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Das sogenannte Kleene-Theorem für Wortsprachen ist ein zentrales Resultat in der
theoretischen Informatik. Es beschreibt den Zusammenhang zwischen (endlichen) Au-
tomaten und rationalen Ausdrücken [Kle56]. Eine natürliche Verallgemeinerung des
Kleene-Theorems befasst sich mit erkennbaren Baumsprachen [TW68]. Weiterhin wurden
sowohl für Wortsprachen als auch für Baumsprachen Verallgemeinerungen des Kleene-
Theorems für die jeweiligen gewichteten Automaten und gewichteten rationalen Ausdrücke
bewiesen ([Sch61] für Wortsprachen und [DPV05] für Baumsprachen).

Etwa 30 Jahre nach [Kle56], kam zudem die Theorie der Wälder (auch: Magmoide)
und Waldsprachen auf [AD78], [AD79]. Eine Verallgemeinerung des Kleene-Theorems für
Waldsprachen wurde bereits bewiesen [Str09]. Aktuell bleibt eine offene Frage, ob ein
Kleene-Resultat für gewichtete Waldsprachen formuliert und bewiesen werden kann. In
Anlehnung an [Sch61] und [DPV05] stellt sich diese Frage besonders für den Fall von
Semiring-gewichteten Waldsprachen.

Die Aufgaben des Studenten im Rahmen der Masterarbeit sind folgende:
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• Er soll eine Definition für gewichtete Waldautomaten (WTA) finden und nutzen,
um eine Beschreibung der Klasse der erkennbaren gewichteten Waldsprachen
(LWTA) zu erhalten. Diese Beschreibung soll auch einen Vergleich zu der Klasse
der erkennbaren gewichteten Baumsprachen umfassen.

• Er soll rationale gewichtete Waldsprachen definieren. Hierbei sollen nach Möglichkeit
die klassischen rationalen Operationen (endliche Sprachen, Summe, Konkatenation,
Kleene-Stern) auf den Waldfall gehoben werden.

• Er soll zeigen, dass LWTA unter den eingeführten rationalen Operationen abschließt.

• Er soll zeigen, dass jede erkennbare gewichtete Waldsprache auch rational ist. Dies
soll durch die Analyse von WTA zu rationalen Waldausdrücken geschehen.

Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss in
sich abgeschlossen sein und alle nötigen Definitionen und Referenzen enthalten. Die
Urheberschaft von Inhalten – auch die eigene – muss klar erkennbar sein. Fremde
Inhalte, z.B. Algorithmen, Konstruktionen, Definitionen, Ideen, etc., müssen durch genaue
Verweise auf die entsprechende Literatur kenntlich gemacht werden. Lange wörtliche
Zitate sollen vermieden werden. Gegebenenfalls muss erläutert werden, inwieweit und zu
welchem Zweck fremde Inhalte modifiziert wurden. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit geführt werden. Die Darstellung
aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Für jeden wichtigen
Begriff sollen Erläuterungen und Beispiele angegeben werden, ebenso für die Abläufe der
beschriebenen Verfahren sowie Konstruktionen. Wo es angemessen ist, sollen Illustrationen
die Darstellung vervollständigen. Schließlich sollen alle Lemmata und Sätze möglichst
lückenlos bewiesen werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.

Dresden, 20. Juni 2019

Unterschrift von Heiko Vogler Unterschrift von Frederic Dörband
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Chapter 1: Introduction

1.1 Motivation

Formal languages are studied intensively in theoretical computer science. A prominent
class of formal languages is that of string languages over some alphabet Σ. A word over
Σ is a finite sequence over Σ and a string language is a set of words. Another important
class of formal languages is that of tree languages over a ranked alphabet Σ. A tree over
Σ is a well-bracketed string over Σ, usually depicted by a graph theoretical tree.

aababcba

σ

γ

α

β

A word and a tree. The tree corresponds to σ(γ(α), β).

Usually, formal languages that are interesting from a theoretical point of view are
infinite sets. However, one wants to use finite formalisms to represent these languages.
This is done in order to allow computers to execute algorithms on these infinite languages
despite having only finite storage and finite processing speed.

Well-studied finite formalisms representing formal languages include grammars, au-
tomata and rational expressions. In the string case, these amount to the following
concepts. Grammars are essentially finite sets of rules that generate parts of words. The
language generated by a grammar is the set of words that can be generated by iteratively
applying rules.1 Automata are essentially graphs with start and end nodes where a word
is accepted if one can reach a final node from a start node while processing a symbol of
the word for every edge that is used. Rational expressions, on the other side, define a
class of languages as the smallest class that contains finite languages and is closed under
certain operations. These operations usually include union, concatenation, and Kleene
star.

q1start q2

a

b

c

ac∗(bac∗)∗

An automaton and a rational expression.

1In this thesis however, grammars do not play any further role, whence we will stop mentioning them in
the remainder of this chapter.
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Automata and rational expressions can also be introduced for tree languages. However,
the formalisms are mathematically more tedious. The concatenation operation of strings,
for example, can not simply be lifted to trees, as trees do not have one specific leaf node.
Therefore, tree concatenation is realized by a family of operators (see [9, Definition 2.27.])
and hence also the Kleene star operation becomes more cumbersome to deal with.

This mathematical pain goes away when one considers forests (finite tuples of trees)
and formalizes automata and rational expressions for them. Each forest consists of a
certain number, m, of trees and each tree may contain variables from an n-element set Xn.
In this case, we say that the forest is an (m,n)-forest. Now, given an (m,n)-forest ξ1 and
an (n, k)-forest ξ2, we can easily define ξ1 · ξ2 as the forest obtained from ξ1 by replacing
each occurrence of the variable xi by the i-th tree in ξ2. This is more aligned with the
corresponding theory for string languages and hence is of high theoretical interest.

In all of these cases (strings, trees, and forests), there is a so-called Kleene result, which
states that the class of languages accepted by automata equals the class of languages
generated by rational expressions. In the string case, Kleene first proved this result in
1956 in [14]. Twelve years later, Thatcher and Wright [19] proved the statement in the
tree case. The forest case was proven in 2009 by Straßburger [18].

Kleene’s result has been extended in serveral directions. Enriching the algebra generat-
ing the formal languages was one direction. Another extension was to consider weighted
languages. That is, instead of speaking about presence or absence of transitions in an
automaton or words in a language, one assigns to each transition (and word) a weight
from a weight space S. Therefore, a weighted (string) language is not simply a set of
words, but rather a map from the set of all words to S. This can be done for tree
languages as well. A pleasant fact is that rational expressions do not differ significantly
between the unweighted and weighted case. The closure properties stay almost the
same: finite sets become finitely supported weighted languages, union becomes sum and
multiplication with a scalar, and concatenation and Kleene star stay the same (of course
with different definitions than in the unweighted case).

In both the weighted string and tree case, Kleene-like results have been proven. For
strings, this was done by Schützenberger in [15] (see also [8]). The tree case was proven
by Droste, Pech, and Vogler [6] in 2005. However, a Kleene-like result for weighted forest
languages has not been proven.

In this thesis, we introduce weighted forest automata and rational weighted forest
expressions and prove a Kleene-like result in this case. We do this by combining the
proof of the weighted tree case [6] with the proof of the unweighted forest case [18].

1.2 Structure of the Thesis

In this section, we outline the contents of this thesis.
Chapter 1 was a brief introduction to the idea behind trees, forests, and weighted tree

(and forest) languages. Moreover, we presented a timeline of Kleene results. This chapter
demonstrates the relevance of Kleene results in recent scientific research and embeds our
general case of weighted forest languages into the existing literature on the topic.

Chapter 2 is an introduction to the necessary mathematical groundwork. We recall
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notions such as semirings, ranked alphabets, trees, and weighted languages. Furthermore,
we give a definition for weighted tree automata and thereby make our hand-wavey
explanations from Chapter 1 precise.

In Chapter 3, we introduce the notion of weighted forest automata (WFA), prove a
decomposition result, and introduce normal forms of WFA. The decomposition result
is a property of weighted forest languages that Straßburger already observed in [18].
He showed that (unweighted) recognizable forest languages are cartesian products of
(unweighted) recognizable tree languages. A similar result holds for the weighted case.
The normal forms are inspired by [6] and are mainly used as a simplifying tool for later
proofs.

Chapters 4 and 5 contain the proof of our Kleene-like result. In Chapter 4, we prove
the different closure properties of the class of recognizable weighted forest languages.
This is done by explicit constructions. We refer the reader to the introduction of Chapter
4 for a more detailed insight into the proofs and their execution. In essence, Chapter 5
introduces rational weighted forest expressions and then proves that every recognizable
weighted forest language can be generated by such an expression.

In Chapter 6, we wrap up this thesis and give an outview on possible future research
in the field of weighted forest languages.
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Chapter 2: Preliminaries

In this chapter, we introduce the mathematical tools that lay the groundwork for our
upcoming studies and results. We start by introducing elementary formalisms from
mathematics and then recall the notions of trees and weighted tree languages (over
semirings). We cite corresponding introductory papers, whenever we define more complex
concepts.

2.1 Notations and Basic Definitions

We use the conventional set-theoretic approach to mathematics after Zermelo and Fraenkel
with the axiom of choice. For a set M , we denote the cardinality of M by #M .

The set of positive integers is denoted by N+ := {1, 2, 3, ...}. The set of nonnega-
tive integers is denoted by N0 := N+ ∪ {0}. If not stated differently we write N for N+.
We abbreviate [n,m] := {n, n+ 1, ...,m} and [n] := [1, n] for any n,m ∈ N with n ≤ m.
Moreover we denote [0] := ∅.

We denote the (contravariant) composition of relations ρ ⊆ A×B and π ⊆ B ×C
by π ◦ ρ ⊆ A× C or in some cases simply πρ.

We quantify over multiple maps f1 : A −→ B, . . . , fn : A −→ B, using the shorthand
notation f1, . . . , fn : A −→ B. Moreover, we identify constant maps with their unique
image. If there exists a bijective map f : A −→ B, we write A ∼= B.

A semiring (c.f. [12] and [13]) is an algebraic structure (S,+, ·, 0, 1) such that
(S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid, for every a, b, c ∈ S it holds that
a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a, and for any a ∈ S it holds that
a · 0 = 0 = 0 · a. Due to this last property, some literature calls 0 absorbing (see [6])
whereas other literature says that 0 annihilates S (see [3, after Proposition 1.11]). Note
that it is customary to write ab instead of a · b.

Given a finite set I and a family (ai ∈ S | i ∈ I), we denote the sum of all elements
ai as

∑
i∈I ai. If S is a commutative semiring, we analogously denote the product of all

elements ai as
∏
i∈I ai.

Note that N0 acts on any semiring S. That is, we can define the map · : N0 × S −→ S
where for every n ∈ N0 and a ∈ S the value n · a is defined inductively as follows.

0N0 · a := 0S and (k + 1) · a := k · a+ a for every k ∈ N0

We illustrate semirings by listing some important examples. More involved lists of
examples can be found in [12], [13], and [6].

1. The Boolean semiring is B = ({0, 1},∨,∧, 0, 1) with logical disjunction and
logical conjunction. Weighing an automaton (or any formalism in natural langugage
processing, for that matter) with B is equivalent to considering the unweighted
case.

2. The semiring of natural numbers is N = (N,+, ·, 0, 1) with the standard addition
and multiplication.
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3. The tropical semiring is Trop = (N ∪ {∞},min,+,∞, 0) with the minimum
operation (recall that N is well-ordered) and addition.

4. Every ring is a semiring. In particular every field is a semiring.

Let Σ be a set. We call Σ an alphabet, if #Σ ∈ N, i.e. Σ is a finite and nonempty
set. Σ∗ denotes the set of words over Σ, i.e. finite ordered sequences of elements from
Σ. The length of ω ∈ Σ∗ is denoted |ω|. Let Σn := {ω ∈ Σ∗ | |ω| = n} for n ∈ N0

and ε be the unique element of Σ0. For σ ∈ Σ,ω ∈ Σ∗, we denote the number of
occurrences of σ in ω as |ω|σ.

2.2 Trees

Let Σ be an alphabet and r : Σ −→ N0 a map. We call the pair (Σ, r) a ranked
alphabet and for any a ∈ Σ, r(a) is the rank of a. If r is clear from the context, we
will withhold r and simply write Σ instead of (Σ, r).

Let Σ be a ranked alphabet and k ∈ N0. We define Σ(k) := {a ∈ Σ | r(a) = k} =
r−1({k}). Since Σ is finite and nonempty, there exists maxrk(Σ) := max r(Σ) called
the maximal rank of Σ.

We fix the sets X := {xi | i ∈ N} and for any n ∈ N, Xn := {xi | i ∈ [n]}. These will be
used as sets of variables in trees and are assumed to be disjoint from any other occuring
set.

Let Σ be a ranked alphabet and A a set. Then the set of trees over Σ indexed
by A, abbreviated by TΣ(A), is the smallest set T ⊆ (Σ ∪A ∪ C)∗ (where C consists of
open and closed round brackets and the comma), such that

A ⊆ T

and for any k ∈ N0, σ ∈ Σ(k), and t1, ...tk ∈ T , also

σ(t1, ..., tk) ∈ T.

Moreover TΣ := TΣ(∅) and for each α ∈ Σ(0), we identify α with α().
A tree language is a set of trees L ⊆ TΣ .
A tree t ∈ TΣ(X) is called linear, if for every i ∈ N xi occurs at most once in t. The

leaves of t are the positions of t that do not have any successors.
Let l ∈ N0, t ∈ TΣ(Xn) and s1, ..., sn ∈ TΣ(A). Define the substitution of s1, . . . , sn

into t inductively by:

t[s1, ..., sn] := si

whenever t = xi, i ∈ [n] and

t[s1, . . . , sn] := σ(t1[s1, ..., sn], ..., tk[s1, ..., sn])

whenever t = σ(t1, ..., tk) for some k ∈ N0, σ ∈ Σ(k), and t1, ..., tk ∈ TΣ .
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Define T̃Σ(Xn) as the set of trees t ∈ TΣ(Xn) such that the left-to-right sequence of
variables in t is x1 . . . xn (where n ∈ N0).

Furthermore we define for any n ∈ N0 the maps

pos : TΣ(Xn) −→ P(N∗),
size : TΣ(Xn) −→ N0,

ht: TΣ(Xn) −→ N0,

where for every i ∈ [n] we define

pos(xi) = {ε}, size(xi) = 0, ht(xi) = 1,

and for every k ≥ 0, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Xn)

pos(σ(t1, . . . , tk)) = {ε} ∪
⋃
i∈[k]

i · pos(ti),

size(σ(t1, . . . , tk)) = 1 +
∑
i∈[k]

size(ti),

ht(σ(t1, . . . , tk)) = 1 + max
i∈[k]

ht(ti).

Moreover for every t ∈ TΣ(Xn) and w ∈ pos(t) we define lab(t, w) as the symbol from
Σ ∪Xn standing in t at position w.

Note that considering A as a set of nullary symbols, we identify the sets TΣ(A) and
TΣ∪A.

Example 2.2.1. Let Σ := {σ(2), γ(1), β(0), α(0)} and consider the trees

t1 := σ(α, γ(β)) ∈ TΣ ,
t2 := γ(γ(α)) ∈ TΣ , and

t3 := σ(x2, σ(x1, α)) ∈ TΣ(X2)

which can be visualized as follows from left to right

σ

α γ

β

γ

γ

α

σ

x2 σ

x1 α

·

It holds that pos(t1) = {ε, 1, 2, 21}, ht(t2) = 3, and size(t3) = 3. Moreover, the substitu-
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tion of t1 and t2 into t3, t3[t1, t2], is

σ

γ

γ

α

σ

σ

α γ

β

α

,

or formally, t3[t1, t2] = σ
(
γ(γ(α)), σ

(
σ(α, γ(β)), α

))
. �

2.3 Weighted Languages and Weighted Tree Automata

Unweighted tree automata are introduced in [9] and [10]. As we solely deal with weighted
automata throughout this thesis, we do not dive into details about the unweighted case.
The weighted case has been introduced in [4], [16], and [17]. However, for weighted tree
automata we use the notation given in [6].

Let M be a set and S a semiring. We call a map ϕ : M −→ S a weight map on
M (compare to the definition of formal power series in [7, Ch.1 Sec.3]). Given two weight
maps on M , say ϕ and ψ, we denote their sum by ϕ + ψ : M −→ S, given for every
m ∈M by

(ϕ+ ψ)(m) := ϕ(m) + ψ(m).

Moreover we denote the (Hadamard) product of ϕ and ψ by ϕ� ψ : M −→ S, given
for every m ∈M by

(ϕ� ψ)(m) := ϕ(m) · ψ(m).

If S is commutative, I is a finite index set, and (ϕi : M −→ S | i ∈ I) a family of weight
maps on M . We denote by

∑
i∈I ϕi and by

∏
i∈I ϕi the sum and the Hadamard product

of the ϕi, respectively. Both the sum and the product can happen in arbitrary order, as
S is commutative.

For a weight map ϕ : M −→ S and a ∈ S we denote the scalar multiple aϕ : M −→ S,
given for every m ∈M by

(aϕ)(m) := a · ϕ(m).

The support of ϕ : M −→ S is supp(ϕ) := {m ∈M | ϕ(m) 6= 0}.
Let m ∈M . We denote by 1m the weight map on M given for any m′ ∈M by

1m(m′) =

{
1 ,m = m′

0 ,m 6= m′
.

14



If M = Σ∗ for some finite set Σ, we call a weight map on M a weighted language
over Σ. If Σ is a ranked alphabet and M = TΣ , we call a weight map on M a weighted
tree language over Σ.

Let S now be commutative. A weighted tree automaton over S (short: WTA)
is a tuple A = (Q,Σ, δ, F ), where Q is a finite set, Σ is a ranked alphabet such that
Σ ∩Q = ∅, F ⊆ Q (called the final states), and δ = (δσ | σ ∈ Σ) is a family (so called
state behaviors with costs) of maps of the form δσ : Qk × Q −→ S for σ ∈ Σ(k),
k ≥ 0.

Let A be a WTA and t ∈ TΣ(Q). A run of A on t is a map ρ : pos(t) −→ Q such
that ρ(w) = lab(t, w) for any w ∈ posQ(t). We say ρ ends in q ∈ Q if ρ(ε) = q. The set
of runs of A on t ending in q is denoted RA (t, q).

Let ρ be a run of A on t and w ∈ pos(t). The cost of w in t under ρ is defined by

cA (ρ, t, w) :=

{
δσ(ρ(w1), . . . , ρ(wk), ρ(w)) , if lab(t, w) = σ ∈ Σ(k), k ≥ 0

1 , if lab(t, w) ∈ Q

and the cost of ρ for t is defined by

cA (ρ, t) =
∏

w∈pos(t)

cA (ρ, t, w).

The weighted tree language accepted by A , denoted L (A ) : TΣ −→ S, is defined
for any t ∈ T (Σ) by

L (A )(t) :=
∑
f∈F

∑
ρ∈RA (t,f)

cA (ρ, t).

A weighted tree language ϕ : TΣ −→ S is called recognizable weighted tree lan-
guages over Σ and S if there exists a WTA A such that L (A ) = ϕ. The class of
recognizable tree series over Σ and S is denoted by REC(TΣ , S). Note that this also
defines the class REC(TΣ∪Xn , S).

Example 2.3.1. Let Σ := {σ(2), γ(1), β(0), α(0)} and consider the WTA A = (Q,Σ, δ, F )
where

Q = {q1, q2, qf} and F = {qf}.

Moreover, δ is 0 except in the cases

δα(q1) = δα(q2) = δβ(q1) = 1

∀q ∈ Q : δγ(q, qf ) = 1

∀q, q′ ∈ Q : δσ(q, q′, qf ) = 1.

We consider the tree t = σ(γ(α), β). The following dashed trees illustrate exemplary
runs of A on t.
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ρ1 :=

σ

γ

α

β

qf

qf

q1

q1 , ρ2 :=

σ

γ

α

β

qf

q2

q1

q2 , ρ3 :=

σ

γ

α

β

qf

qf

q2

q1 .

By definition, cA (ρ1, t, ε) = cA (ρ1, t, 1) = cA (ρ1, t, 2) = cA (ρ1, t, 11) = 1 and hence
cA (ρ1, t) = 1. The same holds for ρ3. In ρ2, however, we have that cA (ρ2, t, 1) = 0 and
hence cA (ρ2, t) = 0.

One easily sees that the only runs of A on t that have non-vanishing cost are ρ1 and
ρ3. Therefore, we obtain

L (A )(t) = cA (ρ1, t) + cA (ρ3, t) = 1 + 1.

It now depends on the choice of the semiring S, what 1 + 1 evaluates to. In the boolean
semiring, S = B, we have L (A )(t) = 1. In the natural semiring, S = N0, we have
L (A )(t) = 2.

For arbitrary semirings S, one can now check that for every tree t′ ∈ TΣ with ht(t) > 1,
it holds that

L (A )(t′) = (2 · 1)#posα(t).

In S = B, this evaluates to 1 (therefore, L (A ) is the characteristic weight map for trees
of height greater than 1) and in S = N0, this evaluates to 2#posα(t). �
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Chapter 3: Forests and Weighted Forest Automata

In this chapter we define forests over Σ. In essence, a forest over Σ is a tuple of trees over
Σ and the set of such forests will be denoted T (Σ). We can allow a certain number of
variables to occur in forests and hence have an option to vertically concatenate matching
forests (if the first one uses n variables and the second one consists of n trees, copy the
i-th tree of the second forest into every occurrence of xi in the first forest). Moreover, we
can horizontally concatenate two forests. These operations turn T (Σ) into a so-called
magmoid (see [5], [1], and [2]).

We continue by introducing weighted forest automata (WFA), which are very similar
to weighted tree automata. Essentially, a WFA A consists of a set of states and a family
of transition weights. Given a forest ξ, a run of A on ξ labels each position in ξ with
some state of the automaton. The weight of a run is simply the product of the occurring
transition weights. We sum up the weights of all runs of A on ξ to obtain the weight
of ξ in the language of A , denoted L (A )(ξ). To our knowledge, WFA have not been
introduced in the literature before2. We introduce different semantics for WFA and show
their equivalence.

In section 3.3, we prove the central theorem of the theory of recognizable weighted
forest languages. Namely, that each such weighted forest language can be decomposed
into a “horizontal concatenation” of weighted tree languages.

We wrap up this chapter by introducing two useful normal forms for weighted forest
automata. These are inspired by normal forms of weighted tree automata from [6].

Throughout this chapter, let Σ be a ranked alphabet.

3.1 Forests

Definition 3.1.1. Let m,n ∈ N0. We define the set

T (Σ)mn := {n} × TΣ(Xn)m,

of (m,n)-forests over Σ. The values m and n are called the upper and lower rank of
an (m,n)-forest, respectively. The set of all forests over Σ is then defined as

T (Σ) :=
⋃

m,n∈N0

T (Σ)mn .

For notational convenience, we introduce the two sets

T (Σ)m =
⋃
n∈N0

T (Σ)mn and T (Σ)n =
⋃
m∈N0

T (Σ)mn .

Moreover, we will denote forests using angle brackets, to aid readability of examples. �

2However, unweighted forest automata have been studied in [18].
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Remark 3.1.2. First note that the sets in (T (Σ)mn | m,n ∈ N0) are pairwise disjoint.
This is an immediate consequence of the definition, as forests with different numbers of
variables have different first components and forests with different numbers of trees have
different tuple sizes. �

Definition 3.1.3. Let m,n ∈ N0 and ξ = 〈n, t1, . . . , tm〉 ∈ T (Σ)mn . We define the maps

pos : T (Σ)mn −→ P(N× N∗),
size : T (Σ)mn −→ N0,

ht: T (Σ)mn −→ N0,

where

pos(ξ) =
n⋃
i=1

{i} × pos(ti),

size(ξ) =
∑
i∈[m]

size(ti),

ht(ξ) = max{ht(ti) | i ∈ [m]},

and call pos(ξ) the set of positions of ξ.
Moreover, we define for every w = (i, w′) ∈ pos(ξ) the label of ξ at position w as

lab(ξ, w) = lab(ti, w
′).

Let l1, . . . , ln ∈ N0 such that for any i ∈ [n], the variable xi occurs in ξ exactly li times.
Given some r ∈ N0 and a family of trees

(ζij ∈ TΣ(Xr) | i ∈ [n], j ∈ [li]),

we define

ξ[∀i ∈ [n] : xi ← ζi1, . . . , ζ
i
li

] ∈ T (Σ)mr

as the forest obtained from ξ by replacing the j-th occurence3 of xi by ζij for all i ∈ [n]
and j ∈ [li].

If no variable occurs in ξ, this simply interprets ξ as an element of T (Σ)mr . �

Definition 3.1.4. Let S be a commutative semiring and m,n ∈ N0. A weight map over
T (Σ)mn is called weighted (m,n)-forest language.

A weighted (m,n)-forest language τ is called rectangular if there exist weighted
(1,n)-forest languages τ1, . . . , τm such that for any 〈n, t1, . . . , tm〉 ∈ T (Σ)mn it holds that

τ(〈n, t1, . . . , tm〉) = τ1(〈n, t1〉) · . . . · τm(〈n, tm〉).

In this case, we call the τ1, . . . , τm the rectangular components of τ . �
3Occurences are counted with respect to the left-to-right order on the leafs of ξ.
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Example 3.1.5. We continue Example 2.2.1. Consider the set F ⊆ T (Σ)22 consisting of
the forests

〈
2,

γ

γ

α

,

σ

x2 σ

x1 α

〉
and

〈
2,

σ

x2 σ

x1 α

,

γ

γ

α

〉
.

That is, F = {〈2, t2, t3〉, 〈2, t3, t2〉}.
The weighted (2, 1)-forest language 1F that maps forests from F to 1 and everything

else to 0 is not rectangular if 0 6= 1. This can be easily seen as follows.
Assume there exist weighted (1, 2)-forest languages ϕ and ψ, which are rectangular

components of 1F . The equality

ϕ(t2) · ψ(t3) = 1F (〈2, t2, t3〉) = 1

shows that ϕ(t2) and ψ(t3) are invertible with respect to multiplication in S. The same
holds for ϕ(t3) and ψ(t2). But then

ϕ(t2) · ψ(t2)

is invertible as well and hence not 0. This contradicts the definition of 1F .
Of course, we can find a superset F ′ ) F such that 1F ′ is rectangular, namely

F ′ := F ∪ {〈2, t2, t2〉, 〈2, t3, t3〉}.

The rectangular components of 1F ′ are both equal to 1{t2,t3}. �

Remark 3.1.6. Note that rectangular components of a weighted forest language are
only unique up to a scalar. �

Definition 3.1.7. We define the vertical concatenation as the partial binary operation
· on T (Σ), given for every 〈n, u1, . . . , um〉 ∈ T (Σ)mn and 〈l, v1 . . . , vn〉 ∈ T (Σ)nl by

〈n, u1, . . . , um〉 · 〈l, v1 . . . , vn〉 = 〈l, w1, . . . , wm〉 ∈ T (Σ)ml ,

where for any i ∈ [m] we define

wi := ui[v1, . . . , vn].

Note that the lower rank of the first operand and the upper rank of the second operand
have to be equal in order for vertical concatenation to be defined.

We moreover define the operation × : T (Σ)× T (Σ) −→ T (Σ) via

〈n, u1, . . . , um〉 × 〈n′, v1, . . . , vm′〉 = 〈n+ n′, u1, . . . , um, w1, . . . , wm′〉,
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where for any i ∈ [m′] we define

wi := vi[xn+1, . . . , xn+n′ ].

We call × the horizontal concatenation. �

Example 3.1.8. We continue Example 2.2.1. First note that for any k ≤ l ∈ N0, we
can interpret any tree over k variables as a tree over l variables, and formally have
TΣ(Xk) ⊆ TΣ(Xl). This shows the following inclusions.

ξ1 := 〈3, t2, t3〉 ∈ T (Σ)23,

ξ2 := 〈1, α, γ(x1), α〉 ∈ T (Σ)31.

It holds that pos(ξ2) = {(1, ε), (2, ε), (2, 1), (3, ε)}, size(ξ2) = 3, and ht(ξ2) = 2. The
vertical concatenation of ξ1 and ξ2 is

ξ1 · ξ2 =

〈
1, γ

γ

α

, σ

γ

x1

σ

α α

〉
∈ T (Σ)21,

and their direct sum is

ξ1 × ξ2 =

〈
4, t2, t3, α, γ

x4

, α

〉
∈ T (Σ)54.

�

This demonstrates the basic idea behind the defined forest operations. Next we
introduce the respective neutral elements.

Remark 3.1.9. First note that the set T (Σ)0n where n ∈ N0 is a singleton, namely

T (Σ)0n = {〈n〉}.

Moreover the element  := 〈0〉 is neutral with respect to ×, as immediately follows from
the definition. For k ∈ N, i ∈ [k], the elements

πki := 〈k, xi〉 ∈ T (Σ)1k,

act as projections from the left on T (Σ)k, that is, for any k ∈ N, i ∈ [k], and 〈l, t1, . . . , tk〉 ∈
T (Σ)kl (where l ∈ N0),

πki · 〈l, t1, . . . , tk〉 = 〈l, ti〉 ∈ T (Σ)1l .
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A special case is k = i = 1. We define  := π11 = 〈1, x1〉, and its finite horizontal multiples

m :=
m

×
i=1

 = 〈m,x1, . . . , xm〉.

This yields that for any m ∈ N, k, l ∈ N0, 〈k, t1, . . . , tm〉 ∈ T (Σ)mk , and 〈m, s1, . . . , sl〉 ∈
T (Σ)lm,

m · 〈k, t1, . . . , tm〉 = 〈k, x1[t1, . . . , tm], . . . , xm[t1, . . . , tm]〉 = 〈k, t1, . . . , tm〉,
〈m, s1, . . . , sl〉 · m = 〈m, s1[x1, . . . , xm], . . . , sl[x1, . . . , xm]〉 = 〈m, s1, . . . , sl〉.

Therefore, the m can be seen as the neutral elements for vertical concatenation. �

Remark 3.1.10. Up to some degree, this Master’s Thesis is related to the preceding
Bachelor’s Thesis [5]. To pinpoint this connection, we briefly introduce the concept of
magmoids at this point. This interesting algebraic characterization of the structure of
forests was presented in [1] and [2].

In essence, a magmoid is a tuple (M, ·,×, , ), where M is a biranked set (that is,
M is partitioned into (possibly empty) sets Mm

n for m,n ∈ N), · is a partial associative
binary operation on M, defined if and only if the lower rank of the first operand equals
the upper rank of the second operand, × is an associative binary operation on M, ×
distributes over ·, and the elements m =

⊕m
i=1  and  are neutral with respect to · and

× respectively.
To see that (T (Σ), ·,×, , ) satisfies these properties, we have to show associativity of

both operations and distributivity of × over ·. Associativity of · has been proven in [11,
Proposition 2.4] and associativity of × follows easily by directly evaluating both sides of
the corresponding equation. Distributivity has been proven in [5, Lemma 9], again by a
direct evaluation of the two sides of the corresponding equation.

For a detailed definition and more examples, see [5]. �

3.2 Recognizable Weighted Forest Languages

In this subchapter, S denotes a commutative semiring.

Definition 3.2.1. Let m,n ∈ N0. A weighted (m,n)-forest automaton (short:
(m,n)-WFA) is a tuple A = (Q,Σ, S, I, F,E), where Q is a finite set (of states), Σ is a
ranked alphabet with Σ ∩Q = ∅, I = (I1, . . . , In) for some I1, . . . , In : Q −→ S (called
the leaf weights), F = F1×· · ·×Fm for some F1, . . . , Fm ⊆ Q (called the root states),
and E = (Ek | k ≥ 0), where for any k ≥ 0

Ek : Qk ×Σ(k) ×Q −→ S.

Each map Ek is called state transition weight. Furthermore, S is sometimes called
weight space. In this thesis, we omit the brackets of the state tuples. �
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Definition 3.2.2. Let A = (Q,Σ, S, I, F,E) be an (m,n)-WFA. We lift the state
transition weights to forests and state weights as follows. Let k ∈ N0. We define

EA
k,0 : (SQ)k × T (Σ)0k ×Q0 −→ S

as the constant map 1 ∈ S. Moreover we define the family of maps(
EA
k,k′ : (SQ)k × T (Σ)k

′
k ×Qk

′ −→ S | k′ ∈ N, k ∈ N0

)
by simultaneous induction.

The case k′ = 1 is given for any ω1, . . . , ωk : Q −→ S, q ∈ Q, and 〈k, t1〉 ∈ T (Σ)1k
inductively on the structure of t1. If t1 = xi for some i ∈ [k], define

EA
k,1((ω1, . . . , ωk), 〈k, t1〉, q) = ωi(q).

If t1 = α for some α ∈ Σ(0), define

EA
k,1((ω1, . . . , ωk), 〈k, t1〉, q) = E0(α, q).

Furthermore, if t1 = σ(ξ1, . . . , ξs) for some s ≥ 0, σ ∈ Σ(s), and ξ1, . . . , ξs ∈ TΣ(Xk),
define

EA
k,1((ω1, . . . , ωk), 〈k, t1〉, q)

=
∑

p1,...,ps∈Q
EA
k,s((ω1, . . . , ωk), 〈k, ξ1, . . . , ξs〉, (p1, . . . , ps))Es(p1, . . . , ps, σ, q).

For k′ > 1, ω1, . . . , ωk : Q −→ S, q1, . . . , qk′ ∈ Q, and ξ := 〈k, t1, . . . , tk′〉 ∈ T (Σ)k
′
k , then

ultimately define

EA
k,k′((ω1, . . . , ωk), ξ, (q1, . . . , qk′)) =

k′∏
i=1

EA
k,1((ω1, . . . , ωk), 〈k, ti〉, qi).

We will again omit the brackets around tuples of states and sets of states. �

Definition 3.2.3. Let A = (Q,Σ, S, I, F,E) be an (m,n)-WFA. The weighted forest
language accepted by A , denoted L (A ), is the weighted forest language

L (A ) : T (Σ)mn −→ S,

given for any ξ ∈ T (Σ)mn by

L (A )(ξ) :=
∑
f∈F

EA
n,m(I1, . . . , In, ξ, f),

where I = (I1, . . . , In).
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Ultimately, we define the classes

REC(T (Σ)mn , S) := {τ : T (Σ)mn −→ S | ∃A (m,n)-WFA: L (A ) = τ}

of recognizable weighted (m,n)-forest languages (for m,n ∈ N0) and the class

REC(T (Σ), S) :=
⋃

m,n∈N0

REC(T (Σ)mn , S)

of (all) recognizable weighted forest languages. �

Example 3.2.4. Let Σ := {σ(2), γ(1), β(0), α(0)} and S an arbitrary semiring. Consider
the (2,2)-WFA A = (Q,Σ, S, I, F,E), where

Q = {q1, q2, f1, f2}, F = {f1} × {f1, f2}, I = (1q1 , 0).

Moreover, E is 0 except in the cases

E0(α, q1) = E0(α, q2) = E0(β, q1) = 1

E1(q, γ, f) = E1(f, γ, f) = 1

E2(q, q
′, σ, f) = E2(f, f, σ, f) = 1,

E2(q, f, σ, f) = E2(f, q, σ, f) = 1,

where q, q′ ∈ {q1, q2} and f ∈ {f1, f2}.
Consider the forest

ξ :=
〈

2,

γ

α

,

σ

β x1

〉
.

We calculate L (A )(ξ). For f = (f1, f2) ∈ F , it holds that

EA
2,2(I, ξ, f) = EA

2,1(I, 〈2, γ(α), 〉, f1) · EA
2,1(I, 〈2, σ(β, x1)〉, f2)

=
(∑
q∈Q

E1(q, γ, f1)E
A
2,1(I, 〈2, α〉, q)

)
· EA

2,1(I, 〈2, σ(β, x1)〉, f2)

=
(∑
q∈Q

1 · E0(α, q)
)
· EA

2,1(I, 〈2, σ(β, x1)〉, f2)

=
(
E0(α, q1) + E0(α, q2)

)
· EA

2,1(I, 〈2, σ(β, x1)〉, f2)

= (2 · 1) ·
( ∑
q,q′∈Q

E2(q, q
′, σ, f2)E

A
2,2(I, 〈2, β, x1〉, (q, q′))

)
= (2 · 1) ·

( ∑
q,q′∈Q

1 · EA
2,1(I, 〈2, β〉, q)EA

2,1(I, 〈2, x1〉, q′)
)

= (2 · 1) ·
( ∑
q,q′∈Q

E0(β, q)1q1(q′)
)

= (2 · 1) · 1 = (2 · 1).
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Repeating this process for f = (f1, f1) ∈ F analogously yields

EA
2,2(I, ξ, f) = (2 · 1).

Alltogether we obtain

L (A )(ξ) = EA
2,2(I, ξ, (f1, f1)) + EA

2,2(I, ξ, (f1, f2)) = (2 · 1) + (2 · 1) = (4 · 1).

This result evaulates in S = B to L (A )(ξ) = 1 and in S = N0 to L (A )(ξ) = 4. �

Definition 3.2.5. Let k, l,m, n ∈ N0, A = (Q,Σ, S, I, F,E) be an (m,n)-WFA, ξ =
〈l, t1, . . . , tk〉 ∈ T (Σ)kl , J1, . . . , Jl : Q −→ S, q1, . . . , qk ∈ Q, and P ⊆ Q. A run of A
on ξ using P , starting in J = (J1, . . . , Jl), and ending in q = (q1, . . . , qk) is a map
ρ : pos(ξ) −→ Q such that

ρ((j, ε)) = qj , and

ρ((j, w)) ∈ P,

for every j ∈ [k] and w ∈ pos(tj) such that w 6= ε and ξ((j, w)) ∈ Σ.
The set of runs of A on ξ using P , starting in J , and ending in q is denoted by

RPA (J, ξ, q). Moreover we denote RA (J, ξ, q) := RQA (J, ξ, q).
If ρ is such a run, we define for any w = (i, u) ∈ pos(ξ) the cost of w in ξ under ρ as

cA (ρ, ξ, w) :=

{
Ej(ρ((i, u1), . . . , (i, uj)), σ, ρ(w)) , if lab(ξ, w) = σ ∈ Σ(j), j ≥ 0

Pi(ρ(w)) , if lab(ξ, w) = xi, i ∈ [l]

and the cost of ξ under ρ as

cA (ρ, ξ) :=

k∏
i=1

∏
u∈pos(ti)

cA (ρ, ξ, (i, u)),

which evaluates to 1 ∈ S for m = 0 by convention.
The weighted forest language run-recognized by A , denoted Lrun(A ), is the

weighted forest language

Lrun(A ) : T (Σ)mn −→ S,

given for any ξ ∈ T (Σ)mn by

Lrun(A )(ξ) :=
∑
q∈F

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ),

which for m = 0 evaluates to 1 ∈ S by convention (as there is exactly one run in this
case, namely the empty set, which has cost 1). �

Example 3.2.6. Consider Σ and A from Example 3.2.4. Moreover, consider the forest
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ξ :=

〈
2,

σ

γ

α

β ,

γ

σ

β x1

〉
.

Two exemplary runs of A on ξ are given by the following dashed trees.

ρ1 :=

〈
2,

σ

γ

α

β

f1

f2

q1

q1 ,

γ

σ

β x1

f2

f2

q2 q1

〉

ρ2 :=

〈
2,

σ

γ

α

β

f1

f1

q1

q1 ,

γ

σ

β x1

f2

f2

q1 q2

〉
.

One easily sees that cA (ρ1, ξ, (1, ε)) = 0 and hence cA (ρ1, ξ) = 0. Analogously it holds
that cA (ρ2, ξ, (2, 12)) = 0 and hence cA (ρ2, ξ) = 0.

In fact, the only runs of A on ξ that have non-vanishing cost are of the form

ρ :=

〈
2,

σ

γ

α

β

f1

f1

q

q1 ,

γ

σ

β x1

f

f

q1 q1

〉
,

where q ∈ {q1, q2} and f ∈ {f1, f2}. Every such run ρ has cost cA (ρ, ξ) = 1 and therefore
we obtain

L (A )run(ξ) = (4 · 1).

�
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Remark 3.2.7. Let A = (Q,Σ, S, I, F,E) be an (m,n)-WFA.
1) First let ξ = 〈n, t1, . . . , tm〉 ∈ T (Σ)mn , P1, . . . , Pn : Q −→ S, q1, . . . , qm ∈ Q, and ρ a

run of A on ξ starting in P = (P1, . . . , Pn) and ending in q = (q1, . . . , qm). Define for
any i ∈ [m] the run of A on ξi := 〈n, ti〉 starting in P and ending in qi as the restriction
of ρ onto ξi, denoted ρi. It holds that

cA (ρ, ξ) =
m∏
i=1

∏
u∈pos(ti)

cA (ρ, ξ, (i, u)) =
m∏
i=1

∏
u∈pos(ti)

cA (ρi, ξi, (1, u))

=
m∏
i=1

( 1∏
j=1

∏
u∈pos(ti)

cA (ρi, ξi, (j, u))
)

=
m∏
i=1

cA (ρi, ξi).

2) Now let ξ = 〈n, σ(t1, . . . , tk)〉 ∈ T (Σ)1n for some k ≥ 1, P1, . . . , Pn : Q −→ S, q ∈ Q,
and ρ a run on A on ξ starting in P = (P1, . . . , Pn) and ending in q. Define for any
i ∈ [k] the run of A on ξi := 〈n, ti〉 starting in P and ending in ρ((1, i)) as the restriction
of ρ onto ξi, denoted ρi. It holds that

cA (ρ, ξ) =
∏

u∈pos(σ(t1,...,tk))

cA (ρ, ξ, (1, u))

=
( k∏
i=1

∏
u∈pos(ti)

cA (ρ, ξ, (1, iu))
)
cA (ρ, ξ, (1, ε))

=
( k∏
i=1

∏
u∈pos(ti)

cA (ρi, ξi, (1, u))
)
cA (ρ, ξ, (1, ε))

=
( k∏
i=1

cA (ρi, ξi)
)
cA (ρ, ξ, (1, ε)).

These equations will be used in later proofs. �

Proposition 3.2.8. Let A = (Q,Σ, S, I, F,E) be an (m,n)-WFA. It holds that

L (A ) = Lrun(A ).

Proof. Let ξ ∈ T (Σ)mn . By definition we can reduce the claim to proving equation × in

L (A )(ξ) =
∑
f∈F

EA
n,m(I1, . . . , In, ξ, f)

×
=
∑
f∈F

∑
ρ∈RA (I,ξ,f)

cA (ρ, ξ) = Lrun(A )(ξ),

hence it suffices to prove

∀q ∈ Qm : EA
n,m(I1, . . . , In, ξ, q) =

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ), (1)
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by structural induction on the structure of ξ. Thus, let q ∈ Qm. Note that for m = 0, we
have forced the desired equation by convention.

Case 1: Assume that m = 1 and ξ = 〈n, xi〉 for some i ∈ [n]. Then,

EA
n,1(I1, . . . , In, ξ, q) = Ii(q) =

∑
ρ∈RA (I,ξ,q)

Ii(q)

=
∑

ρ∈RA (I,ξ,q)

cA (ρ, ξ, (1, ε)) =
∑

ρ∈RA (I,ξ,q)

cA (ρ, ξ),

where we have used that there is exactly one run on ξ starting in I and ending in q
(namely the one labeling xi with q).

Case 2: Assume that m = 1 and ξ = 〈n, α〉 for some α ∈ Σ(0). Then,

EA
n,1(I1, . . . , In, ξ, q) = E0(α, q) =

∑
ρ∈RA (I,ξ,q)

E0(α, q)

=
∑

ρ∈RA (I,ξ,q)

cA (ρ, ξ, (1, ε)) =
∑

ρ∈RA (I,ξ,q)

cA (ρ, ξ),

where we have used that there is exactly one run on ξ starting in I and ending in q
(namely the one labeling α with q).

Case 3: Assume that m = 1 and ξ = 〈n, σ(t1, . . . , tk)〉 for some σ ∈ Σ(k), k ≥ 1 such
that equation (1) holds for ξ′ := 〈n, t1, . . . , tk〉. Then,

EA
n,1(I1, . . . , In, ξ, q) =

∑
p=(p1,...,pk)∈Qk

EA
n,k(I1, . . . , In, ξ

′, p)Ek(p, σ, q)

IH
=

∑
p=(p1,...,pk)∈Qk

∑
ρ′∈RA (I,ξ′,p)

cA (ρ′, ξ′)Ek(p, σ, q)

?
=

∑
p=(p1,...,pk)∈Qk

∑
ρ′∈RA (I,ξ′,p)

cA (ρ, ξ),

where ρ is the extension of ρ′ to ξ, given by

(1, ε) 7→ q, and

(1, iu) 7→ ρ′((i, u)), for i ∈ [k].

Note that equality ? therefore follows from the equations in Remark 3.2.7. To conclude
this case, we show that on the right hand side of equality ?, ρ runs over all elements of
RA (I, ξ, q) exactly once, which proves equation (1).

First note that, as in Remark 3.2.7, every ρ ∈ RA (I, ξ, q) can be restricted to a run on
ξ′ starting in I and ending in (ρ((1, 1)), . . . , ρ((1, k))) ∈ Qk. Now of course, any two runs
on ξ′ only extend to the same run on ξ, if they are already equal.
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Case 4: Assume that m > 1, ξ = 〈n, t1, . . . , tm〉, and q = (q1, . . . , qm) such that
equation (1) holds for ξi := 〈n, ti〉 for any i ∈ [m]. Then,

EA
n,m(I1, . . . , In, ξ, q) =

m∏
i=1

EA
n,1(I1, . . . , In, ξi, qi) =

m∏
i=1

∑
ρi∈RA (I,ξi,qi)

cA (ρi, ξi)

?
=

∑
ρi∈RA (I,ξi,qi),
for any i∈[m]

m∏
i=1

cA (ρi, ξi)
•
=

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ).

Equality ? simply uses the generalized distributivity law in S. Equality • uses the
first equation in Remark 3.2.7 and moreover the easy fact that a run on ξ is uniquely
determined by its restrictions onto the ξi.

This concludes the induction and finishes the proof.

Example 3.2.9. Continuing Example 3.2.6, we apply Proposition 3.2.8 to obtain

L (A )(ξ) = Lrun(A )(ξ) = (4 · 1).

Let ξ′ = 〈2, t1, t2〉 ∈ T (Σ)22 be an arbitrary forest. It is fairly easy to see (and we will
prove later) that, whenever ht(t1) > 1 and ht(t2) > 1, we have that

L (A )(ξ′) = (2 · 1)︸ ︷︷ ︸
root states

· (2 · 1)#posα(ξ
′)︸ ︷︷ ︸

counting αs

· 0#posx2 (ξ
′)︸ ︷︷ ︸

counting x2s

. (2)

If ht(t1) = 1 or ht(t2) = 1, we have L (A )(ξ′) = 0. This follows from the fact that the
root states can not be reached with non-vanishing cost from a leaf in a forest. �

3.3 Decomposition of Weighted Forest Automata

We first show that the recognizable weighted (1, n)-forest languages are the recognizable
weighted tree languages with variables in Xn. After that, we prove that recogniz-
able weighted (m,n)-forest languages are products of (m many) recognizable weighted
(1, n)-forest languages. Or in short, recognizable weighted (m,n)-forest languages are
rectangular.

In this subchapter, S denotes a commutative semiring.

Proposition 3.3.1. Let n ∈ N0. It holds that

REC(T (Σ)1n, S) ∼= REC(TΣ(Xn), S).

Recall that REC(TΣ(Xn), S) = REC(TΣ∪Xn , S). This says that the recognizable weighted
(1,n)-forest languages are exactly the recognizable weighted tree languages over Σ ∪Xn

and S (up to an identification of T (Σ)1n and TΣ(Xn)).
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Proof. Let A = (Q,Σ, S, I, F,E) be a (1,n)-WFA. We define the WTA

B := (Q,Σ ∪Xn, F, δ)

over S via

δσ(q1, . . . , qk, q) := Ek(q1, . . . , qk, σ, q),

for any q1, . . . , qk, q ∈ Q and σ ∈ Σ(k), k ≥ 0, and

δxi(q) := Ii(q),

for any q ∈ Q and i ∈ [n].
Let ξ = 〈n, t〉 ∈ T (Σ)1n. Using Proposition 3.2.8 and identifying ξ with t ∈ TΣ(Xn),

we find that only equation × in

L (A )(ξ) =
∑
q∈F

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ)

×
=
∑
q∈F

∑
ρ∈RB(t,q)

cB(ρ, t) = L (B)(ξ)

needs to be verified. Of course, the sets RA (I, ξ, q) and RB(t, q) are equal, up to
identification of ξ and t. Therefore, we show that for any q ∈ F and ρ ∈ RA (I, ξ, q)
(where the corresponding run of B on t is denoted by ρ′), cA (ρ, ξ) = cB(ρ′, t) holds. This
is by definition equivalent to

∀w ∈ pos(t) : cA (ρ, ξ, (1, w)) = cB(ρ′, t, w).

The equality surely holds for lab(t, w) ∈ Σ. If lab(t, w) = xi, we have

cA (ρ, ξ, (1, w)) = Ii(ρ((1, w))) = Ii(ρ
′(w)) = cB(ρ′, t, w),

by definition.
Now let B = (Q,Σ ∪Xn, F, δ) be a WTA over S. We define the (1,n)-WFA

A := (Q,Σ, S, I, F,E),

where I = (I1, . . . , In) for Ii : Q −→ S, which is defined as Ii := δxi , for any i ∈ [n], and

Ek(q1, . . . , qk, σ, q) := δσ(q1, . . . , qk, q),

for any q1, . . . , qk, q ∈ Q, and σ ∈ Σ(k), k ≥ 0.
We now prove L (A ) = L (B). By the first part of this proof, we obtain an automaton

B′ such that L (A ) = L (B′). However, the construction shows that B = B′, which
proves the claim.
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Proposition 3.3.2. Let m ∈ N, n ∈ N0, and τ : T (Σ)mn −→ S. It holds that

τ ∈ REC(T (Σ)mn , S)⇐⇒ ∃τ1, . . . , τm ∈ REC(T (Σ)1n, S) : τ =

m∏
i=1

(
τi ◦ πmi

)
. (3)

Here, πmi denotes by abuse of notation the map

πmi : T (Σ)mn −→ T (Σ)1n,

ξ 7→ πmi · ξ.

Proof. “=⇒”: Let τ ∈ REC(T (Σ)mn , S). By definition, there exists an (m,n)-WFA
A = (Q,Σ, S, I, (F1, . . . , Fm), E) such that L (A ) = τ . We define for any i ∈ [m] the
(1,n)-WFA

Ai := (Q,Σ, S, I, Fi, E)

and claim that the weighted forest language τi := L (Ai) ∈ T (Σ)1n satisfy the right hand
side in (3).

To prove this claim, take ξ ∈ T (Σ)mn and define ξi := πmi · ξ. For any q ∈ F and
ρ ∈ RA (I, ξ, q), we use the notation from point 1) in Remark 3.2.7 to denote by ρi the
restriction of ρ to ξi, ending in qi (and vice versa). It holds that

τ(ξ) =
∑
q∈F

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ)

?1=
∑
q∈F

∑
ρ∈RA (I,ξ,q)

m∏
i=1

cA (ρi, ξi)

?2=
m∏
i=1

∑
qi∈Fi

∑
ρi∈RA (I,ξi,qi)

cA (ρi, ξi)

?3=
m∏
i=1

∑
qi∈Fi

∑
ρi∈RAi

(I,ξi,qi)

cAi(ρi, ξi) =
m∏
i=1

τi(ξi).

In equation ?1, we use point 1) from Remark 3.2.7. Equation ?2 uses the fact that F is a
direct product of sets and RA (I, ξ, q) is bijective to×m

i=1RA (I, ξi, qi), which in turn is
again a direct product of sets. We can therefore apply the generalized distributivity law,
which proves equation ?2. In equation ?3, we use that weights in A equal weights in Ai

and runs on ξi in A equal runs on ξi in Ai.
“⇐=”: Let τ1, . . . , τm ∈ REC(T (Σ)1n, S). By definition, there exists for any i ∈ [m] a

(1,n)-WFA Ai = (Qi, Σ, S, Ii, Fi, Ei) such that τi = L (Ai). Without loss of generality, we
can impose that the (Qi | i ∈ [m]) are pairwise disjoint. Let moreover Ii = (Ii,1, . . . , Ii,n)
and Ei = (Ei,k | k ∈ N0) for any i ∈ [m].

We define the (m,n)-WFA

A := (Q,Σ, S, I, F,E),
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where Q :=
⋃m
i=1Qi is the disjoint union of the given state sets, F := F1 × · · · × Fm,

I := (I1, . . . , In) for leaf weights Ij : Q −→ S defined via

Ij(q) := Ii,j(q), if ∃i ∈ [m] : q ∈ Qi,

and E = (Ek | k ∈ N0), where Ek : Qk×Σ(k)×Q −→ S is defined for any q1, . . . , qk, q ∈ Q
and σ ∈ Σ(k) as

Ek(q1, . . . , qk, σ, q) :=

{
Ei,k(q1, . . . , qk, σ, q) , if ∃i ∈ [m] : q1, . . . , qk, q ∈ Qi
0 , otherwise.

We claim that the weighted forest language τ := L (A ) satisfies τ =
∏m
i=1

(
τi ◦ πmi

)
.

To prove this claim, take ξ ∈ T (Σ)mn and define ξi := πmi · ξ. In essence, we simply
repeat the proof from “=⇒”, where equation ?3 is replaced by

m∏
i=1

∑
qi∈Fi

∑
ρi∈RA (I,ξi,qi)

cA (ρi, ξi) =
m∏
i=1

∑
qi∈Fi

∑
ρi∈RAi

(Ii,ξi,qi)

cAi(ρi, ξi). (4)

Note however that, in this case, the sets RA (I, ξi, qi) and RAi(Ii, ξi, qi) are not isomorphic,
as A contains vastly more states than Ai. This is accounted for by the vanishing state
transition weights and leaf weights in A .

We now prove equation (4).
Let i ∈ [m] and qi ∈ Fi. We call a run ρ ∈ RA (I, ξi, qi) Qi-restricted if for any

w ∈ pos(ξi) it holds that ρ(w) ∈ Qi. The set of Qi-restricted runs of A on ξi starting in
I and ending in qi is denoted RiA (I, ξi, qi).

Let ρ ∈ RA (I, ξi, qi) \ RiA (ξi, I, qi). It then holds that there exists w ∈ pos(ξi) such
that ρ(w) 6∈ Qi. Moreover, as ρ((1, ε)) = qi ∈ Qi, w can be chosen to be of the form
w = (1, ul), where

lab(ξi, (1, u)) = σ ∈ Σ(j)

for some j ≥ 1 and l ∈ [j], such that ρ((1, u)) ∈ Qi. Therefore

cA (ρ, ξi, w) = Ej(ρ((1, u1), . . . , ρ(1, uj)), σ, ρ(u)) = 0

by definition of Ej , which proves∑
ρi∈RA (I,ξi,qi)

cA (ρi, ξi) =
∑

ρi∈RiA (I,ξi,qi)

cA (ρi, ξi).

The last step is now to show that Qi-restricted runs of A on ξi correspond one-to-one to
runs of Ai on ξi where corresponding runs have equal weights.

By definition of runs, the sets RiA (ξi, I, qi) and RAi(Ii, ξi, qi) are in fact equal, so
we only need to show that for any such run ρ and any w ∈ pos(ξi), it holds that
cA (ρ, ξi) = cAi(ρ, ξi). This is indeed true, as

cA (ρ, ξi, w) = Ej(ρ((1, u1), . . . , (1, uj)), σ, ρ(w))

= Ei,j(ρ((1, u1), . . . , (1, uj)), σ, ρ(w)) = cAi(ρ, ξi, w)
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if lab(ξi, w) = σ ∈ Σ(j) for some j ≥ 0, and

cA (ρ, ξi, w) = Ik(ρ(w)) = Ii,k(ρ(w)) = cAi(ρ, ξi, w)

if lab(ξi, w) = xk and k ∈ [n].
This concludes the proof, as we have shown

m∏
i=1

∑
qi∈Fi

∑
ρi∈RA (I,ξi,qi)

cA (ρi, ξi) =

m∏
i=1

∑
qi∈Fi

∑
ρi∈RiA (I,ξi,qi)

cA (ρi, ξi)

=
m∏
i=1

∑
qi∈Fi

∑
ρi∈RAi

(Ii,ξi,qi)

cAi(ρi, ξi).

Remark 3.3.3. Note that Proposition 3.3.2 can be seen as a techincal version of the
equality

REC(T (Σ)mn , S) = REC(T (Σ)1n, S)m.

�

Example 3.3.4. Consider Σ and A from Example 3.2.4. By Proposition 3.3.2, there
are (1,2)-WFA A1 and A2 such that

L (A ) = (L (A1) ◦ π21)× (L (A2) ◦ π22).

The proof of Proposition 3.3.2 gives us that

A1 = (Q,Σ, S, I, F1, E) and A2 = (Q,Σ, S, I, F2, E).

The following forest ξ (gray) has the depicted run ρ (black, dashed)

〈
2,

σ

γ

α

β

f1

f2

q1

q1 ,

γ

σ

β x1

f2

f2

q2 q1

〉
.

ρ decomposes into the following runs ρ1 (left, black) and ρ2 (right, black) of A1 and A2

on the respective (1,2)-forests.
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〈
2,

σ

γ

α

β

f1

f2

q1

q1

〉 〈
2,

γ

σ

β x1

f2

f2

q2 q1

〉
.

It is now a matter of multiplying transition weights to determine that cA (ρ, ξ) = 0 =
0 · 1 = cA1(ρ1, ξ1) · cA2(ρ2, ).

In general, it holds that for every ξ1, ξ2 ∈ T (Σ)12 such that ht(ξ1) > 1 and ht(ξ2) > 1,
we have

L (A1)(ξ1) = (2 · 1)#posα(ξ1) · 0#posx2 (ξ1), and

L (A2)(ξ2)
?
= (2 · 1) · (2 · 1)#posα(ξ2) · 0#posx2 (ξ2).

Both equations are derived from the fact that A1 and A2 are in essence the WTA A
from Example 2.3.1 extended to Σ ∪X2. Moreover, equation ? uses the fact that A2 has
two final states f1 and f2, which can not simultaneously occur within a single run with
non-vanishing cost. Therefore, L (A2) = (2 · 1) ·L (A1).

For i ∈ [2] we have that ht(ξi) = 1 implies L (Ai)(ξi) = 0. In total, this verifies
equation (2). �

3.4 Normal Forms for Weighted Forest Automata

We first introduce a “root state normal form” for WFA, isolating the root states from
the remaining transition weights. For a WFA A in root state normal form, any run of
A on a forest ξ with non-vanishing cost can only label the roots of ξ with root states.

We then introduce a respective “leaf state normal form”. In this normal form, only
variables can be labeled with states that have non-vanishing leaf weight.

Definition 3.4.1. Let m,n ∈ N0 and A = (Q,Σ, S, I, F,E) be an (m,n)-WFA. We say
that A is in root state normal form if F = {(f1, . . . , fm)} for some distinct states
f1, . . . , fm ∈ Q and moreover for every k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q it holds
that

Ek(q1, . . . , qk, σ, q) = 0, if ∃i ∈ [k], j ∈ [m] : qi = fj .

This states that there is a single root state tuple of distinct states which only “occur” on
the roots of a forest. �

Proposition 3.4.2. Let m,n ∈ N0 and A be an (m,n)-WFA. There exists an (m,n)-
WFA B in root state normal form such that

L (A ) = L (B).
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Proof. Case 1, m = 1: Let A = (Q,Σ, S, I, F,E) and let f be a fresh state symbol
(f 6∈ Q). We define the (1,n)-WFA

B := (Q′, Σ, S, I ′, {f}, E′),

where Q′ := Q ∪ {f}, I ′ = (I ′1, . . . , I
′
n) such that for any i ∈ [n] and q ∈ Q′,

I ′i(q) :=

{
Ii(q) , if q ∈ Q∑

e∈F Ii(e) , if q = f,

and E′ = (E′k | k ≥ 0) such that for any k ≥ 0, q1, . . . , qk, q ∈ Q′, and σ ∈ Σ(k),

E′k(q1, . . . , qk, σ, q) :=


Ek(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Q∑

e∈F Ek(q1, . . . , qk, σ, e) , if q1, . . . , qk ∈ Q ∧ q = f

0 , otherwise.

It immediately follows that B is in root state normal form.
Let ξ ∈ T (Σ)1n. We say a run ρ ∈ RB(I ′, ξ, f) is f-free if for every w ∈ pos(ξ)\{(1, ε)}

it holds that ρ(w) 6= f .
Let ρ ∈ RB(I ′, ξ, f) be a run that is not f -free. There exists a position w = (1, u) ∈

pos(ξ) and j ∈ N such that (1, uj) ∈ pos(ξ) and ρ((1, uj)) = f . This implies

cB(ρ, ξ, w) = 0

and thus cB(ρ, ξ) = 0.
Let ρ ∈ RB(I ′, ξ, f) be an f -free run and let e ∈ F . We define the run ρe ∈ RA (I, ξ, e)

by

ρe((1, ε)) := e , and

ρe(w) := ρ(w) , for every w 6= (1, ε).

Using this definition, we see that for every ρ ∈ RB(I ′, ξ, f) it holds that

cB(ρ, ξ) =
∏

w∈pos(ξ)

cB(ρ, ξ, w)

= cB(ρ, ξ, (1, ε))
∏

w∈pos(ξ)
w 6=(1,ε)

cB(ρ, ξ, w)

=
(∑
e∈F

Ek(q1, . . . , qk, σ, e)
) ∏
w∈pos(ξ)
w 6=(1,ε)

cB(ρ, ξ, w)

?
=
∑
e∈F

(
Ek(q1, . . . , qk, σ, e)

∏
w∈pos(ξ)
w 6=(1,ε)

cA (ρe, ξ, w)

)

=
∑
e∈F

cA (ρe, ξ).
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In equation ? we have used that the costs of ρ and ρe at positions 6= (1, ε) are equal by
definition. Note that the map

RB(I ′, ξ, f)× F −→
⋃
e∈F

RA (I, ξ, e)

(ρ, e) 7→ ρe

is a bijection.
This correspondence of runs implies

L (B)(ξ) =
∑

ρ∈RB(I′,ξ,f)

cB(ρ, ξ) =
∑

ρ∈RB(I′,ξ,f)
f -free

cB(ρ, ξ)

=
∑

ρ∈RB(I′,ξ,f)
f -free

∑
e∈F

cA (ρe, ξ) =
∑
e∈F

∑
ρe∈RA (I,ξ,e)

cA (ρe, ξ) = L (A )(ξ)

for every ξ ∈ T (Σ)1n.
Case 2, m > 1: By Proposition 3.3.2 there exist (1,n)-WFA A1, . . . ,Am such that

L (A ) =

m∏
i=1

(
L (Ai) ◦ πmi

)
.

For any i ∈ [n], we can apply case 1 to Ai, whence we obtain a (1,n)-WFA Bi in root
state normal form such that L (Bi) = L (Ai).

Without loss of generality, we can assume that the state sets of the Bi are pairwise
disjoint. Iteratively applying Proposition 4.5.2 to the Bi, we obtain an (m,n)-WFA B
such that

L (B) =

m∏
i=1

(
L (Bi) ◦ πmi

)
.

Since this implies L (A ) = L (B), it only remains to show that B is in root state
normal form. By construction, B has a single root state tuple and the components are
by assumption distinct (the Bi have pairwise disjoint sets of states). It again follows
immediately from the construction, that the state transition weights vanish, if any of the
qi equals some fj . This concludes the proof.

Example 3.4.3. Consider Σ and A from Example 3.2.4 and A1 and A2 from Example
3.3.4. Recall that L (A1) and L (A2) are the rectangular components of L (A ).

As runs of A on a forest ξ ∈ T (Σ)22 propagate root states through the trees in ξ, we
find that A is not in root state normal form. We apply the construction from Proposition
3.4.2. In order to do this, we first consider A1 and A2, apply the construction to them
and then horizontally concatenate the results. This gives a (2, 2)-WFA A ′ in root state
normal form such that L (A ) = L (A ′). As this construction is fairly intuitive, we
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simply provide the solutions and illustrate the runs of A ′ in comparison to the runs of
A .

Let f be a fresh state symbol. The transition weights of the (1, 2)-WFA

A ′1 = (Q ∪ {f}, Σ, S, I, {f}, E′1) and A ′2 = (Q ∪ {f}, Σ, S, I, {f}, E′2)

are defined as follows. Let k ≥ 0, σ ∈ Σ(k), and p1, . . . , pk ∈ Q. For every q ∈ Q we have

(E′1)k(p1, . . . , pk, σ, q) = Ek(p1, . . . , pk, σ, q) = (E′2)k(p1, . . . , pk, σ, q),

and the remaining case is given by

(E′1)k(p1, . . . , pk, σ, f) = Ek(p1, . . . , pk, σ, f1),

(E′2)k(p1, . . . , pk, σ, f) = Ek(p1, . . . , pk, σ, f1) + Ek(p1, . . . , pk, σ, f2).

Applying the construction of Proposition 4.5.2 results in

A ′ = (Q′, Σ, S, I ′, F ′, E′),

where the components are the following.

Q′ = Q ∪ {f} ∪ {q̂ | q ∈ Q} ∪ {f̂} I ′ = (1q1 + 1q̂1 , 0) F ′ = {(f, f̂)}

and for every k ≥ 0, σ ∈ Σ(k), and p1, . . . , pk, q ∈ Q we have

E′k(p1, . . . , pk, σ, q) = Ek(p1, . . . , pk, σ, q)

E′k(p̂1, . . . , p̂k, σ, q̂) = Ek(p1, . . . , pk, σ, q)

E′k(p1, . . . , pk, σ, f) = Ek(p1, . . . , pk, σ, f1)

E′k(p̂1, . . . , p̂k, σ, f̂) = Ek(p1, . . . , pk, σ, f1) + Ek(p1, . . . , pk, σ, f2).

The following exemplary run ρ (depicted slightly above the forest) of A ′ on ξ (depicted
in gray)

〈
2,

σ

γ

α

β

f

f1

q1

q1 ,

γ

σ

β x1

f̂

f̂2

q̂2 q̂1

〉
.

corresponds to all runs of A on ξ of the form

36



〈
2,

σ

γ

α

β

q

f1

q1

q1 ,

γ

σ

β x1

p̂

f̂2

q̂2 q̂1

〉
,

where q ∈ Q and p̂ ∈ Q̂. In this case, these runs of A on ξ can only have non-vanishing
cost, if q = f1 and p̂ = f̂2. �

Definition 3.4.4. Let ϕ : T (Σ)11 −→ S. We call ϕ proper if it holds that

ϕ(π11) = 0.

�

Definition 3.4.5. Let m ∈ N0 and A = (Q,Σ, S, I, F,E) be an (m,1)-WFA. We say
that A is in leaf state normal form if there exists qI ∈ Q such that

I1 = 1qI

and for every k ≥ 0, q1, . . . , qk ∈ Q, and σ ∈ Σ(k) it holds that

Ek(q1, . . . , qk, σ, q
I) = 0.

That is, qI is the unique leaf state for variable x1 and does not occur on right hand sides
of transitions in A .

We call A normalized if A is in leaf state normal form and in root state normal
form. �

Proposition 3.4.6. Let ϕ ∈ REC(T (Σ)11, S) proper. There exists a normalized (1,1)-
WFA B such that

L (B) = ϕ.

Proof. Let A = (Q,Σ, S, I, F,E) be a (1,1)-WFA in root state normal form such that
L (A ) = ϕ. Define the (1,1)-WFA

B := (QB, Σ, S, IB, F, EB),

where QB := Q∪̇{qI} for a fresh state symbol qI 6∈ Q, IB := (1qI ) and EB := (EB
k | k ≥

0). For every k ≥ 0, q1, . . . , qk, q ∈ QB, and σ ∈ Σ(k) we define

EB
k (q1, . . . , qk, σ, q) := Ek(q1, . . . , qk, σ, q),
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whenever q1, . . . , qk, q ∈ Q. Furthermore, if ∅ 6= {i ∈ [k] | ∃j ∈ [n] : qi = qI} =: K and
q ∈ Q, then we define

EB
k (q1, . . . , qk, σ, q) :=

∑
q′a∈Q
∀a∈K

(∏
i∈K

I1(q
′
i)
)
Ek(q

′
1, . . . , q

′
k, σ, q).

Here we denoted q′i := qi for every i ∈ [k] \K. Moreover define

EB
k (q1, . . . , qk, σ, q) := 0

in any other case.
It is clear that B is in leaf state normal form. Moreover, as A is in root state normal

form (with root state qf ), we can show that B is normalized as follows. If qf occurs on the
left hand side of a transition EB

k (q1, . . . , qk, σ, q), its weight is either directly a vanishing
state transition weight or a sum over vanishing state transition weights. Therefore, B is
in root state normal form and hence normalized.

Now we show that L (A ) = L (B). In order to do this, we introduce the following
definition.

Let ξ ∈ T (Σ)1n, q ∈ QB, and ρ ∈ RB(IB, ξ, q). We say ρ is initial if

∀w ∈ pos(ξ) : (lab(ξ, w) = x1 ⇐⇒ ρ(w) = qI).

If ρ is not initial, there either exists w ∈ pos(ξ) such that lab(ξ, w) = x1 and ρ(w) 6= qI

or lab(ξ, w) 6= x1 and ρ(w) = qI . In any case, cB(ρ, ξ, w) = 0 and therefore cB(ρ, ξ) = 0.
For every initial ρ ∈ RB(IB, ξ, q), we furthermore define the set RρA (ξ, I, q) consting

of all runs ρ′ of A on ξ that can be obtained from ρ by replacing every occurrence of qI

by arbitrary states in Q. It follows immediately that⋃
ρ∈RB(IB,ξ,qf ),

ρ initial

RρA (ξ, I, q) = RA (I, ξ, q),

which is moreover a disjoint union.
To conclude the proof, it only remains to show equation > in the following chain of

equations. For any ξ ∈ T (Σ)11 it holds that

L (B)(ξ) =
∑

ρ∈RB(IB,ξ,qf )

cB(ρ, ξ) =
∑

ρ∈RB(IB,ξ,qf ),
ρ initial

cB(ρ, ξ)

>
=

∑
ρ∈RB(IB,ξ,qf ),

ρ initial

∑
ρ′∈RρA (ξ,I,qf )

cA (ρ′, ξ)

=
∑

ρ′∈RA (I,ξ,qf )

cA (ρ′, ξ) = L (A )(ξ).

Note that, if size(ξ) = 0, cB(ρ, ξ) = 1qI (q) (which equals L (A )(ξ), as ϕ is proper)
and hence in this case we do not need to prove equation >.

38



Therefore, we (only) prove that for every ξ ∈ T (Σ)11 with size(ξ) ≥ 1 we have

∀q ∈ Q∀ρ ∈ RB(IB, ξ, q) initial :

cB(ρ, ξ) =
∑

ρ′∈RρA (ξ,I,q)

cA (ρ′, ξ) (5)

by induction on ξ.
Case 1: Assume that ξ = 〈n, α〉 for some α ∈ Σ(0). Let q ∈ Q and ρ ∈ RB(IB, ξ, q)

initial. We have

cB(ρ, ξ) = EB
0 (α, q) = EA

0 (α, q) = cA (ρ, ξ).

Case 2: Assume that ξ = 〈n, σ(t1, . . . , ts)〉 for some σ ∈ Σ(s), s ≥ 1 such that equation
(5) holds for ξi := 〈n, ti〉 ∈ T (Σ)1n for every i ∈ [s]. Let q ∈ Q and ρ ∈ RB(IB, ξ, q) initial.
Defining ρi as in number 2) of Remark 3.2.7 and abbreviating qi := ρ((1, i)) (for i ∈ [s]),
it holds that

cB(ρ, ξ) = cB(ρ, ξ, (1, ε))
s∏
i=1

cB(ρi, ξi) = EB
s (q1, . . . , qs, σ, q)

s∏
i=1

cB(ρi, ξi). (6)

Denote K := {i ∈ [s] | ∃j ∈ [n] : qi = qI}. If K = ∅, we obtain by induction hypothesis

cB(ρ, ξ) = EA
s (q1, . . . , qs, σ, q)

s∏
i=1

( ∑
ρ′i∈R

ρi
A (ξi,I,qi)

cA (ρ′i, ξi)
)

=
∑

ρ′i∈R
ρi
A (ξi,I,qi),

for every i∈[s]

EA
s (q1, . . . , qs, σ, q)

s∏
i=1

cA (ρ′i, ξi)

=
∑

ρ′∈RρA (ξ,I,q)

cA (ρ′, ξ),

where we have used the bijective correspondence

RρA (ξ, I, q) ∼= Rρ1A (ξ1, I, q1)× · · · ×RρsA (ξs, I, qs).

Now let K 6= ∅ and note that cB(ρi, ξi) = 1 for every i ∈ K, as ρi is initial. We use
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the same notation as in the case K = ∅ to obtain

cB(ρ, ξ)
?1= EB

s (q1, . . . , qs, σ, q)
∏
i∈[s]
i 6∈K

( ∑
ρ′i∈R

ρi
A (ξi,I,qi)

cA (ρ′i, ξi)
)

?2=
( ∑

q′i∈Q,
for every i∈K

( ∏
i∈K

I1(q
′
i)
)
Es(q

′
1, . . . , q

′
s, σ, q)

) ∏
i∈[s]
i 6∈K

( ∑
ρ′i∈R

ρi
A (ξi,I,qi)

cA (ρ′i, ξi)
)

?3=
( ∑

q′i∈Q,
for every i∈K

( ∏
i∈K

I1(q
′
i)
)
Es(q

′
1, . . . , q

′
s, σ, q)

) ∑
ρ′i∈R

ρi
A (ξi,I,qi),

for every i∈[s]\K

( ∏
i∈[s]
i 6∈K

cA (ρ′i, ξi)
)

?4=
∑
q′i∈Q,

for every i∈K

∑
ρ′i∈R

ρi
A (ξi,I,qi),

for every i∈[s]\K

( ∏
i∈[s]
i 6∈K

cA (ρ′i, ξi)
)(∏

i∈K
I1(q

′
i)
)
Es(q

′
1, . . . , q

′
s, σ, q)

?5=
∑
q′i∈Q

for every i∈K

∑
ρ′i∈R

ρi
A (ξi,I,qi)

for every i∈[s]\K

cA (ρ′, ξ)

?6=
∑

ρ′∈RρA (ξ,I,q)

cA (ρ′, ξ).

Equation ?1 combines equation (6) and the induction hypothesis (5). Equation ?2 is
the definition of EB

s . In equation ?3 we used the generalized distributivity law. In
equation ?4 we have simply rearranged the terms. The remaining equations ?5 and ?6
use the following correspondence. Any family (q′i ∈ Q | i ∈ K) together with a family
(ρ′i ∈ R

ρi
A (ξi, I, qi) | i ∈ [s] \K) corresponds uniquely to a run ρ′ of A on ξ ending in

q such that ρ′((1, i)) = q′i for every i ∈ K and whose restriction to ξi is ρ′i for every
i ∈ [s] \K. Equation ?5 additionally assesses the cost of ρ′ via Remark 3.2.7.

Example 3.4.7. ConsiderΣ from Example 3.2.4 and the (1, 1)-WFA A = (Q,Σ, S, I, F,E),
where

Q = {q, f}, I = ((2 · 1) · 1q), F = {f},

and E is 0 except in the cases

E0(α, q) = E0(α, f) = E0(β, q) = E0(β, f) = 1 (7)

E1(q, γ, q) = E1(q, γ, f) = 1 (8)

E2(q, q, σ, q) = E2(q, q, σ, f) = 1. (9)

It surely holds that for every ξ ∈ T (Σ)11 it holds that

L (A )(ξ) =

{
(2 · 1)#posx1 (ξ) , if size(ξ) ≥ 1

0 , otherwise.

Hence, L (A ) is proper.
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Next we construct a normalized (1, 1)-WFA B such that L (B) = L (A ). Note that
A is already in root state normal form. We apply the construction given in the proof of
Proposition 3.4.6 to find that

B = (Q ∪ {qI}, Σ, S, (1qI ), F, EB).

EB is 0 except in the cases (7), (8), (9), and

EB,1(q
I , γ, q) = EB,1(q

I , γ, f) = 2 · 1

EB,2(q1, q2, σ, q) = EB,2(q1, q2, σ, f) =


(2 · 1) , if q1 = qI ∧ q2 = q

(2 · 1) , if q1 = q ∧ q2 = qI

(4 · 1) , if q1 = qI ∧ q2 = qI

�
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Chapter 4: Closure Properties of Recognizable Weighted
Forest Languages

In essence, we prove that REC(T (Σ)1n, S) is closed under the operations that will later
be called “rational operations”. These include addition, multiplication with a scalar,
horizontal and vertical concatenation, and Kleene star.

In the light of Proposition 3.3.2, we might apply the respective results from [6] to
obtain most of the upcoming results. The proof of closure under vertical concatenation,
however, needed a new proof because of the different notion of concatenation in [6]. We
tried to do the same generalization for the Kleene star, yet in this case we were not
able to complete the proof without falling back to only allowing the Kleene star of rec-
ognizable weighted (1, 1)-forest languages. In any case, we present full and detailed proofs.

In this chapter, let Σ be a ranked alphabet and S a commutative semiring.

4.1 The Constant Language 0 is Recognizable

Proposition 4.1.1. Let m ∈ N and n ∈ N0. It holds that 0 ∈ REC(T (Σ)mn , S).

Proof. Let A := (Q,Σ, S, I, F,E) be an (m,n)-WFA, such that F = ∅m = ∅. By
convention, a sum over an empty index set is 0, hence

L (A ) = 0,

which concludes the proof.

4.2 Characteristic Functions of Forests are Recognizable

Proposition 4.2.1. Let n ∈ N0 and ξ ∈ T (Σ)1n. It holds that 1ξ ∈ REC(T (Σ)1n, S).

Proof. Let ξ = 〈n, t1〉. We can apply Proposition 3.3.1 to see that the claim is proven by
showing that 1t1 ∈ REC(Σ,Xn), which is shown in [6, Lemmas 6.1 and 6.2].

For the sake of completeness, we provide a direct construction. Define Q := pos(t1),
F := {ε}, and I := (I1, . . . , In), where for i ∈ [n] the leaf weight Ii : Q −→ S is given for
any q ∈ Q by

Ii(q) :=

{
1 , if lab(t, q) = xi

0 , otherwise.

Moreover we define the family E = (Ek | k ≥ 0) where for every k ≥ 0 the map
Ek : Qk ×Σ(k) ×Q −→ S is given for every q1, . . . , qk, q ∈ Q and σ ∈ Σ(k) by

Ek(q1, . . . , qk, σ, q) :=

{
1 , if lab(t, q) = σ ∧ ∀i ∈ [k] : qi = qi

0 , otherwise.

It can be proven straightforward that the (1,n)-WFA

A := (Q,Σ, S, I, F,E)

satisifes L (A ) = 1ξ.
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4.3 Closure under Scalar Multiplication

Proposition 4.3.1. Let n ∈ N0, a ∈ S, and ϕ ∈ REC(T (Σ)1n, S). It holds that

a · ϕ ∈ REC(T (Σ)1n, S).

Proof. We can apply Proposition 3.3.1 to see that this claim is proven in [6, Lemma 6.3].
We additionally provide a construction. Let A = (Q,Σ, S, I, F,E) be an (1,n)-WFA

in root state normal form such that L (A ) = ϕ. Let f ∈ Q be the unique root state. We
construct the (1, n)-WFA

A ′ := (Q,Σ, S, I, F,E′),

where for any k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q we define

E′k(q1, . . . , qk, σ, q) :=

{
Ek(q1, . . . , qk, σ, q) , if q 6= f

a · Ek(q1, . . . , qk, σ, q) , if q = f.

Let ξ ∈ T (Σ)1n and f ∈ F . It surely holds that

RA (I, ξ, f) = RA ′(I, ξ, f).

Thus we only have to show cA ′(ρ, ξ) = a · cA (ρ, ξ) for every ρ ∈ RA (I, ξ, f) in order to
prove L (A ′) = a ·L (A ).

Let ρ ∈ RA (I, ξ, f) and w ∈ pos(ξ). If f occurs in ρ at any position other than (1, ε),
we have

cA (ρ, ξ) = cA ′(ρ, ξ) = 0.

Therefore we can without loss of generality assume that f does only occur at the root of
ξ.

If w 6= (1, ε), we have that cA ′(ρ, ξ, w) = cA (ρ, ξ, w) by definition of E′. If w = (1, ε),
we have that cA ′(ρ, ξ, w) = a · cA (ρ, ξ, w). This proves cA ′(ρ, ξ) = a · cA (ρ, ξ).

4.4 Closure under Sum

Proposition 4.4.1. Let n ∈ N0 and ϕ,ψ ∈ REC(T (Σ)1n, S) be two weighted (1,n)-forest
languages. It holds that

ϕ+ ψ ∈ REC(T (Σ)1n, S).

Proof. We can apply Proposition 3.3.1 to see that this claim is proven in [6, Lemma 6.4].
We additionally provide a construction. Let

A = (Q,Σ, S, I, F,E) and A ′ = (Q′, Σ, S, I ′, F ′, E′)

be two (1,n)-WFA such that L (A ) = ϕ and L (A ′) = ψ. We moreover assume that
Q ∩Q′ = ∅.
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Define Q̂ := Q ∪ Q′, F̂ := F ∪ F ′, and Î := (Î1, . . . , În), where for i ∈ [n], the leaf
weight Îi : Q̂ −→ S is given for any q ∈ Q̂ by

Îi(q) :=

{
Ii(q) , if q ∈ Q
I ′i(q) , if q ∈ Q′.

Moreover we define the family Ê = (Êk | k ≥ 0) where for every k ≥ 0 the map
Êk : Q̂k ×Σ(k) × Q̂ −→ S is given for every q1, . . . , qk, q ∈ Q̂ and σ ∈ Σ(k) by

Êk(q1, . . . , qk, σ, q) :=


Ek(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Q
E′k(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Q′

0 , otherwise.

We claim that the (1,n)-WFA Â = (Q̂,Σ, S, Î, F̂ , Ê) satisfies L (Â ) = ϕ+ ψ.
Let ξ ∈ T (Σ)1n and q ∈ F and ρ ∈ RÂ (Î , ξ, q). It holds that

cÂ (ρ, ξ) =


cA (ρ, ξ) , if im(ρ) ⊆ Q
cA ′(ρ, ξ) , if im(ρ) ⊆ Q′

0 , otherwise,

as follows directly from the definition. But this yields

L (Â )(ξ) =
∑
q∈F̂

∑
ρ∈RÂ (Î,ξ,q)

cÂ (ρ, ξ)

=
∑
q∈F

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ) +
∑
q∈F ′

∑
ρ∈RA ′ (I

′,ξ,q)

cA ′(ρ, ξ)

= ϕ(ξ) + ψ(ξ)

Example 4.4.2. Consider Σ from Example 3.2.4 and let ξ1 and ξ2 be the following
trees.

ξ1 :=

σ

γ

α

β ξ2 :=

γ

σ

β x2

Let a1 := (2 · 1) ∈ S and a2 := (3 · 1) ∈ S. We construct a (1, 2)-WFA A such that

L (A ) =
2∑
i=1

ai1ξi .
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Using Propositions 4.2.1 and 4.4.1, we define

Q := pos(ξ1)∪̇pos(ξ2) = {ε, 1, 2, 11, ε̂, 1̂, 1̂1, 1̂2}.

Here we implemented the disjoint union via the hat symbol and projected all forest
positions to tree positions. We moreover define

I = (0,11̂2) and F = {ε, ε̂}.

Note that we are constructing a (1, 2)-WFA and hence I consists of two leaf weight maps.
The weight transition map given by Propositions 4.2.1 and 4.4.1 is 0 except in the

following cases. We arrange the weights in the tree structures of ξ1 and ξ2 to visualize
the idea.

E2(1, 2, σ, ε) = 1

E1(11, γ, 1) = 1

E0(α, 11) = 1

E0(β, 2) = 1

E1(1̂, γ, ε̂) = 1

E2(1̂1, 1̂2, σ, 1̂) = 1

E0(β, 1̂1) = 1 x2

We call this weight transition map E. The construction from Proposition 4.3.1 now forces
the root values to be a1 and a2 respectively. Therefore we update E to be

E2(1, 2, σ, ε) = a1

E1(11, γ, 1) = 1

E0(α, 11) = 1

E0(β, 2) = 1

E1(1̂, γ, ε̂) = a2

E2(1̂1, 1̂2, σ, 1̂) = 1

E0(β, 1̂1) = 1 x2

and combine all the given parts to

A = (Q,Σ, S, I, F,E).

This (1, 2)-WFA now accepts the desired weighted (1, 2)-forest language. �

4.5 Closure under Horizontal Concatenation

Definition 4.5.1. Let m,m′, n ∈ N0, ϕ : T (Σ)mn −→ S, and ψ : T (Σ)m
′

n −→ S. We
define the horizontal concatenation of ϕ and ψ as the map

ϕ× ψ : T (Σ)m+m′
n −→ S,

given for every 〈n, t1, . . . , tm, s1, . . . , sm′〉 ∈ T (Σ)m+m′
n by

(ϕ× ψ)(〈n, t1, . . . , tm, s1, . . . , sm′〉) := ϕ(〈n, t1, . . . , tm〉)ψ(〈n, s1, . . . , sm′).

�
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Proposition 4.5.2. Let m,m′, n ∈ N0, ϕ ∈ REC(T (Σ)mn , S), and ψ ∈ REC(T (Σ)m
′

n , S).
It holds that

ϕ× ψ ∈ REC(T (Σ)m+m′
n , S).

Proof. Let A = (Q,Σ, S, I, F,E) be a (m,n)-WFA such that L (A ) = ϕ and let A ′ =
(Q′, Σ, S, I ′, F ′, E′) be a (m′,n)-WFA such that L (A ′) = ψ and Q ∩Q′ = ∅.

Define the (m+m′,n)-WFA

Â = (Q̂,Σ, S, Î, F̂ , Ê),

where the components are given as follows. Q̂ := Q∪Q′, F̂ := F×F ′, and Î = (Î1, . . . , În),
where for any i ∈ [n], the leaf weight Îi : Q̂ −→ S is given for every q ∈ Q by

Îi(q) :=

{
Ii(q) , if q ∈ Q
I ′i(q) , if q ∈ Q′.

Moreover the family Ê = (Êk | k ≥ 0) is given for every k ≥ 0 by the map Êk : Q̂k ×
Σ(k) × Q̂ −→ S, where for every q1, . . . , qk, q ∈ Q̂ and σ ∈ Σ(k) we define

Êk(q1, . . . , qk, σ, q) :=


Ek(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Q
E′k(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Q′

0 , otherwise.

Let ξ ∈ T (Σ)m+m′
n such that ξ = 〈n, t1, . . . , tm, s1, . . . , sm′〉. Moreover denote ξ1 :=

〈n, t1, . . . , tm〉 ∈ T (Σ)mn and ξ2 := 〈n, s1, . . . , sm′〉T (Σ)m
′

n . Let q̂ ∈ F̂ and let q ∈ F and
q′ ∈ F ′ such that q̂ = (q, q′).

We say that a run ρ ∈ RÂ (Î , ξ, q̂) is Q-Q′-restricted, if

im(ρ1) ⊆ Q and im(ρ2) ⊆ Q′,

where ρ1 and ρ2 are the restrictions of ρ to ξ1 and ξ2, respectively. We denote the set of

Q-Q′-restricted runs by RQ,Q
′

Â
(Î , ξ, q̂).

Let ρ ∈ RÂ (Î , ξ, q̂) be a run that is not Q-Q′-restricted. Without loss of generality,
there exists a w = (i, u) ∈ pos(ξ1) such that ρ1(w) 6∈ Q. As ρ((i, ε)) ∈ Q, we can in
particular choose w such that there exists w′ = (i, u′) ∈ pos(ξ1) satisfying ρ(w′) ∈ Q and
u′l = u for some l ∈ N. This yields

cÂ (ρ, ξ, w′) = 0

by definition of Ê and hence implies cÂ (ρ, ξ) = 0.

We claim that for every run ρ ∈ RQ,Q
′

Â
(ξ, Î, q̂) it holds that

cÂ (ρ, ξ) = cA (ρ1, ξ1)cA ′(ρ2, ξ2). (10)
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Note that this is well-defined, as ρ1 is a run of A on ξ1 (and ρ2 a run of A ′ on ξ2,
respectively).

By Remark 3.2.7 it surely holds that

cÂ (ρ, ξ) = cÂ (ρ1, ξ1)cÂ (ρ2, ξ2),

whence it suffices to show that

cÂ (ρ1, ξ1) = cA (ρ1, ξ1) and cÂ (ρ2, ξ2) = cA ′(ρ2, ξ2).

However, this follows directly from the definition of Ê.
We conclude that

L (Â )(ξ) =
∑
q̂∈F̂

∑
ρ∈RÂ (Î,ξ,q̂)

cÂ (ρ, ξ)

=
∑
q̂∈F̂

∑
ρ∈RQ,Q

′
Â

(ξ,Î,q̂)

cÂ (ρ, ξ)

=
∑
q̂∈F̂

∑
ρ∈RQ,Q

′
Â

(ξ,Î,q̂)

cA (ρ1, ξ1)cA ′(ρ2, ξ2)

?
=

(∑
q∈F

∑
ρ1∈RA (I,ξ1,q)

cA (ρ1, ξ1)

)( ∑
q′∈F ′

∑
ρ∈RA ′ (I

′,ξ2,q′)

cA ′(ρ2, ξ2)

)
= L (A )(ξ1)L (A ′)(ξ2).

In equality ? we have used that every Q-Q′-restricted run of Â on ξ is uniquely defined
by a run of A on ξ1 and a run of A ′ on ξ2 to apply the generalized distributivity law in
S. This proves the claim.

Remark 4.5.3. Note that the construction of Â is equal in Propositions 4.4.1 and 4.5.2.
The reason why we cannot lift Proposition 4.4.1 to forests of arbitrary upper ranks lies
in Proposition 3.3.2: recognizable weighted (m,n)-forest languages are rectangular, but
rectangular weight maps are not closed under sum. This also gives rise to the restrictions
we will have to make in order to define vertical concatenation of weighted forest languages.
�

Example 4.5.4. We continue Example 4.4.2 by constructing a (2, 2)-WFA A ′ such that

L (A ′) =
2

×
i=1

ai1ξi = a11ξ1 × a21ξ2 .

The construction for A ′ is similar to A . In fact, the only difference is the set of root
states. We obtain

A ′ = (Q,Σ, S, I, {(ε, ε̂)}, E).

�
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4.6 Closure under Vertical Concatenation

Definition 4.6.1. Let m,n, p ∈ N0, ξ ∈ T (Σ)mp , and denote for every i ∈ [n] the number
of occurences of xi in ξ by li. Let moreover ζ ∈ T (Σ)mn and ηij ∈ T (Σ)1p for every i ∈ [n]
and j ∈ [li]. We call the tuple

(ζ, (ηij | i ∈ [n], j ∈ [li]))

an n-decomposition of ξ if

ξ = ζ[∀i ∈ [n] : xi ← ηi1, . . . , η
i
li

].

Whenever we say that (ζ, η) is an n-decomposition of ξ, we assume that η is given as
(ηij | i ∈ [n], j ∈ [li]). We denote the set of n-decompositions of ξ by Decn(ξ). �

Remark 4.6.2. Throughout this thesis, we use the following notational convention
for n-decompositions. If we quantify (ζ, η) ∈ Decn(ξ), then li denotes the number of
occurences of xi in ξ for every i ∈ [n]. If η is indexed by a subscript, we add this index
to li. For example if we have an I-indexed family of n-decompositions ((ζk, ηk) | k ∈ I),
then we write lk,i instead of li for every k ∈ I. �

Example 4.6.3. Consider Σ from Example 3.2.4. Let

ξ1 :=

〈
2,

σ

γ

γ

α

σ

β x1

,

γ

σ

x2 σ

x1 α

〉
∈ T (Σ)22.

A 3-decomposition of ξ1 can be constructed as follows. First we fix a set of positions U
in ξ1, given by the circles in

〈
2,

σ

γ

γ

α

σ

β x1

,

γ

σ

x2 σ

x1 α

〉
.
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Next we fix a map ϑ : U −→ [3]. By substituting xϑ(p) into ξ1 at position p for every
p ∈ U , we obtain a new forest. In our case, we map ϕ((1, 1)) = 3, ϕ((1, 22)) = 1,
ϕ((2, 11)) = 1, and ϕ((2, 12)) = 3.

ζ :=

〈
3,

σ

x3 σ

β x1

,

γ

σ

x1 x3

〉
.

For every p ∈ U , we simply denote the subtree of ξ1 at p by η
(ϑ(p))
j , if the j-th occurrence

of xϕ(p) in ζ is at position p.

η11 = 〈2, x1〉, η12 = 〈2, x2〉
η31 = 〈2, γ(γ(α))〉, η32 = 〈2, σ(x1, α)〉.

In total we obtain that (ζ, (ηij | i ∈ {1, 3}, j ∈ [2])) ∈ Dec3(ξ1).
In preparation of upcoming examples, let

ξ2 :=

〈
3,

γ

β

, x2

〉
∈ T (Σ)23.

The set of 1-decompositions of (ξ2) consists of the following tuples. Note that 1-
decompositions (of an arbitrary forest) are of the form (ζ, (η11, . . . , η

1
`1

)). For better

readability, we replace any ηij-forest by its single tree component.(〈
2, γ(β), x1

〉
, ( x2 )

)
,
(〈

2, γ( x1 ), x1
〉
, ( β , x2 )

)
,
(〈

2, x1 , x1
〉
, ( γ(β) , x2 )

)
The above arrows indicate the associations between the η-trees and the respective

positions they were “cut” from. �

Remark 4.6.4. Let m,n, p ∈ N0 and ξ ∈ T (Σ)mp .

1) Let m = 1 and ξ = 〈p, σ(t1, . . . , tk)〉 for some σ ∈ Σ(k), k ≥ 1. Denote ξ′ :=
〈p, t1, . . . , tk〉 ∈ T (Σ)kp. The following facts are derived from the definition of n-
decompositions.

For every (ζ, η) ∈ Decn(ξ) such that size(ζ) ≥ 1, we know that

ζ = 〈n, σ(ζ1, . . . , ζk)〉

for some ζ1, . . . , ζk ∈ TΣ(Xn).Denoting ζ ′ := 〈n, ζ1, . . . , ζs〉 ∈ T (Σ)sn, it holds that
(ζ ′, η) ∈ Decn(ξ′). We obtain a map

ι : {(ζ, η) ∈ Decn(ξ) | size(ζ) ≥ 1} −→ Decn(ξ′), ι(ζ, η) = (ζ ′, η).
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Vice versa, for every (ζ ′, η) ∈ Decn(ξ′) it holds that (σ(ζ ′), η) ∈ Decn(ξ). We obtain a
map

κ : Decn(ξ′) −→ {(ζ, η) ∈ Decn(ξ) | size(ζ) ≥ 1}, κ(ζ ′, η) = (σ(ζ ′), η).

As σ(〈n, ζ1, . . . , ζs〉) = ζ and 〈n, σ(ζ ′)1, . . . , σ(ζ ′)s〉 = ζ ′), we find that κ−1 = ι and hence

{(ζ, η) ∈ Decn(ξ) | size(ζ) ≥ 1} ∼= Decn(ξ′).

2) Let m > 1 and ξ = 〈n, t1, . . . , tm〉 ∈ T (Σ)mn . Denote ξi := 〈n, ti〉 for any i ∈ [m].
Let (ζ, η) ∈ Decn(ξ) such that ζ = 〈n, ζ1, . . . , ζm〉. For every k ∈ [m] denote by ηk the

subfamily of η consisting of the ηij that correspond to variables in ζk. Up to a shift in
the indices in ηk, we obtain (ζk, ηk) ∈ Decn(ξk).

Vice versa, let (ζk, ηk) ∈ Decn(ξk)such that ζk = 〈n, tk〉 ∈ T (Σ)1n for some tk ∈ TΣ(Xn)
for any k ∈ [m]. Up to a shift in the indices of the ηk, we obtain

(〈n, t1, . . . , tm〉,
m⋃
k=1

ηk) ∈ Decn(ξ)

and ultimately the bijection

Decn(ξ) ∼= Decn(ξ1)× · · · ×Decn(ξm).

�

Definition 4.6.5. Let m,n, p ∈ N0. For every weighted (m,n)-forest language ϕ and
every rectangular weighted (n,p)-forest language ψ, we define the vertical concatena-
tion of ϕ and ψ as the weighted (m,p)-forest language ϕ · ψ as follows. Let ξ ∈ T (Σ)mp
and denote for every i ∈ [n] the number of occurences of xi in ξ by li. Then we define

(ϕ · ψ)(ξ) :=
∑

(ζ,η)∈Decn(ξ)

ϕ(ζ) ·
n∏
i=1

li∏
j=1

ψi(η
i
j),

where the ψ1, . . . , ψn are the rectangular components of ψ. �

Example 4.6.6. Consider Σ from Example 3.2.4 and recall that S is an arbitrary
commutative semiring. Let ϕ : T (Σ)21 −→ S and ψ : T (Σ)13 −→ S be defined as follows.
For every ξ ∈ T (Σ)21 and ξ′ ∈ T (Σ)13 let

ϕ(ξ) := (2 · 1)#posα(ξ) · (3 · 1)#posx1 (ξ),

ψ(ξ′) := (5 · 1)#posβ(ξ
′) .

Consider the forest ξ2 ∈ T (Σ)23 from Example 4.6.3 and recall the already determined
set of 1-decompositions of ξ2. We calculate

(ϕ · ψ)(ξ2) = ϕ
(
〈2, γ(β), x1〉

)
· ψ
(
〈3, x2〉

)
+

ϕ
(
〈2, γ(x1), x1〉

)
· ψ
(
〈3, β〉

)
· ψ
(
〈3, x2〉

)
+

ϕ
(
〈2, x1, x1〉

)
· ψ
(
〈3, γ(β)〉

)
· ψ
(
〈3, x2〉

)
= (3 · 1)1 · 1 + (3 · 1)2 · (5 · 1)1 + (3 · 1)2 · (5 · 1)1

= 93 · 1
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�

Next we show that REC(T (Σ), S) is closed under concatenation. The intuition for the
construction is as follows. Given an (m,n)-WFA A and an (n,p)-WFA B, we construct
an (m,p)-WFA that nondeterministically chooses a decomposition of the input forest
and then processes the upper half like A and the lower half like B. At the switching
positions, the automaton takes all possible root weights of B into account.

Proposition 4.6.7. Let m,n, p ∈ N0, ϕ ∈ REC(T (Σ)mn , S), and ψ ∈ REC(T (Σ)np , S).
It holds that

ϕ · ψ ∈ REC(T (Σ)mp , S).

Proof. First note that the claim is well-defined, as by Proposition 3.3.2, recognizable
weighted forest languages are rectangular.

There exists an (m,n)-WFA A = (Qϕ, Σ, S, Iϕ, Fϕ, Eϕ) such that L (A ) = ϕ and an
(n,p)-WFA B = (Qψ, Σ, S, Iψ, Fψ, Eψ) in root state normal form such that L (B) = ψ.
Moreover, let Qϕ ∩Qψ = ∅ and Fψ = {fψ} for some fψ = (fψ,1, . . . , fψ,n) ∈ Qnψ.

We construct the (m,p)-WFA

C := (Q,Σ, S, I, F,E),

where Q := Qϕ ∪Qψ, F := Fϕ, and I = (I1, . . . , Ip) such that for every i ∈ [p] and q ∈ Q,

Ii(q) :=

{
Iψ,i(q) , if q ∈ Qψ∑n

j=1 Iψ,i(fψ,j)Iϕ,j(q) , if q ∈ Qϕ.

Moreover E = (Ek | k ≥ 0), where for every k ≥ 0, q1, . . . , qk, q ∈ Q, and σ ∈ Σ(k),

Ek(q1, . . . , qk, σ, q) :=

Eψ,k(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Qψ
Eϕ,k(q1, . . . , qk, σ, q) , if q1, . . . , qk, q ∈ Qϕ ∧ k ≥ 1∑n

j=1

(
Eψ,k(q1, . . . , qk, σ, fψ,j) · Iϕ,j(q)

)
, if q1, . . . , qk ∈ Qψ, q ∈ Qϕ ∧ k ≥ 1

Eϕ,0(σ, q) +
∑n

j=1

(
Eψ,0(σ, fψ,j) · Iϕ,j(q)

)
, if q ∈ Qϕ ∧ k = 0

0 , otherwise.

In order to show that L (C ) = L (A ) ·L (B), we have to prove equation � in the
following chain of equations. Let ξ ∈ T (Σ)mp . It holds that
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L (C )(ξ) =
∑
f∈F

EC
p,m(I, ξ, f)

�
=
∑
f∈F

∑
(ζ,η)∈Decn(ξ)

(
EA
n,m(Iϕ, ζ, f)

n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i)

)

=
∑

(ζ,η)∈Decn(ξ)

((∑
f∈F

EA
n,m(Iϕ, ζ, f)

) n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i)

)

=
∑

(ζ,η)∈Decn(ξ)

(
L (A )(ζ)

n∏
i=1

li∏
j=1

L (B)i(η
i
j)
)

= (L (A ) ·L (B))(ξ).

Note that equation � formalizes the aforementioned motivation of the construction of
C .

To prove equation �, we show the following more general statement. For every
ξ ∈ T (Σ)p (in the following, l denotes the upper rank of ξ), we have

∀q ∈ Qlϕ : Ep,l(I, ξ, q) =
∑

(ζ,η)∈Decn(ξ)

EA
n,l(Iϕ, ζ, q)

n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i), (11)

Note that this is only shown for states of A , as the term EA
n,l(Iϕ, ζ, q) would not be

well-defined in any other case. This goes hand in hand with the idea of this proof.
Decomposing ξ means allowing the state behaviour of B on a bottom part of ξ but
forcing transitions to A eventually, namely at the root positions of η. This happens,
even if ζ does not contain symbols from Σ.

We prove equation (11) by induction on ξ. Note that the important bit of this proof is
to correctly determine Decn(ξ) for the different cases.

Case 1: Assume that l = 1 and ξ = 〈p, xi〉 for some i ∈ [p].
Let (ζ, η) ∈ Decn(ξ). As size(ξ) ≥ size(ζ), we find that size(ζ) = 0 (analogously,

size(ηkj ) = 0 for every k ∈ [n] and j ∈ [lk]). Therefore, there exists k ∈ [n] such that

ζ = 〈n, xk〉. Thus, the familiy η contains but a single tree, ηk1 , which in turn satisfies
ηk1 = 〈p, xi〉. We have thus determined

Decn(ξ) = {(πnk , πki ) | k ∈ [n]}.

Therefore we have for any q ∈ Ql

Ep,l(I, ξ, q) = Ii(q) =
n∑
k=1

Iψ,i(fψ,k)Iϕ,k(q) =
n∑
k=1

EB
p,1(Iψ, π

k
i , fψ,k)E

A
n,l(Iϕ, π

n
k , q).

It is clear that the sum on the right hand side of this equation runs over all n-
decompositions of ξ and therefore we obtain equation (11).

52



Case 2: Assume that l = 1 and ξ = 〈p, α〉 for some α ∈ Σ(0).
Let (ζ, η) ∈ Decn(ξ). As sizeΣ(ξ) ≥ sizeΣ(ζ), we find that size(ζ) ≤ 1 (analogously,

size(ηkj ) ≤ 1 for every k ∈ [n] and j ∈ [lk]). If size(ζ) = 0, then there exists a k ∈ [n] such

that ζ = 〈n, xk〉 and η contains but the single tree ηk1 = 〈p, α〉 = ξ. If size(ζ) = 1, then
ζ = 〈n, α〉 and η is an empty family. We have thus determined

Decn(ξ) = {(πnk , 〈p, α〉) | k ∈ [n]} ∪ {(〈n, α〉, ())}.

Therefore we have for any q ∈ Ql

Ep,l(I, ξ, q) = E0(α, q) = Eϕ,0(α, q) +

n∑
k=1

(
Iϕ,k(q) · Eψ,0(α, fψ,k)

)
= EA

n,l(Iϕ, 〈n, α〉, q) +

n∑
k=1

EA
n,l(Iϕ, π

n
k , q) · EB

p,1(Iψ, 〈p, α〉, fψ,k)

Using the above description of Decn(ξ) for this case, we obtain the desired equation (11).
Case 3: Assume that l = 1 and ξ = 〈p, σ(t1, . . . , ts)〉 for some σ ∈ Σ(s), s ≥ 1 such

that equation (11) holds for ξ′ := 〈p, t1, . . . , ts〉 ∈ T (Σ)sp.
Let (ζ, η) ∈ Decn(ξ). If size(ζ) = 0, it holds that ζ = 〈n, xk〉 for some k ∈ [n] and η

contains but the single tree ηk1 = ξ. By Remark 4.6.4, the case size(ζ) ≥ 1 covers exactly
the n-decompositions (ζ ′, η) of ξ′. Therefore we have determined

Decn(ξ) = {(σ(ζ ′), η) | (ζ ′, η) ∈ Decn(ξ′)} ∪ {(πnk , ξ) | k ∈ [n]}.

Now, let q ∈ Ql. It holds that

Ep,l(I, ξ, q) =
∑
q′∈Qs

Ep,s(I, ξ
′, q′)Es(q

′, σ, q)

=
∑
q′∈Qsϕ

Ep,s(I, ξ
′, q′)Es(q

′, σ, q)

︸ ︷︷ ︸
=:Σ1

+
∑
q′∈Qsψ

Ep,s(I, ξ
′, q′)Es(q

′, σ, q)

︸ ︷︷ ︸
=:Σ2

.

We moreover know that

Σ2 =
∑
q′∈Qsψ

Ep,s(I, ξ
′, q′)

n∑
k=1

(
Eψ,s(q

′, σ, fψ,k) · Iϕ,k(q)
)

•
=

n∑
k=1

Iϕ,k(q)
∑
q′∈Qsψ

EB
p,s(I, ξ

′, q′)Eψ,s(q
′, σ, fψ,k)

=

n∑
k=1

Iϕ,k(q)E
B
p,1(I, ξ, fψ,k)

=

n∑
k=1

EA
n,l(Iϕ, π

n
k , q)E

B
p,1(I, ξ, fψ,k).
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In equation •, we first rearranged the terms and then applied the easy fact that
Ep,s(I, ξ

′, q′) = EB
p,s(I, ξ

′, q′), as q′ consists of states in Qψ and state transition weights
can only transition from B to A but never back. We have thus seen that Σ2 amounts to
the summands in the right hand side of equation (11) where the decomposition of ξ is of
the form (πnk , ξ).

Furthermore, using the induction hypothesis we know that

Σ1 =
∑
q′∈Qsϕ

( ∑
(ζ′,η)∈Decn(ξ′)

EA
n,s(Iϕ, ζ

′, q′)
n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i)

)
Eϕ,s(q

′, σ, q)

=
∑

(ζ′,η)∈Decn(ξ′)

( ∑
q′∈Qsϕ

EA
n,s(Iϕ, ζ

′, q′)Eϕ,s(q
′, σ, q)

) n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i)

=
∑

(ζ′,η)∈Decn(ξ′)

EA
n,1(Iϕ, σ(ζ ′), q)

n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i),

which amounts to the summands in the right hand side of equation (11) where the
decomposition of ξ is of the form (σ(ζ ′), η).

Case 4: Assume that l > 1, ξ = 〈n, t1, . . . , tl〉, and q = (q1, . . . , ql) ∈ Qlϕ such that
equation (11) holds for ξi := 〈n, ti〉 for any i ∈ [l].

In Remark 4.6.4 we have seen that

Decn(ξ) ∼= Decn(ξ1)× · · · ×Decn(ξl).

Therefore we obtain that

Ep,l(I, ξ, q) =
l∏

k=1

Ep,1(I, ξk, qk)

=

l∏
k=1

( ∑
(ζk,ηk)∈Decn(ξk)

EA
n,1(Iϕ, ζk, qk)

n∏
i=1

lk,i∏
j=1

EB
p,1(Iψ, (ηk)

i
j , fψ,i)

)
†
=

∑
(ζ,η)∈Decn(ξ)

l∏
k=1

(
EA
n,1(Iϕ, ζk, qk)

n∏
i=1

lk,i∏
j=1

EB
p,1(Iψ, (ηk)

i
j , fψ,i)

)
‡
=

∑
(ζ,η)∈Decn(ξ)

EA
n,l(Iϕ, ζ, q)

n∏
i=1

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i),

where equation † uses the aforementioned bijection that maps (ζ, η) 7→ ((ζ1, η1), . . . , (ζl, ηl)).
Equation ‡ uses the fact that

l∏
k=1

EA
n,1(Iϕ, ζk, qk) = EA

n,l(Iϕ, ζ, q)
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and moreover that for any i ∈ [n],

l∏
k=1

lk,i∏
j=1

EB
p,1(Iψ, (ηk)

i
j , fψ,i) =

li∏
j=1

EB
p,1(Iψ, η

i
j , fψ,i).

This concludes the final case and hence proves the proposition.

Example 4.6.8. Consider Σ, ϕ, and ψ from Example 4.6.6. We first show that ϕ and
ψ are recognizable and then apply the construction from Proposition 4.6.7 to see that
ϕ · ψ is recognizable as well.

We define the automata

A := (Qϕ, Σ, S, Iϕ, Fϕ, Eϕ) and B := (Qψ, Σ, S, Iψ, Fψ, Eψ),

where

Qϕ := {q1, f1, f2} Qψ := {q1, f1}
Fϕ := {(f1, f2)} Fψ := {f1}
Iϕ := ((3 · 1) · 1Qϕ) Iψ := (1Qψ ,1Qψ ,1Qψ),

and Eϕ and Eψ are defined as 0 except in the following cases.

Eϕ,0(α, qϕ) := (2 · 1) Eψ,0(α, qψ) := 1

Eϕ,0(β, qϕ) := 1 Eψ,0(β, qψ) := (5 · 1)

Eϕ,1(q1, γ, qϕ) := 1 Eψ,1(q1, γ, qψ) := 1

Eϕ,2(q1, q1, σ, qϕ) := 1 Eψ,2(q1, q1, σ, qψ) := 1,

where qϕ ∈ Qϕ and qψ ∈ Qψ.
It follows immediately, that a run ρ of A (or B) on a tree ξ ∈ T (Σ)21 (or in T (Σ)13,

respectively) can only have non-vanishing cost if it labels root positions in ξ with the
unique root states and every other position with q1. Therefore, we obtain

L (A ) = ϕ and L (B) = ψ.

The (2, 3)-WFA C = (Q′, Σ, S, I ′, F ′, E′) that satisfies

L (C ) = L (A ) ·L (B)

is given by the proof of Proposition 4.6.7. We introduce a copy Q̃ψ of the set Qψ and
determine the components of C as

Q′ = Qϕ ∪ Q̃ψ = {q1, f1, f2, q̃1, f̃1},

I ′ = (I ′1, I
′
2, I
′
3), I ′1 = I ′2 = I ′3 = (3 · 1) · 1Qϕ + 1Q̃ψ

,

F ′ = Fϕ = {(f1, f2)},
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and the transition weights are defined as 0 except in the following cases.

E′0(α, qϕ) = (2 · 1) + 1 · (3 · 1) = 5 · 1 E′0(α, qψ) = 1

E′0(β, qϕ) = 1 + (5 · 1) · (3 · 1) = 16 · 1 E′0(β, qψ) = 5 · 1
E′1(q1, γ, qϕ) = E′1(q̃1, γ, qψ) = 1 E′1(q̃1, γ, qϕ) = 1 · (3 · 1) = 3 · 1

E′2(q1, q1, σ, qϕ) = E′2(q̃1, q̃1, σ, qψ) = 1 E′2(q̃1, q̃1, σ, qϕ) = 1 · (3 · 1) = (3 · 1),

where qϕ ∈ Qϕ and qψ ∈ Qψ.
Consider the forest ξ2 ∈ T (Σ)23 from Example 4.6.3 and recall that

(L (A ) ·L (B))(ξ2) = 93 · 1.

We calculate L (C )(ξ2). Let ρ ∈ RC (I ′, ξ2, (f1, f2)). Therefore, ρ is already uniquely
determined by its value q ∈ Q′ at position (1, 1) ∈ pos(ξ2).

〈
3,

γ

β

f1

q

, x2
f2

〉
.

If q is either f1, f2, or f̃1, the cost of ρ is 0. Hence, we only have to consider the cases
q = q1 and q = q̃1. Denote the respective runs by ρq1 and ρq̃1 . We obtain

L (C )(ξ2) = cC (ρq1 , ξ2) + cC (ρq̃1 , ξ2) = (5 · 1) · (3 · 1) · (3 · 1) + (16 · 1) · 1 · (3 · 1) = 93 · 1,

as expected. �

4.7 Closure under Kleene Star

Definition 4.7.1. Let n ∈ N0 and ϕ : T (Σ)11 −→ S. We define inductively for k ∈ N0

ϕ0 = 1π1
1
,

ϕk+1 = ϕ · ϕk + 1π1
1
,

and call ϕk the k-th vertical power of ϕ. �

Example 4.7.2. We continue Example 3.4.7 and denote ϕ := L (A ). The tree

ξ := γ(γ(α)) ∈ T (Σ)11

has exactly the following 1-decompositions.

Dec1(ξ) =

{(
ξ, ()

)
,
(
γ(γ(x1)), (α)

)
,
(
γ(x1), (γ(α))

)
,
(
x1, (ξ)

)}
.
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It moreover holds that

Dec1(α) = {(α, ()), (x1, (α))}, and

Dec1(γ(α)) = {(γ(α), ()), (γ(x1), (α)), (x1, (γ(α)))}.

We calculate

ϕ0(ξ) = 0,

ϕ1(ξ) = 1,

ϕ2(ξ) =
∑

(ζ,η)∈Dec1(ξ)

ϕ(ζ) ·
l1∏
j=1

ϕ(η1j )

= 1 + (2 · 1) · 1 + (2 · 1) · 1 + 0 · 1 = 5 · 1,

ϕ3(ξ) =
∑

(ζ,η)∈Dec1(ξ)

ϕ(ζ) ·
l1∏
j=1

ϕ2(η1j )

= 1 + (2 · 1) · ϕ2(α) + (2 · 1) · ϕ2(γ(α))

= 1 + (2 · 1) · (ϕ(α) + ϕ(x1) · ϕ(α))

+ (2 · 1) · (ϕ(γ(α)) + ϕ(γ(x1)) · ϕ(α) + ϕ(x1) · ϕ(γ(α)))

= 1 + (2 · 1) · (1 + 0) + (2 · 1) · (1 + (2 · 1) · 1 + 0 · 1) = 9 · 1.

Similarly, one can proceed to calculate ϕn(ξ) for n ≥ 4. Lemma 4.7.3 shows that this is
not necessary and ϕn(ξ) = 9 · 1 for every n ≥ 4. �

Lemma 4.7.3. Let n ∈ N0, ϕ : T (Σ)11 −→ S proper, and ξ ∈ T (Σ)11. It holds that

ϕl+1(ξ) = ϕl(ξ)

for every l ≥ ht(ξ) + 1.

Proof. We proceed by induction on the height of ξ.
Case ht = 0: Assume that ξ = 〈1, x1〉. It surely holds that ϕ0(ξ) = 1. Assume that

ϕl(ξ) = 1 for some l ∈ N0. Since

Dec1(ξ) = {(π11, π11)},

we can apply properness of ϕ to see that

ϕl+1(ξ) = (ϕ · ϕl)(ξ) + 1

=
∑

(ζ,η)∈Dec1(ξ)

ϕ(ζ)︸︷︷︸
=0

1∏
i=1

li∏
j=1

ϕl(ηij) + 1

= 1.

In particular, ϕl+1(ξ) = ϕl(ξ) for every l ≥ 0.
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Case ht = 1: Assume that ξ = 〈1, α〉 for some α ∈ Σ(0). Let l ≥ 1. It holds that
1π(ξ) = 0 and

Dec1(ξ) = {(π11, 〈1, α〉)} ∪ {(〈1, α〉, ())}.

Therefore

ϕl+1(ξ) = (ϕ · ϕl)(ξ) + 0

=
∑

(ζ,η)∈Dec1(ξ)

ϕ(ζ)
1∏
i=1

li∏
j=1

ϕl(ηij)

= ϕ(ξ),

where we again apply properness of ϕ in the last equation to remove the summand where
ζ = π11. This shows in particular ϕl+1(ξ) = ϕl(ξ).

Case ht ≥ 1: Assume that ξ = 〈1, σ(t1, . . . , ts)〉 for some σ ∈ Σ(s), s ≥ 1 such that the
claim holds for any tree ξ′ with ht(ξ′) < ht(ξ). Let l ≥ ht(ξ) + 1. It holds that 1π1

1
(ξ) = 0

and

Dec1(ξ) = {(σ(ζ ′), η) | (ζ ′, η) ∈ Dec1(ξ
′)} ∪ {(π11, ξ)}.

Therefore

ϕl+1(ξ) = (ϕ · ϕl)(ξ) + 0

=
∑

(ζ,η)∈Dec1(ξ)

ϕ(ζ)

1∏
i=1

li∏
j=1

ϕl(ηij)
?1=

∑
(ζ,η)∈Dec1(ξ)

ζ=σ(ζ′)

ϕ(ζ)

1∏
i=1

li∏
j=1

ϕl(ηij)

?2=
∑

(ζ,η)∈Dec1(ξ)
ζ=σ(ζ′)

ϕ(ζ)

1∏
i=1

li∏
j=1

ϕl−1(ηij)
?3=

∑
(ζ,η)∈Dec1(ξ)

ϕ(ζ)

1∏
i=1

li∏
j=1

ϕl−1(ηij)

= (ϕ · ϕl−1)(ξ) + 0 = ϕl(ξ).

In equations ?1 and ?3 we use that the summand where ζ = π11 vanishes. In equation ?2
we use that ht(ηij) < ht(ξ), as ht(ζ) > 0.

Definition 4.7.4. Let n ∈ N0, ϕ : T (Σ)11 −→ S proper. We define the Kleene star of
ϕ, denoted ϕ∗ : T (Σ)11 −→ S, by

ϕ∗(ξ) := ϕht(ξ)+1(ξ),

for every ξ ∈ T (Σ)11. �

Lemma 4.7.5. Let n ∈ N0, ϕ : T (Σ)11 −→ S proper. It holds that

ϕ∗ = ϕ · ϕ∗ + 1π1
1
.
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Proof. Let ξ ∈ T (Σ)11 and h := ht(ξ). We immediately obtain

ϕ∗(ξ) = ϕh+1(ξ) = ϕh+2(ξ) = (ϕ · ϕh+1 + 1π1
1
)(ξ),

as ϕ is proper. We moreover obtain

(ϕ · ϕh+1)(ξ) = (ϕ · ϕ∗)(ξ),

which proves the claim.

Proposition 4.7.6. Let ϕ ∈ REC(T (Σ)11, S) proper. It holds that

ϕ∗ ∈ REC(T (Σ)11, S).

Proof. By Proposition 3.4.6, there exists a normalized (1,1)-WFA A = (Q,Σ, S, I, F,E)
such that L (A ) = ϕ. Let qf and qI be the unique root and leaf state of A , respectively.

We define the (1,1)-WFA

A ∗ := (Q∗, Σ, S, I, F ∗, E∗),

where Q∗ := Q \ {qf}, F ∗ := {qI}, and for every k ≥ 0, σ ∈ Σ(k), and q, q1, . . . , qk ∈ Q

E∗k(q1, . . . , qk, σ, q) :=

{
Ek(q1, . . . , qk, σ, q) , if q 6= qI

Ek(q1, . . . , qk, σ, qf ) , if q = qI .

We first prove a technical tool. For any ξ ∈ T (Σ)11 it holds that

∀q ∈ Q∗ \ {qI} : EA ∗
1,1 (I, ξ, q) =

∑
(ζ,η)∈Dec1(ξ)

EA
1,1(I, ζ, q)

1∏
i=1

li∏
j=1

L (A ∗)(ηij), (12)

by induction on ξ.
Case 1: Assume that ξ = 〈1, x1〉 and let q ∈ Q∗ \ {qI}. It holds that

EA ∗
1,1 (I, ξ, q) = I1(q) = 0 = EA

1,1(I, π
1
1, q)L (A ∗)(π11),

which concludes this case.
Case 2: Assume that ξ = 〈1, α〉 for some α ∈ Σ(0) and let q ∈ Q∗ \ {qI}. It holds that

EA ∗
1,1 (I, ξ, q) = E∗0(α, q) = E0(α, q) + I1(q)L (A ∗)(α),

which concludes this case.
Case 3: Assume that ξ = 〈1, σ(t1, . . . , ts)〉 for some σ ∈ Σ(s), s ≥ 1 such that the

claim holds for ξi := 〈1, ti〉 ∈ T (Σ)11 for every i ∈ [s]. Let q ∈ Q∗ \ {qI}. It holds that

EA ∗
1,1 (I, ξ, q) =

∑
q1,...,qs∈Q∗

E∗s (q1, . . . , qs, σ, q)
s∏

k=1

EA ∗
1,1 (I, ξk, qk), (13)
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and by induction hypothesis

EA ∗
1,1 (I, ξk, qk) =

∑
(ζk,ηk)∈Dec1(ξk)

EA ∗
1,1 (I, ζk, qk)

1∏
i=1

lk,i∏
j=1

L (A ∗)((ηk)
i
j), (14)

for any k ∈ [s]. Combining equations (13) and (14) and using the fact that

{(ζ, η) ∈ Dec1(ξ) | size(ζ) ≥ 1} ∼= Dec1(ξ1)× · · · ×Dec1(ξs),

we arrive at

EA ∗
1,1 (I, ξ, q) =

∑
q1,...,qs∈Q∗

E∗s (q1, . . . , qs, σ, q)·

·
s∏

k=1

( ∑
(ζk,ηk)∈Dec1(ξk)

EA ∗
1,1 (I, ζk, qk)

1∏
i=1

lk,i∏
j=1

L (A ∗)((ηk)
i
j)

)
=

∑
(ζ,η)∈Dec1(ξ)

size(ζ)≥1

∑
q1,...,qs∈Q∗

E∗s (q1, . . . , qs, σ, q)·

·
s∏

k=1

(
EA ∗

1,1 (I, ζk, q)

1∏
i=1

lk,i∏
j=1

L (A ∗)((ηk)
i
j)

)

=
∑

(ζ,η)∈Dec1(ξ)
size(ζ)≥1

( ∑
q1,...,qs∈Q∗

E∗s (q1, . . . , qs, σ, q)

s∏
k=1

EA ∗
1,1 (I, ζk, q)

)
·

·
1∏
i=1

li∏
j=1

L (A ∗)(ηij)

=
∑

(ζ,η)∈Dec1(ξ)
size(ζ)≥1

EA ∗
1,1 (I, ζ, q)

1∏
i=1

li∏
j=1

L (A ∗)(ηij).

This concludes the proof of equation (12), as summands on the right hand side with
size(ζ) = 0 vanish.

Now we use equation (12) to prove that

L (A )∗(ξ) = L (A ∗)(ξ)

by induction on the height of ξ.
Case 1: Assume that ξ = 〈1, x1〉. It holds that

L (A )∗(ξ) = 1 = I1(q
I) = L (A ∗)(ξ),

which concludes this case.
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Case 2: Assume that ξ = 〈1, α〉 for some α ∈ Σ(0). By case 2 in the proof of Lemma
4.7.3, we have L (A )∗(ξ) = L (A )(ξ), whence

L (A )∗(ξ) = E0(α, qf ) = E∗0(α, qI) = EA ∗
1,1 (I, α, qI) = L (A ∗)(ξ),

which concludes this case.
Case 3: Assume that ξ = 〈1, σ(t1, . . . , ts)〉 for some σ ∈ Σ(s), s ≥ 1 such that the

claim holds for every ξ′ such that ht ξ′ < ht ξ. Using the equality from Lemma 4.7.5, the
fact that L (A ) is proper, and the induction hypothesis, we find that

L (A )∗(ξ) =
∑

(ζ,η)∈Dec1(ξ)

L (A )(ζ)

l1∏
j=1

L (A )∗(ηij)

=
∑

(ζ,η)∈Dec1(ξ)
size(ζ)≥1

L (A )(ζ)

l1∏
j=1

L (A )∗(ηij)

=
∑

(ζ,η)∈Dec1(ξ)
size(ζ)≥1

L (A )(ζ)

l1∏
j=1

L (A ∗)(ηij).

Moreover we have in each summand

L (A )(ζ) = EA
1,1(I, ζ, qf ) =

∑
p1,...,ps∈Q

Es(p1, . . . , ps, σ, qf )

s∏
k=1

EA
1,1(I, ζk, pk).

Reordering the occurring terms, we obtain

L (A )∗(ξ) =
∑

(ζ,η)∈Dec1(ξ)
size(ζ)≥1

( ∑
p1,...,ps∈Q

Es(p1, . . . , ps, σ, qf )

s∏
k=1

EA
1,1(I, ζk, pk)

) l1∏
j=1

L (A ∗)(ηij)

=
∑

p1,...,ps∈Q
Es(p1, . . . , ps, σ, qf )

( ∑
(ζ,η)∈Dec1(ξ)

size(ζ)≥1

s∏
k=1

EA
1,1(I, ζk, pk)

l1∏
j=1

L (A ∗)(ηij)
)
.

We moreover know that it suffices to sum over p1, . . . , ps ∈ Q∗, as A is normalized.
Therefore, using the definitions of E and E∗, we see that

L (A )∗(ξ) =
∑

p1,...,ps
∈Q∗

E∗s (p1, . . . , ps, σ, q
I)
( ∑

(ζ,η)∈Dec1(ξ)
size(ζ)≥1

s∏
k=1

EA
1,1(I, ζk, pk)

l1∏
j=1

L (A ∗)(ηij)
)

=
∑

p1,...,ps
∈Q∗

E∗s (p1, . . . , ps, σ, q
I)

s∏
k=1

( ∑
(ζk,ηk)
∈Dec1(ξk)

EA
1,1(I, ζk, pk)

lk,1∏
j=1

L (A ∗)((ηk)
i
j)
)
.
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For every k ∈ [s] we know that if pk = qI , we have∑
(ζk,ηk)
∈Dec1(ξk)

EA
1,1(I, ζk,pk)

lk,1∏
j=1

L (A ∗)((ηk)
i
j)

= EA
1,1(I, π

1
1, q

I)L (A ∗)(ξk) + 0

= I1(q
I)L (A ∗)(ξk) = L (A ∗)(ξk) = EA ∗

1,1 (I, ξk, q
I).

Here we used that if size(ζk) ≥ 1, then EA
1,1(I, ζk, pk) = 0, as pk = qI can not occur above

terminal symbols.
If pk 6= qI , equation (12) yields∑

(ζk,ηk)
∈Dec1(ξk)

EA
1,1(I, ζk, pk)

lk,1∏
j=1

L (A ∗)((ηk)
i
j) = EA ∗

1,1 (I, ξk, pk).

We ultimately obtain

L (A )∗(ξ) =
∑

p1,...,ps
∈Q∗

E∗s (p1, . . . , ps, σ, q
I)

s∏
k=1

EA ∗
1,1 (I, ξk, pk) = L (A ∗)(ξ),

which concludes the proof.

Example 4.7.7. We continue example 4.7.2. The automaton A ∗ satisfying L (A ∗) =
L (A )∗ is constructed in the proof of Proposition 4.7.6 from B as follows (recall that B
is a normalized (1, 1)-WFA such that L (B) = L (A )).

A ∗ = (Q∗, Σ, S, (1qI , F, E
∗),

where Q∗ = (Q ∪ {qI}) \ {f} = {q, qI} and E∗ is 0 except in the cases

E∗0(α, q′) = 1, E∗0(β, q′) = 1,

E∗1(q, γ, q′) = 1, E∗1(qI , γ, q′) = 2 · 1,
E∗2(q, q, σ, q′) = 1, E∗2(qI , q, σ, q′) = 2 · 1,
E∗2(q, qI , σ, q′) = 2 · 1, E∗2(qI , qI , σ, q′) = 4 · 1,

for every q′ ∈ Q∗.
Recall that ξ = γ(γ(α)). We calculate the value of L (A ∗)(ξ). A run ρ of A ∗ on ξ

ending in qI is either

γ

γ

α

qI

q

q

,

γ

γ

α

qI

q

qI

,

γ

γ

α

qI

qI

q

, or

γ

γ

α

qI

qI

qI

.
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By the definition of E∗, ρ has cost 2k · 1 if ρ maps k + 1 positions of ξ to qI . Therefore
we obtain

L (A ∗)(ξ) = 1 + 2 ·+2 · 1 + 4 · 1 = 9 · 1.

Moreover we obtain the following general formula by the same argumentation as for ξ.
Let n ∈ N and ξn := γn(α). It holds that

L (A ∗)(ξn) =
∑
J⊆[n]

(
2#J · 1

)
=
( ∑
J⊆[n]

2#J
)
· 1 =

( n∑
k=0

(
n

k

)
· 2k
)
· 1 ?

= 3n · 1,

where in equation ? we have used the binomial theorem (2 + 1)n =
∑n

k=0

(
n
k

)
2k1n−k. �
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Chapter 5: Rec = Rat

We now introduce rational expressions and their corresponding weighted forest languages.
Ultimately, we prove a Kleene-like theorem for weighted forest languages.

In this chapter, let Σ be a ranked alphabet and S a commutative semiring.

5.1 Rational Languages are Recognizable

Definition 5.1.1. We define the set of weighted rational forest expressions over
Σ and S, denoted rat(T (Σ), S), and for every such expression r the weighted forest
language generated by r, denoted 〈[r]〉, as the smallest biranked set R =

⋃
m,n∈N0

Rm
n

and the rectangular weighted forest language inductively by

1) 0 ∈ Rm
n and 〈[0]〉 = 0

for every m ∈ N and n ∈ N0,

2) ξ ∈ R1
n and 〈[ξ]〉 = 1ξ

for every ξ ∈ T (Σ)1n for some n ∈ N0,

3) a · r1 ∈ R1
n and 〈[a · r1]〉 = a · 〈[r1]〉

for every a ∈ S, r1 ∈ R1
n, and n ∈ N0,

4) r1 + r2 ∈ R1
n and 〈[r1 + r2]〉 = 〈[r1]〉+ 〈[r2]〉

for every r1, r2 ∈ R1
n and n ∈ N0,

5) r1 × r2 ∈ Rm+m′
n and 〈[r1 × r2]〉 = 〈[r1]〉 × 〈[r2]〉

for every r1 ∈ Rm
n ,r2 ∈ Rm′

n , and m,m′, n ∈ N0,

6) r1 · r2 ∈ Rm
p and 〈[r1 · r2]〉 = 〈[r1]〉 · 〈[r2]〉

for every r1 ∈ Rm
n ,r2 ∈ Rn

p and m,n, p ∈ N0,

7) r∗1 ∈ R1
1 and 〈[r∗1]〉 = 〈[r1]〉∗

for every r1 ∈ R1
1 such that 〈[r1]〉 is proper.

We denote by RAT(T (Σ,S) the set of weighted forest languages generated by weighted
rational forest expressions over Σ and S. Moreover we denote RAT(T (Σ)mn , S) :=
RAT(T (Σ), S)mn for the sake of consistency with the definition of recognizable weighted
forest languages. �

Theorem 5.1.2. For every m,n ∈ N0 it holds that

RAT(T (Σ)mn , S) ⊆ REC(T (Σ)mn , S).
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Proof. We prove the claim by structural induction on rational expressions. Let r ∈
rat(T (Σ)mn , S). We list the corresponding propositions.

Case 1 (r = 0): Proposition 4.1.1.
Case 2 (r = ξ): Proposition 4.2.1.
Case 3 (r = a · r1): Proposition 4.3.1.
Case 4 (r = r1 + r2): Proposition 4.4.1.
Case 5 (r = r1 × r2): Proposition 4.5.2.
Case 6 (r = r1 · r2): Proposition 4.6.7.
Case 7 (r = r∗1): Proposition 4.7.6.

5.2 Recognizable Languages are Rational

We show how the weighted language defined by a WFA A decomposes through rational
operations into weighted languages with finite support. We then use the fact that weighted
languages with finite support are rational in order to prove that L (A ) is rational as
well. We heavily use the ideas from the proof given in [6].

First, we prove the rationality of L (A ) for (1, 0)-WFA and then use closure under
horizontal concatenation in order to prove the rationality for aribrary WFA.

We now outline the proof in the case of a (1, 0)-WFA A . Let ξ be a forest. We want
to understand the possible runs of A on ξ. Given a run ρ and some state p of A , we can
mark the topmost positions of ξ where ρ takes on the value p. This cut decomposes ξ into
a top part and some bottom parts. Moreover, this cut decomposes ρ into a respective
top part and some bottom parts. The top part of ρ, however, does not use p anymore.
Iteratively using this trick results in runs over the empty set. That is, runs that only
assign a state at the root of a tree. We can easily find rational expressions that generate
the same weighted languages as runs over the empty set. The described “cutting” of ξ
and ρ then amounts to a vertical concatenation operation and a Kleene star.

In this subchapter, let A = (Q,Σ, S, ∅, F, E) be a (1,0)-WFA and moreover assume
that Q = {q1, . . . , qn} and #Q = n. Furthermore, given a state q ∈ Q, we denote by
ind(q) the index i ∈ [n] such that q = qi.

Definition 5.2.1. We define the (1,n)-WFA A ′ := (Q,Σ, S, I, F,E) with the leaf weight
I = (1q1 , . . . ,1qn).

Let P ⊆ Q and q ∈ Q. We define the map

SA (P, q) : T (Σ)1n −→ S,

where for every ξ ∈ T (Σ)

SA (P, q)(ξ) :=


0 , if ∃i ∈ [n] : ξ = πni∑
ρ∈RP

A ′ (I,ξ,q)

cA ′(ρ, ξ) , otherwise

�
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Definition 5.2.2. Let ϕ : T (Σ)1n −→ S be a weighted forest language and q ∈ Q. We
denote by ϕq the weighted forest language ψ : T (Σ ∪Xn)11 −→ S that is obtained from ϕ
by viewing each variable except xind(q) as a terminal symbol.

Analogously, given ξ ∈ T (Σ)1n, we denote by ξq the tree ζ ∈ T (Σ ∪Xn)11 obtained from
ξ by viewing each variable except xind(q) as a terminal symbol. �

Remark 5.2.3. First note that SA (P, q) maps empty forests to 0. We refer to this
property as properness, which is in line with the original definition of properness.

Next we remark a decomposition correspondence for runs on a tree. Let P ⊆ Q,
p, q ∈ Q such that p 6∈ P , and ξ ∈ T (Σ)1n.

Let ρ ∈ RP∪{p}A ′ (I, ξ, q). If q 6= p, define the set cut(ρ, ξ, p) ⊆ pos(ξ) inductively as
follows. Let

cut(ρ, πni , p) =

{
{ε} , i = ind(p)

∅ , i 6= ind(p)

and for any k ≥ 0, σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ(X1)

cut(ρ, 〈1, σ(t1, . . . , tk)〉, p) =

{
{ε} , ρ(ε) = p⋃k
i=1

(
i · cut(ρi, 〈1, ti〉, p)

)
, ρ(ε) 6= p,

where ρi is the restriction of ρ to ti for every i ∈ [k]. We illustrate this definition in
Example 5.2.4.

If q = p, we define cut(ρ, ξ, p) ⊆ pos(ξ) analogously, where we ignore the root of ξ, for
example by replacing ρ(ε) by some ? 6∈ Q.

In any case, denote {w1, . . . , wl} = cut(ρ, ξ, p) where # cut(ρ, ξ, p) = l. Cutting ξ along
cut(ρ, ξ, p), yields a 1-decomposition of ξp. More precisely, let ζ ∈ T (Σ)1n be the tree
obtained from ξ by replacing (for every i ∈ [l]) the subtree at position wi by the variable

xind(p). Moreover, denote η
ind(p)
i = ξ|wi . This yields an n-decomposition (ζ, η) ∈ Decn(ξ)

(where all the other ηij are empty trees). In fact, (ζ, η) is a 1-decomposition of ξp. The
restriction of ρ to ζ is denoted by ρ0 (where we define ρ0(wi) := qj(i)). The restriction of
ρ to η1i is denoted ρi for every i ∈ [k]. Ultimately, we have obtained the tuple

((ζ, η), ρ0, ρ1 . . . , ρk).

Conversely, such a tuple ((ζ, η), ρ0, ρ1 . . . , ρk), where the roots of the ρi match the
values ρ0(wi), uniquely determines ρ, as the ρi cover the entirety of ξ.

We have thus seen that

R
P∪{p}
A (I, ξ, q) ∼= {((ζ, η), ρ0, ρ1 . . . , ρk) |(ζ, η) ∈ Dec1(ξ

p), size(ζ) ≥ 1, ρ0 ∈ RPA (I, ζ, q),

ρ0 assigns p to the xind(p)-positions,

∀i ∈ [lind(p)] : ρi ∈ R
P∪{p}
A (I, η

ind(p)
i , p)}
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Moreover, one sees immediately that the costs satisfy

cA ′(ρ, ξ) = cA ′(ρ0, ζ)

lind(p)∏
i=1

cA ′(ρi, η
ind(p)
i ).

�

Example 5.2.4. Let Σ and A be as in Example 3.2.4. Consider the following trees ξ1
and ξ2 (from left to right, in gray) together with their respective runs ρ1 and ρ2 (slightly
above the trees, dashed). In order to point out the positions at which these runs take on
the state f2, we draw dashed boxes around these positions.

σ

σ

x4 γ

α

γ

β

f1

q1

f1 f2

q1

f2

f2

σ

α σ

σ

β β

α

f2

q1 f1

q1

q2 q2

f2

It holds that cut(ρ1, ξ1, f2) = {11, 12, 2} and cut(ρ2, ξ2, f2) = {22}. Note that ρ1(11) 6= f2,
but ξ1(11) = x4 and ind(f2) = 4, hence 11 ∈ cut(ρ1, ξ1, f2). Note moreover that ρ2(ε),
yet by definition we do not cut directly at the root position. �

Lemma 5.2.5. Let P ⊆ Q and p, q ∈ Q such that p 6∈ P . Then,

SA (P ∪ {p}, q) = SA (P, q)p · (SA (P, p)p)∗,

where we interpret the right hand side as a map of type T (Σ)1n −→ S (instead of
T (Σ ∪Xn)11 −→ S).

Proof. Let ξ ∈ T (Σ)11. We show the desired equation by structural induction on ξ.
Case 1: Assume that ξ = 〈n, xi〉. By properness, it holds that

SA (P ∪ {p}, q)(ξ) = 0 = (SA (P, q)p · (SA (P, p)p)∗)(ξ)

Case 2: Assume that ξ = 〈1, α〉 for some α ∈ Σ(0). Note that there is exactly one run
of A ′ on ξ (in both cases, using P , and using P ∪ {p}) ending in q. Therefore,

SA (P ∪ {p}, q)(ξ) =
∑

ρ∈RP∪{p}
A ′ (I,ξ,q)

cA ′(ρ, ξ)

=
∑

ρ∈RP
A ′ (I,ξ,q)

cA ′(ρ, ξ) = SA (P, q)(ξ).
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As SA (P, q) is proper, we moreover obtain

SA (P, q)(ξ) =
∑

(ζ,η)∈Dec1(ξp)

SA (P, q)p(ζ)

lind(p)∏
j=1

(SA (P, p)p)∗(η1j )

= (SA (P, q)p · (SA (P, p)p)∗)(ξ)

Case 3: Assume that ξ = 〈1, σ(t1, . . . , ts)〉 for some σ ∈ Σ(s), s ≥ 1 such that the
claim holds for all proper subtrees of ξ (note that this is well-defined). It holds that

SA (P ∪ {p}, q)(ξ) =
∑

ρ∈RP∪{p}
A ′ (I,ξ,q)

cA ′(ρ, ξ)

�
=

∑
(ζ,η)∈Dec1(ξp)

size(ζ)≥1

∑
ρ0∈RPA ′ (I,ζ,q),

ρj∈R
P∪{p}
A ′ (I,η

ind(p)
j ,p)

for every j∈[lind(p)]

cA ′(ρ0, ζ)

lind(p)∏
j=1

cA ′(ρj , η
ind(p)
j )

=
∑

(ζ,η)∈Dec1(ξp)
size(ζ)≥1

( ∑
ρ0∈RPA ′ (I,ζ,q)

cA ′(ρ0, ζ)
)
·

·
lind(p)∏
j=1

( ∑
ρj∈R

P∪{p}
A ′ (I,η

ind(p)
j ,p)

cA ′(ρj , η
ind(p)
j )

)

�
=

∑
(ζ,η)∈Dec1(ξp)

size(ζ)≥1

SA (P, q)p(ζ)

lind(p)∏
j=1

(SA (P ∪ {p}, p)p + 1πn
ind(p)

)(η
ind(p)
j )

IH
=

∑
(ζ,η)∈Dec1(ξp)

size(ζ)≥1

SA (P, q)p(ζ)·

·
lind(p)∏
j=1

(SA (P, p)p · (SA (P, p)p)∗ + 1πn
ind(p)

)(η
ind(p)
j )

�
=

∑
(ζ,η)∈Dec1(ξp)

size(ζ)≥1

SA (P, q)p(ζ)

lind(p)∏
j=1

(SA (P, p)p)∗(η
ind(p)
j )

= (SA (P, q)p · (SA (P, p)p)∗)(ξ).

Equation � applies Remark 5.2.3 and the fact that if ρ0 does not map the xi-positions of
ζ to p, its cost vanishes.

Equation � replaces the sums for ζ and η
ind(p)
j by the respective weighted languages
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SA . As it is possible that η
ind(p)
j = πnind(p) for some j ∈ [lind(p)], in which case∑

ρj∈R
P∪{p}
A ′ (I,η

ind(p)
j ,q)

cA ′(ρj , η
ind(p)
j ) = 1 6= 0 = SA (P ∪ {p}, p)(ηind(p)j ),

equation � moreover adds 1πn
ind(p)

.

In equation � we used Lemma 4.7.5.

Lemma 5.2.6. Let q ∈ Q. It holds that

SA (∅, q) ∈ RAT(T (Σ)1n, S).

Proof. Let ξ ∈ T (Σ)1n. If size(ξ) = 0, we have SA (∅, q) = 0 by definition.
If size(ξ) = 1, there exists k ≥ 0, σ ∈ Σ(k), and i1, . . . , ik ∈ [n] such that we have

ξ = 〈n, σ(xi1 , . . . , xik)〉. We denote ai1,...,ikσ := SA (∅, q)(ξ).
If size(ξ) ≥ 2, there is no run on ξ using ∅, whence again SA (∅, q) = 0.
Alltogether we obtain

SA (∅, q) =
∑
σ∈Σ

∑
i1,...,ik∈[n]

ai1,...,ikσ 1σ(xi1 ,...,xik )
,

which is a finite sum. Cases 2 and 3 in the definition of RAT(T (Σ)11, S) yield the
claim.

Proposition 5.2.7. Let P ⊆ Q and q ∈ Q. It holds that

SA (P, q) ∈ RAT(T (Σ)1n, S).

Proof. The proof is by induction on #P . The induction base #P = 0 is Lemma 5.2.6
and the induction step P  P ∪ {p} is Lemma 5.2.5.

Note that the switching between T (Σ)1n and T (Σ ∪Xn)11 does not affect the rationality.
In fact, we could have done the proof of Lemma 5.2.5 without this trick (by inflating the
occurring weighted tree languages by characteristic functions of empty trees), yet it was
notationally more convenient to switch between the interpretations of Xn as terminals
and as variables.

Proposition 5.2.8. It holds that

L (A ) =
∑
q∈F

(
SA (Q, q) · 0

)
. (15)

In particular, L (A ) ∈ RAT(T (Σ)10, S).

Proof. Let ξ ∈ T (Σ)10. It holds that

(SA (Q, q) · 0)(ξ) =
∑

(ζ,η)∈Dec1(ξ)

SA (Q, q)(ζ)

l1∏
j=1

0(η1j ) = SA (Q, q)(ξ).
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By assumption ξ 6= x1, whence cA ′(ρ, ξ) = cA (ρ, ξ) for every ρ ∈ RA ′(I, ξ, q). Moreover
it surely holds that RA ′(I, ξ, q) = RA (I, ξ, q). We conclude that

SA (Q, q)(ξ) =
∑

ρ∈RA ′ (I,ξ,q)

cA ′(ρ, ξ) =
∑

ρ∈RA (I,ξ,q)

cA (ρ, ξ),

and hence ∑
q∈F

(
SA (Q, q) · 0

)
(ξ) =

∑
q∈F

∑
ρ∈RA (I,ξ,q)

cA (ρ, ξ) = L (A )(ξ).

Example 5.2.9. ConsiderΣ from Example 3.2.4 and let A = ({q1, q2}, Σ, S, (), {q1, q2}, E)
be the (1, 0)-WFA, where E vanishes except in the following cases.

E2(q1, q1, σ, q1) = 3 · 1, E2(q2, q2, σ, q2) = 1,

E1(q1, σ, q1) = 1, E1(q2, σ, q2) = 5 · 1,
E0(σ, q1) = 1, E0(σ, q2) = 1,

E0(σ, q1) = 2 · 1, E0(σ, q2) = 1.

One can easily check that

L (A ) = (2 · 1)#posα(ξ) · (3 · 1)#posσ(ξ) + (5 · 1)#posγ(ξ).

We use Lemmas 5.2.6 and 5.2.5 and Proposition 5.2.8 to find some r ∈ rat(T (Σ), S) such
that 〈[r]〉 = L (A ).

The definition of SA immediately yields

SA (∅, q1) = 〈[3 ·σ(x1, x1) + γ(x1) + β + 2 ·α]〉, and

SA (∅, q2) = 〈[ σ(x1, x1) + 5 · γ(x1) + β + α]〉.

The following formulas follow from Lemma 5.2.5.

SA ({q1, q2}, q1) = SA ({q2}, q1)q1 · (SA ({q2}, q1)q1)∗ = (SA ({q2}, q1)q1)∗,

SA ({q1, q2}, q2) = SA ({q1}, q2)q2 · (SA ({q1}, q2)q2)∗ = (SA ({q1}, q2)q2)∗,

SA ({q2}, q1) = SA (∅, q1)q2 · (SA (∅, q2)q2)∗,

SA ({q1}, q2) = SA (∅, q2)q1 · (SA (∅, q1)q1)∗.

Using Proposition 5.2.8, we find that

L (A ) = SA ({q1, q2}, q1) · 0 + SA ({q1, q2}, q2) · 0
= (SA ({q2}, q1)q1)∗ · 0 + (SA ({q1}, q2)q2)∗ · 0
= ((SA (∅, q1)q2 · (SA (∅, q2)q2)∗)q1)∗ · 0 +

+ ((SA (∅, q2)q1 · (SA (∅, q1)q1)∗)q2)∗ · 0.
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Plugging the rational expressions for SA (∅, q1) and SA (∅, q2) into the above equation
results in r.

One can now check that in fact 〈[r]〉 = L (A ). We iteratively evalutate the subexpres-
sions of r using the definitions of the corresponding operations. The detailed calculations
tend to become lengthy, hence we only provide the solutions.

(SA (∅, q1)q1)∗ = (2 · 1)#posα(ξ) · (3 · 1)#posσ(ξ)

(SA (∅, q2)q2)∗ = (5 · 1)#posγ(ξ)

SA (∅, q1)q2 · (SA (∅, q2)q2)∗ = 〈[3 ·σ(x1, x1) + γ(x1) + β + 2 ·α]〉 (16)

SA (∅, q2)q1 · (SA (∅, q1)q1)∗ = 〈[ σ(x1, x1) + 5 · γ(x1) + β + α]〉 (17)

((SA (∅, q1)q2 · (SA (∅, q2)q2)∗)q1)∗ · 0 = (2 · 1)#posα(ξ) · (3 · 1)#posσ(ξ)

((SA (∅, q2)q1 · (SA (∅, q1)q1)∗)q2)∗ · 0 = (5 · 1)#posγ(ξ)

and hence 〈[r]〉 = L (A ), as claimed.
Note how the subformulas in equations 16 and 17 degenerated into SA (∅, q1) and

SA (∅, q2), respectively. This is due to the fact that q1 and q2 can not be mixed in A
without getting vanishing costs. This goes hand in hand with the intuition for A as an
automaton generating the sum of two weighted languages. Both these summand languages
are generated by a single state (q1 and q2, respectively) and their state behaviours can
not mix (by construction of an automaton for the sum of two weighted languages). �

Theorem 5.2.10. Let m ∈ N0. It holds that

REC(T (Σ)m0 , S) ⊆ RAT(T (Σ)m0 , S).

Proof. Let ϕ ∈ REC(T (Σ)m0 , S) with rectangular components ϕ1, . . . , ϕm ∈ REC(T (Σ)10, S).
For every i ∈ [m] there exists a (1,0)-WFA

Ai = (Qi, Σ, S, ∅, Fi, Ei),

such that L (Ai) = ϕi. By Proposition 5.2.8 there are r1, . . . , rm ∈ RAT(T (Σ)10, S) such
that

L (Ai) = ri

for every i ∈ [m]. Therefore,

ϕ = ϕ1 × · · · × ϕm = L (A1)× · · · ×L (Am)

= 〈[r1]〉 × · · · × 〈[rm]〉 = 〈[r1 × · · · × rm]〉,

which proves the claim.

Corollary 5.2.11. Let m,n ∈ N0. It holds that

REC(T (Σ)mn , S) ⊆ RAT(T (Σ ∪Xn)m0 , S).

71



Proof. After identification of REC(T (Σ)mn , S) and REC(T (Σ ∪ Xn)m0 , S), this follows
immediately from Theorem 5.2.10.

We can thus conclude this thesis with our Kleene theorem

Theorem 5.2.12. Let m,n ∈ N0. It holds that

REC(T (Σ)mn , S) = RAT(T (Σ ∪Xn)m0 , S)

and in particular

REC(T (Σ)m0 , S) = RAT(T (Σ)m0 , S).

Proof. Theorems 5.2.10 and 5.1.2.
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Chapter 6: Conclusion

6.1 Prospectus

We have combined the Kleene results from [6] and [18] to arrive at a Kleene result for
weighted forest languages.

After providing insight into the mathematical tools, we introduced forests and weighted
forest automata. A first major result was the rectangularity of recognizable weighted
forest languages. This opened up a connection between weighted forest languages and
weighted tree languages. We moreover proved two normal forms that would become very
helpful throughout the remaining thesis.

We defined a Kleene star operation on weighted forest languages and saw that a
property called properness became relevant in order to arrive at a well-defined operation.
As an alternative to allowing only proper weighted languages inside a Kleene star, we
could have also restricted our case to complete semirings. However, properness is not
a restriction on the assumptions of our Kleene result. It is simply a fact that in our
automata analysis (the generation of a rational expression accepting the same language
as an automaton) the terms occurring inside Kleene stars are proper weighted languages.
Hence the rational operations need not include a Kleene star for non-proper weighted
languages.

The two directions in the proof of our Kleene result were expression synthesis (the
construction of an automaton generating the same language as a rational expression) and
automata analysis.

In our synthesis, we could have simply cited many of the results from the tree case [6].
However, it was important for us to demonstrate the formal nature of forests. Hence we
explicitly provided all necessary constructions, proofs, and examples. Moreover the proof
for vertical concatenation was done in the general case of forests, instead of using the
rectangularity property.

The proof of closure under Kleene star is done by utilizing the rectangularity property
and then executing the construction given in [6] in the tree case. Writing this thesis,
we also made an attempt to prove closure of (arbitrary) recognizable weighted forest
languages under Kleene star, yet were not able to find an understandable proof that was
linked to some intuition.

In our analysis, we redid the proof presented in [6] and lifted the result to forest
languages through the rectangularity property.

6.2 Future Work

In this section we want to give a very brief outlook at what one could do next with
respect to the theory of weighted forest languages.

First of all, it seems worthwhile to do the automaton analysis from this thesis without
using the rectangularity property. In [18], Straßburger provides a proof for the unweighted
case. However, he uses a Kleene star operation for forests of arbitrary horizontal size (in
contrast to forests of horizontal size 1, as we do). We believe that using his idea of proof
in the weighted case might shorten the proof of the analysis without losing its intuition.
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Using the rectangularity property, one could also dive into other famous theorems
and lift them to the forest case. Some very prominent theorems are Büchi’s Theorem
(which links recognizable languages to languages generated by monadic first order logic),
Nivat’s Theorem (which provides a decomposition formula for languages generated by
transducers into homomorphisms and regular languages), and pumping lemmas (which
provide criteria to decide that a language is not recognizable).

One could also introduce different automata models than the one presented in this
thesis. The rectangularity of (our) recognizable languages makes our theory less appealing,
as proofs tend to break down into the tree case very easily. Other automata models might
process entire forests at once, instead of single symbols. Because of the partial monoid
structure in magmoids (the vertical concatenation), this might be similar to the string
case and bring up interesting connections between forest languages and string languages.
However, these ideas are very speculative and to our knowledge, no efforts have been
made in these directions.
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