423, 1948.

[WW97] Ye-Yi Wang and Alex Waibel. Decoding algorithm in statistical
machine translation. In Proceedings of the eighth conference on
European chapter of the Association for Computational Linguis-
tics, pages 366–372. Association for Computational Linguistics,
1997.

48

	Introduction
	Mathematical Preliminaries
	Probability Distributions
	Estimation

	Statistical Machine Translation
	Introduction
	The Language Model
	n-Gram Language Models
	Perplexity
	Count Smoothing

	The Translation Model
	Model 1
	Expectation-Maximization Algorithm
	Training
	Model 2

	Decoding
	Scoring

	Implementation Details and Results
	The Language Model
	Creating our own Trigram File
	Creating our Language Model Database

	The Translation Model
	Changing Text Files to Integer Files
	Initializing Model 2 by Model 1
	Model 2

	Decoding
	Perplexity
	Stack Decoding

	Conclusion

