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Abstract

The various formal languages which arise in such diverse fields of
research as model checking, natural language processing, formal
semantics, etc., can be modeled by automata and logics. Hereby,
quantitative aspects can be characterized by weighted automata
and weighted logics. There are various approaches to general-
ize weight structures to preferably very general formalisms. We
investigate two specific generalizations for weighted languages
over trees: multioperator monoids which allow local weight cal-
culations with arbitrary functions and tree valuation monoids
which globally accumulate weights. We compare multioperator
weighted tree automata and tree valuation weighted tree au-
tomata and show that the automata can be mutually simulated
preserving the recognized weighted tree language. There is a logic
connected by a Büchi/Elgot-like theorem with each automaton
model. We show that formulas of both logics can be transformed
into formulas of the respective other formalism while preserving
the defined language.
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1 Introduction

In theoretical computer science formal languages are used in a variety of fields for specification
and analysis of systems, e.g. natural language processing or model checking. As the considered
formal languages are mostly infinite, it is of great importance to represent them in a finite
and machine readable way. This can be achieved by finite state automata which are capable
of recognizing an infinite language using only finite memory. In order to model increasingly
complex systems it turned out that the firstly introduced string automata are not powerful
enough. For example, tree structures are better suited to model properties of natural language
than string languages [YK01]. Thus, the theory of finite state automata was extended to data
structures allowing for more complexity, e.g. automata recognizing languages on trees [GS84,
CDG+97] or unranked trees [BMW01].

The use of logics provides an alternative method to represent formal languages with finite
memory. Elements of the language can be describes using logical predicates, e.g. defining
the letter at a specific position in a word. Büchi [Büc60] and Elgot [Elg61] showed in their
fundamental theorem that string languages recognizable by finite state automata can also be
defined using a monadic second order logic (mso). As in the automaton case, this result was
generalized to trees [TW68, Don70] to provide extended modeling flexibility.

The analysis of systems draws interest also to quantitative aspects like resource consumption
or probability of success. Hence, automata were equipped with weight structures. At first,
fields over real numbers were used [Sch61, Eil74], e.g. in order to count pattern occurrences
or determine costs of a system. Later, the weight structures were generalized to more flexible
algebraic structures as for example arbitrary semirings [KS86, AB87, BR88, Kui97, Kui98,
ÉK03, DPV05, FV09], fields [BR82], or lattices [IF75, ÉL07, KL07]. Instead of accepting
or rejecting an input, automata assign a value from the underlying algebraic structure by
accumulating weights associated with local state behavior using multiplication and addition
of the structure.

Although the operations of the weight structures can be manifoldly defined, it is restricting
to exclusively use multiplication and summation. To overcome this limitation, Kuich [Kui98]
and Bozapalidis [Boz99] introduced multioperator monoids (m-monoid), which equip a
monoid structure with arbitrary operations on the carrier set. These operations can be used
to determine the weights of automata in a local way: the state behavior at every position is
evaluated by an operation which takes the successor positions and computes a local weight
[Kui99, Mal04, SVF09]. These multioperator weighted tree automata (m-wta) provide a very
flexible formalism to characterize weighted languages and subsume those over semirings and
thus over fields and complete distributive lattices [Mal05, FMV09].

Another possibility to overcome the limitations of classical weight structures is to shift the
weight calculation from a local point of view to a global one, i.e. local weights are accumulated
without computing intermediate results. In [CDH08] a valuation function is introduced which
takes all local weights and computes a resulting weight. This valuation function can be
extended to a monoid structure, a valuation monoid, and is used for string automata [DM10].
The generalization for trees in [DGMM11] introduces tree valuation monoids (tv-monoid)
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1 Introduction

and a corresponding automaton structure (tv-wta). The valuation function is thereby used to
accumulate the tree of local weights of the automaton. This enables better handling of global
weight features, e.g. determining a discounted maximum, the average, or more complicated
features as for example ‘the sum of the three greatest elements’.

Similar to the generalization of automata, logics were also extended to handle weighted
languages. Droste and Gastin introduced a weighted mso logic [DG05, DG07, DG09] which
allows weight elements as atomic formulas. Since finding a meaningful interpretation of a
negated numerical value is difficult, negation is restricted to occur only in front of atomic
formulas. The Büchi/Elgot result can be generalized to weighted string languages, i.e.
weighted string languages recognizable by weighted automata are exactly those definable
by (syntactically restricted) weighted mso [DG05, Theorem 4.7], as well as to trees [DV06],
traces [Mei06], and picture languages [Fic06].

Weighted mso logic for trees was extended by Fülöp, Stüber, and Vogler [FSV12] to a more
flexible logic, called m-expressions, in order to model the behavior of m-wta. They introduced
a homomorphism working on a tree-variable combination as atomic formula and invented a
guard operator which allows that certain parts of the formula are only evaluated if a classical,
unweighted mso-formula holds. Additionally, they introduced a summation closely related
to disjunction and existential quantification in weighted mso. With these m-expressions a
Büchi-like theorem can be proved, i.e. the class of tree languages recognizable by m-wta are
equal to those definable by m-expressions [FSV12, Theorem 4.1].

There is an mso logic over tree valuation monoids (tv-mso) [DGMM11] based on weighted
mso [DG07]. The value ‘false’ is handled by the neutral element, disjunction and existential
quantification are handled by the sum of the monoid. In order to model ‘true’ and conjunction
the monoid structure has to be extended with appropriate structures. Universal first order
quantification is modeled by the use of the valuation function. Based on this tv-mso Droste,
Götze, Märcker, and Meinecke showed the Büchi/Elgot result for different classes of the logic
[DGMM11, Theorem 5.5].

A variety of different formalisms are present to handle infinite weighted languages in
multiple ways. In order to compare them regarding modeling flexibility we investigate four
formalisms for weighted tree languages: automta and logics over m-monoids and tv-monoids.
We show that m-wta and tv-wta can be mutually simulated, i.e. for every tv-wta over some
tv-monoid we can construct an m-wta over an m-monoid recognizing the same language
and vice versa. A similar result is shown for m-expressions and tv-wta: There are syntactical
transformation functions between tv-mso and m-expressions preserving the defined language.

The transformation from tv-wta to m-wta requires the construction of a suitable m-monoid.
Using the idea that the valuation function accumulates a tree of values into a final result, the
new m-monoid needs to work over unranked trees with values from the original carrier set.
This enables to use the valuation function within the m-monoid, i.e. the valuation function
can be applied as a local weight transformation. Hence, the m-wta is constructed such that it
builds up the tree of values similar to the semantics of the original tv-wta and applies the
valuation function once arrived at the root of an input tree.

The opposite direction, constructing a tv-wta given an m-wta, follows the same structure.
Defining a suitable tv-monoid requires to consider the semantics of m-wta. An m-wta applies
functions at every local state transition. As a function application at every step is not possible
within tv-wta, the tv-monoid needs to provide the possibility to track the used operations.
Hence, the set of all operations over the carrier set of the m-monoid is used. The operations
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originally applied by the m-wta are tracked by the tv-wta in a tree of values and later evaluated
by the valuation functions which is in fact a homomorphism. Clearly, the weight calculations
shift from a local point of view to a global one.

In order to show the transformation functions for both logics the constructed monoids
from previous consideration need to be extended. The transformations then rely on similar
predicates, e.g. conjunction and existential quantification, and construct more complex
formulas for parts of the logic not present in the respective other formalism.

This diploma thesis is structured as follows. Basic notions and both automaton structures
are recalled in Chapter 2. The Constructions from tv-wta to m-wta and reverse can be found
in Chapters 3 and 4. In Chapter 5 necessary preliminaries for understanding the logics
are recalled followed by the transformation functions between each logics in Chapter 6
and 7. Throughout the chapters we give examples to illustrate the introduced notions and
transformations. The main result of each chapter is stated at the beginning of the chapter
and proved afterwards to provide a target and a global context.
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2 Preliminaries

2.1 General

In this section we want to give some elementary definitions and conventions.

The set of natural numbers, denoted by N, is the set of all non-negative integers including
zero. The set of natural numbers without zero, denoted by N+, is the set N+ = N \ {0}. For
every k ∈ N+, the set {1,2, . . . , k} is denoted by [k]. The empty set is denoted by ; and we
define [0] = ;. The set of all real numbers is denoted by R.

Let A be a set. We denote the power set of A by P(A). |A| describes the number of elements
in A. Let k ∈ N. The set of all k-ary operations on A, denoted by Opsk(A), is the set Opsk(A) =
{ f | f : Ak → A}, the set of all operations on A, denoted by Ops(A), is the union of all
k-ary operations, i.e. Ops(A) =

⋃

k∈NOpsk(A). Let Ω ⊆ Ops(A). For every k ∈ N we define
Ω(k) = Ω∩Opsk(A).

Let A and B be sets. We use the notational abbreviation A ∪̇ B = A∪ B if we want to
emphasize that A∩ B = ;.

An alphabet is a (possibly infinite) non-empty set. Its elements are called symbols. Let ∆
be an alphabet. The set of finite words over ∆ is denoted by ∆∗. The empty word is denoted
by ε and |w| denotes the length of each word w ∈∆∗.

A ranked alphabet is a tuple (Σ, rk), where Σ is an alphabet and rk: Σ → N a function
which maps every symbol to a natural number, it is called the rank function. Let k ∈ N. The
set of all symbols in (Σ, rk) of rank k, denoted by Σ(k), is defined as the set Σ(k) = {σ ∈ Σ |
rk(σ) = k}. For a finite ranked alphabet (Σ, rk), the maximal rank of (Σ, rk) is denoted by
maxrk(Σ, rk) =max{rk(σ) | σ ∈ Σ}. In the sequel we abbreviate (Σ, rk) as Σ and think of
the rank function as being implicitly given. We also assume for every ranked alphabet Σ that
Σ(0) 6= ;.

Let A be a set, Σ a ranked alphabet, and ΘA : Σ → Ops(A). We call (A,ΘA) a Σ-algebra
if ΘA(Σ(k)) ⊆ Opsk(A) holds for every k ∈ N. Let (A,ΘA) and (B,ΘB) be Σ-algebras. A
mapping h: A→ B is called Σ-homomorphism, denoted by h: (A,ΘA)→ (B,ΘB), if it fulfills
the following property for every k ∈ N, σ ∈ Σ(k), and a1, . . . , ak ∈ A: h(ΘA(σ)(a1, . . . , ak)) =
ΘB(σ)(h(a1), . . . , h(ak)). A Σ-algebra (A,ΘA) is called initial in the class of all Σ-algebras if for
every Σ-algebra (B,ΘB) there is exactly one homomorphism h: (A,ΘA)→ (B,ΘB).

Let A still be a set, 0 ∈ A, and +: A2→ A. The tuple (A,+, 0) is a monoid if for all a1, a2 ∈ A
also a1 + a2 ∈ A (closure), for all a1, a2, a3 ∈ A it holds that (a1 + a2) + a3 = a1 + (a2 + a3)
(associativity), and for all a ∈ A we have that a+ 0 = 0+ a = a (identity element). A monoid
(A,+, 0) is called commutative if the operation + is commutative, i.e. for all a1, a2 ∈ A we have
that a1 + a2 = a2 + a1.
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2 Preliminaries

2.2 Trees

We define various notions concerning trees and related concepts in this section.

Definition 2.2.1 A tree domain, denoted by B, is a finite, non-empty set B ⊂ (N+)∗ such that
for every u ∈ (N+)∗ and i ∈ N+, ui ∈ B implies that u, u1, . . . , u(i − 1) ∈ B.

For every w ∈ B the rank of a tree domain B at position w, denoted by rkB(w), is defined as
rkB(w) = |{i ∈ N+ | wi ∈ B}|. �

Definition 2.2.2 Given an alphabet ∆, we define an unranked tree over ∆ as a function
ξ: B→∆ where B is a tree domain.

The set of all unranked trees over ∆ is denoted by T u
∆.

Given an unranked tree ξ: B → ∆, we call the elements of B positions of ξ, and denote B
as pos(ξ). For every position w ∈ pos(ξ) we call ξ(w) the label at position w and define the
subtree of ξ at w, denoted by ξ|w , as an unranked tree as follows:

ξ|w : {u ∈ N∗+ | wu ∈ pos(ξ)} →∆
u 7→ ξ(wu).

Let δ ∈∆. An unranked tree ξ: B→∆ is called δ-free if there is no position w ∈ pos(ξ)
such that ξ(w) = δ. �

Recall that, differing from common notion, the alphabet is not assumed to be finite. For
example, we might use all natural numbers as labels. Let δ ∈ ∆. We can view δ as the
unranked tree δ̄ : {ε} →∆ with δ̄(ε) = δ. In the sequel we will not distinguish between δ
and δ̄ and thus assume that ∆ ⊆ T u

∆.
The following lemma connects the introduced notion of a tree to another common notion:

trees as well-formed expressions.

Lemma 2.2.3 Let ξ ∈ T u
∆. We can represent ξ in a unique way as a finite word over the alphabet

∆ ∪̇ {‘(’,‘)’,‘,’} by the function π as follows:

π: T u
∆→ (∆ ∪̇ {‘(’,‘)’,‘,’})∗

ξ 7→ ξ(ε)
�

π(ξ|1), . . . ,π(ξ|k)
�

,

where k = rkpos(ξ)(ε).

This mapping produces unranked trees in the common, inductively defined notion.
Using ranked alphabets to label trees allows to characterize the amount of successor nodes

in a tree by the rank of the respective symbol.

Definition 2.2.4 Given a ranked alphabet Σ, we define a (ranked) tree over Σ as an unranked
tree ξ: B→ Σ in T u

Σ such that for every w ∈ B: rkB(w) = rk(ξ(w)).
The set of all ranked trees over a ranked alphabet Σ is denoted by TΣ. �

Note that TΣ ⊆ T u
Σ, i.e. every ranked tree can also be considered as an unranked one by

‘forgetting’ the ranks of the symbols.
In order to simplify the handling of algebraic structures, we recall the following notion

from mathematics:
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2.3 M-Monoids and M-WTA

Definition 2.2.5 The Σ-term algebra, denoted by TΣ, is the Σ-algebra (TΣ,ϕΣ), where
ϕΣ(σ)(ξ1, . . . ,ξk) = σ(ξ1, . . . ,ξk) for every k ∈ N, σ ∈ Σ(k), and ξ1, . . . ,ξk ∈ TΣ. The
Σ-term algebra is initial in the class of all Σ-algebras. �

The semantics of automata and logics are tree languages and weighted tree languages.
Hence, we recall the following concepts:

Definition 2.2.6 Given a finite ranked alphabet Σ, a tree language over TΣ is a subset L ⊆ TΣ.
Moreover let A be a non-empty set. We call its elements weights. A weighted tree language
over TΣ and A is a function L : TΣ→ A. �

Definition 2.2.7 Let L1, L2 : TΣ → A be weighted tree languages, a ∈ A, and +: A2 → A a
function. Then we define the weighted tree languages L1 + L2 and a+ L1 over TΣ such that
for every ξ ∈ TΣ

(L1+ L2)(ξ) = L1(ξ)+ L2(ξ),
(a+ L1)(ξ) = a+ L1(ξ). �

There is an intuitive way to represent tree languages as weighted tree languages over
almost arbitrary algebraic structures having some kind of 0- and 1-element:

Definition 2.2.8 Given a ranked alphabet Σ and a tree language L ⊆ TΣ. The characteristic
function of L, denoted by 1L , is defined as 1L : TΣ→ {0, 1} where for every tree ξ ∈ TΣ

1L(ξ) =
§

1 if ξ ∈ L,
0 otherwise. �

Note that 0 and 1 are used as placeholders and will be instantiated to neutral elements of
specific algebraic structures, conventionally called 0 and 1.

2.3 M-Monoids and M-WTA

Based on the definitions in [FSV12] of m-wta and related concepts we recall the following
notions:

Definition 2.3.1 A multioperator monoid (for short m-monoid) is a quadruple A = (A,+, 0,Ω)
such that (A,+, 0) is a commutative monoid and Ω ⊆ Ops(A) where for every k ∈ N we have
that 0(k) ∈ Ω and the mapping 0(k) : Ak → A is the function mapping every k-ary argument
tuple to 0.

The m-monoid is called absorptive if for all k ∈ N, ω ∈ Ω(k), and a1, . . . , ak ∈ A: ai = 0 for
some i ∈ [k] implies that ω(a1, . . . , ak) = 0. �

Note that every m-monoid can be extended to an absorptive one by adding a special element
working as new zero [FSV12, p. 245]. In the following, let A = (A,+, 0,Ω) be an arbitrary
m-monoid until stated otherwise.

Definition 2.3.2 Let Σ be a finite ranked alphabet. A Σ-family of operations in A is a Σ-
family ω= (ωσ | σ ∈ Σ), such that ωσ ∈ Ω(rk(σ)) for every σ ∈ Σ. The uniquely determined
Σ-homomorphism from the Σ-term algebra TΣ to the Σ-algebra (A,ω) is denoted by hω and
called the homomorphism induced by ω. �
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2 Preliminaries

The following two examples describe m-monoids. In subsequent examples they will reap-
pear as running examples.

Example 2.3.3 The following is an m-monoid:

Abool = ({0, 1} , max , 0 , {0(0), 1(0),mul(2)} ∪ {0(k) | k ∈ N+}),

where mul is the multiplication of numbers in the classical notion and 0(0) and 1(0) are the
functions mapping the empty tuple to 0 and 1, respectively. The m-monoid Abool is absorptive
as 0 is annihilating for multiplication and the two functions 0(0) and 1(0) are nullary. ©

Example 2.3.4 We define the following m-monoid dealing with sets of finite words over N+,
which can be interpreted as positions:

Apos = (P((N+)∗) , ∪ , ; , {�(k)i | k ∈ N, i ∈ [k]} ∪ {;(k),ε(k) | k ∈ N}),

where for every k ∈ N and W1, . . . , Wk ∈ P((N+)∗)

�(k)i (W1, . . . , Wk) =
§

{iw | w ∈Wi} if ; /∈ {W1, . . . , Wk}
; otherwise,

ε(k)(W1, . . . , Wk) =
§

{ε} if ; /∈ {W1, . . . , Wk}
; otherwise,

and ;(k) maps every k-ary argument combination to ;.
Note that this m-monoid is absorptive. ©

M-monoids can be used as weight structures for weighted automata, recognizing weighted
tree languages which assign a value of the monoid to every tree. In this case, the automaton
uses functions from A in order to evaluate a tree. This is formally defined as follows:

Definition 2.3.5 Let Σ be a finite ranked alphabet. A multioperator weighted tree automaton
over Σ and A (for short: m-wta) is a triple M= (Q,δ, F), where

• Q is a finite, non-empty set (states),

• δ = (δσ | σ ∈ Σ) is a Σ-family of mappings δσ : Qrk(σ) × Q → Ω(rk(σ)) (transition
mapping),

• F ⊆Q (final states). �

Note that Fülöp, Stüber, and Vogler [FSV12] called this structure ‘wmta’ which we change
to m-wta in order to improve readability and comparability to other formalism which we
introduce later.

We recall the concept of runs of an m-wta on a tree in order to define the semantics of the
automaton. A run assigns a state to every position of the tree.

Definition 2.3.6 Let Σ be a finite ranked alphabet. Given a tree ξ ∈ TΣ and a finite set Q,
we define the set of runs on ξ, denoted by RQ(ξ), as the following set of functions:

RQ(ξ) = {r | r : pos(ξ)→Q} �

8



2.3 M-Monoids and M-WTA

In the following definitions let M = (Q,δ, F) be an m-wta over a finite ranked alphabet Σ and
A.

Consider a run assigning states of an m-wta M to all positions of a tree. For every position
we recursively calculate a weight as follows. Consider a certain position w in the tree. For
this position we read off the label of the tree and use the run to determine the state at the
position and of all immediate successors. The label and local state behavior are mapped to
an operation by the transition mapping δ of the automaton M. This operation is applied to
the weights of the immediate successors of position w.

By evaluating the root of a tree, i.e. position ε, we determine the weight of a run. In order
to consider all runs of the automaton on a tree, the respective weights are accumulated using
the sum of the monoid. More formally, we define the weight of a run and the tree language
recognized by an m-wta as follows:

Definition 2.3.7 Given a tree ξ ∈ TΣ and a run r ∈ RQ(ξ), the weight of r on ξ calculated by
M at position w ∈ pos(ξ), denoted by δ(ξ, r, w), is defined as

δ(ξ, r, w) =ω
�

δ(ξ, r, w1), . . . ,δ(ξ, r, wk)
�

,

where σ = ξ(w), k = rk(σ), and ω= δσ(r(w1) . . . r(wk), r(w)).
The weighted tree language recognized by M is the mapping ¹Mº: TΣ→ A defined as

¹Mº(ξ) =
∑

r∈RQ(ξ)
r(ε)∈F

δ(ξ, r,ε)

for every ξ ∈ TΣ. �

Note that we change the notation in comparison to [FSV12] where the weight is denoted
by ‘wtM,ξ(r)(w)’. The change of the notation to δ(ξ, r, w) enables easier comparison to
subsequent formalism and seems justified as we lift the transition mapping to trees.

Following up the examples of m-monoids we want to illustrate the mechanisms of m-wta
by the following examples.

Example 2.3.8 Recall the m-monoid Abool from the previous Example 2.3.3. Let Σ =
{σ(2),α(0),β (0)}. We define the automaton Mα = ({∗},δ, {∗}) over Σ and Abool, where
δ is defined as

δα(∗) = 1(0), δβ(∗) = 0(0), δσ(∗∗,∗) =mul(2).

As there is only one state, for every tree ξ ∈ TΣ there is only one run. Upon closer
examination we can see that this automaton recognizes a weighted tree language which
assigns the weight 1 to a tree only if all leaves of that tree are labeled by α. Otherwise, the
tree is associated with 0. ©

Example 2.3.9 Let Σ= {σ(2),γ(1),α(0)}. Recall the m-monoid Apos from Example 2.3.4. We
define the m-wta M= ({q0, q1, q f },δ, {q f }) over Σ and Apos where

δα(q0) = ε
(0), δα(q1) = ε

(0),

δγ(q0, q0) = ε
(1), δγ(q f , q f ) = �

(1)
1 ,

δσ(q0q0, q0) = ε
(2), δσ(q f q0, q f ) = �

(2)
1 ,

δσ(q1q1, q f ) = ε
(2), δσ(q0q f , q f ) = �

(2)
2 ,
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σ

σ

αα

σ

σ

αα

γ

α

q f

q f

q0

q0

q f

q1 q1

q0

q0 q0

Figure 2.1: A tree with indicated run for Example 2.3.9 and Example 2.4.8

and all not mentioned combinations of are mapped to the ;(k)-function of the correct arity.
The runs of the automaton encode pattern occurrences. The automaton uses a sleeping

state q0 indicating that a position does not belong to the current pattern and no pattern was
seen so far. The state q1 is used to guess positions labeled by α which belong to the pattern.
If two states q1 are found directly below a σ, the pattern is detected and represented by the
state q f . This final state is then passed on in an systematic manner to keep track of the found
pattern position.

Consider the tree σ(σ(γ(α),σ(α,α)),σ(α,α))which can be seen together with an example
run in Figure 2.1. This run recognizes the pattern σ(α,α) at position 1 2. We show the
weight calculation at the root. The local state behavior is marked by the dotted line. Let us
assume that the weight of the left subtree is {2} and the weight of the right subtree is {ε}
which can analogously be calculated.

δσ(q f q0, q f )({2}, {ε})

= �(2)1 ({2}, {ε})
= {1 2}

The underlying monoid Apos uses set union to combine the weights of all runs. By evaluating
all runs with the final state q f at the root, it can be seen that the weight of the example tree
associated by the weighted tree language recognized by the automaton is {1 2,2}.

Note that multiple detections of the pattern in one run are prohibited by the state behavior
since multiple occurrences of q f signaling a found pattern are mapped to the annihilating
element ;. ©

2.4 TV-Monoid and TV-WTA

The second automaton structure examined in this thesis are tv-wta over tv-monoids. In
accordance with [DGMM11] we recall related concepts in this section.

Furthermore, recall the definition of δ-freeness from Definition 2.2.2 which is used in the
following definition with δ = 0.
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2.4 TV-Monoid and TV-WTA

Definition 2.4.1 A tree valuation monoid (for short: tv-monoid) is a tuple D = (D,+, 0, Val),
such that (D,+, 0) is a commutative monoid and Val: T u

D → D is a function satisfying the
following properties:

• for every d ∈ D : Val(d) = d,

• for every ξ ∈ T u
D : if ξ is not 0-free, then Val(ξ) = 0. �

Note that we change the order in the tuple of the tv-monoid compared to [DGMM11, Def-
inition 2.1] to emphasize the included sub-monoid (D,+, 0). Furthermore, note that the
restriction on the valuation function to require 0-freeness is similar to an m-monoid being
absorptive.

We illustrate the concept of tv-monoids with the following two examples.

Example 2.4.2 Similarly to Example 2.3.3, we define the tv-monoid

Dbool = ({0,1},max, 0,Val),

where Val: T u
{0,1}→ {0,1} multiplies all values in the tree. As 0 and 1 are the only possible

values, this multiplication can also be seen as finding the minimum.
Note that the properties for Val from Definition 2.4.1 are satisfied. ©

Example 2.4.3 For handling positions we use the same underlying monoid as in Exam-
ple 2.3.4 but add a Val-function:

Dpos = (P((N+)∗),∪,;, Val)

where for all P ∈ P((N+)∗), and n ∈ N, ξ1, . . . ,ξn ∈ TP((N+)∗),

Val(P(ξ1, . . . ,ξn)) =











P if n= 0,
{iw | w ∈ Val(Pi)} if n> 0,∃i ∈ [n] : P = {i},

and ξ1, . . . ,ξn are ;-free,
; otherwise.

©

There is an automaton structure associated with tv-monoids.

Definition 2.4.4 Given a finite ranked alphabet Σ and a tv-monoid D = (D,+, 0, Val), we
define a tree valuation weighted tree automaton over Σ and D (for short: tv-wta) as a triple
N = (Q,µ, F) where

• Q is a finite, non-empty set (states),

• µ= (µσ | σ ∈ Σ) is a family of mappings µσ : Qrk(σ) ×Q→ D (transition mapping),

• F ⊆Q (final states). �

Note that the definitions of m-wta and tv-wta are very similar, but the transition families
δ and µ differ in the elements assigned to state combinations. To distinguish between
the two formalism we use M to represent m-wta and N for tv-wta. In the following, let

11



2 Preliminaries

{1}

{ε}

{ε}{ε}

{2}

{ε}

{ε}{ε}

{ε}

{ε}

Figure 2.2: The tree of values for Example 2.4.8

D = (D,+, 0,Val) be a tv-monoid and N = (Q,µ, F) be a tv-wta over a finite ranked alphabet Σ
and D.

As in the case of m-wta the semantics is calculated by runs which are defined in Defini-
tion 2.3.6 as mappings from tree positions to states.

A specialty of tv-wta is the tree of values induced by the run. The generated unranked tree
has the same shape as the input tree but is labeled with elements from D.

Definition 2.4.5 Given a tree ξ ∈ TΣ and a run r ∈ RQ(ξ), the tree of values induced by r on
ξ, denoted by µ(ξ, r) ∈ T u

D, is the unranked tree defined as

µ(ξ, r): pos(ξ)→ D
w 7→ µσ(r(w1) . . . r(wk), r(w)),

where σ = ξ(w) and k = rk(σ). �

With the help of the concept of induced trees we can define the semantics of a tv-wta by
the application of the valuation function.

Definition 2.4.6 The weighted tree language recognized by N is the mapping ¹Nº: TΣ→ D
defined as

¹Nº(ξ) =
∑

r∈RQ(ξ)
r(ε)∈F

Val(µ(ξ, r)). �

In the following two examples we define tv-wta recognizing the same tree languages as in
the m-wta case in Examples 2.3.8 and 2.3.9.

Example 2.4.7 Recall the tv-monoid Dbool from Example 2.4.2 and let Σ= {σ(2),α(0),β (0)}.
We define the automaton Nα = ({∗},µ, {∗}) over Σ and Dbool, where

µα(∗) = µσ(∗∗,∗) = 1, µβ(∗) = 0.

This automaton returns 1 only for trees which leaves are all labeled with α. If a leaf
is labeled by β then µ produces a 0 in the tree µ(ξ, r), which is no longer 0-free, and by
definition of the valuation function this tree is evaluated to 0. ©
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2.4 TV-Monoid and TV-WTA

Example 2.4.8 Recall the tv-monoid Dpos from Example 2.4.3 and let Σ= {σ(2),γ(1),α(0)}.
We define the automaton N = ({q0, q1, q f },µ, {q f }) over Σ and Dpos, where

µα(q0) = {ε}, µα(q1) = {ε},
µγ(q0, q0) = {ε}, µγ(q f , q f ) = {1},

µσ(q0q0, q0) = {ε}, µσ(q f q0, q f ) = {1},
µσ(q1q1, q f ) = {ε}, µσ(q0q f , q f ) = {2},

and every other argument combination of µ is mapped to ;.
Consider the tree and the associated run from Figure 2.1. The same tree and state behavior

can be applied to this example. The tree of values µ(ξ, r) can be seen in Figure 2.2. The
values encode the path to the occurrence of the pattern. This coding is then evaluated by
the valuation function to the singleton set {1 2}. As different runs encode distinct pattern
positions, the set union of the monoid guarantees the desired result of all positions of the
pattern. ©
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3 From TV-WTA to M-WTA

In this chapter we show a transformation from tv-wta and m-wta preserving semantics. It
consists of the transformation of the underlying tv-monoid into an m-monoid followed by the
actual automaton construction.

The first step of the construction considers the m-monoid. In order to be able to incorporate
the valuation function we need to deal with unranked trees over the original carrier set.

As a second step, we simulate the semantics of the tv-wta by local functions. A tree of
values is built and the valuation function is applied once arriving at the root of the tree.

The chapter will prove the following theorem:

Theorem 3.0.1 Let Σ be a finite ranked alphabet, D a tv-monoid, and L : TΣ→ D a weighted
tree language. If there is a tv-wta N over Σ and D such that ¹Nº= L, then there is an m-wta
MN over Σ and AD such that ¹MNº= L.
AD is the m-monoid from Construction 3.1.1 and MN is the m-wta from Construction 3.2.4.

The theorem is a direct consequence of Theorem 3.2.7 at the end of the chapter.

3.1 Construction of the M-Monoid

The valuation function of the tv-monoid D operates on unranked trees labeled by D, formally:
Val: T u

D → D. An m-monoid allows to include arbitrary operations on the carrier set. Hence,
we can include the valuation function into the set of operations Ω by using T u

D as the carrier
set for the m-monoid. Recall from Section 2.2 that we assume the embedding D ⊆ T u

D of
values into the set of unranked trees. Thus, we can consider the valuation function as unary
operation: Val: T u

D → T u
D.

To build unranked trees over these values we equip the monoid with operations for top-
concatenation for all values d ∈ D. For one concrete d and any arity k this function takes
k unranked trees and combines those into one unranked tree by top-concatenating them
with d.

Following the intuition, establishing the tree of values and applying the valuation function
needs to be done in one step at the root of a tree. Hence, we need to provide operations
combining top-concatenation and the application of the valuation function.

To comply with the technical requirements of the m-monoid we also need to include 0(k)-
functions into the set Ω. Furthermore, an addition ⊕: T u

D → T u
D needs to be defined satisfying

all properties required for (T u
D,⊕, 0) being a commutative monoid. Adding two unranked

trees can be done by adding the elements at each position with the addition of the original
monoid D. If a position is not present in one of the original trees, the corresponding value
is 0.

Following the above description, we formally define the m-monoid as follows:

15



3 From TV-WTA to M-WTA

Construction 3.1.1 Given a tv-monoid D = (D,+, 0, Val), we construct an m-monoid AD =
(T u

D,⊕, 0,Ω). We define

⊕: T u
D × T u

D → T u
D, (ξ1,ξ2) 7→ ξ′ : pos(ξ1)∪ pos(ξ2)→ D

w 7→ d1(w) + d2(w)

where for i ∈ {1, 2}

di(w) =
§

ξi(w) if w ∈ pos(ξi),
0 otherwise.

Set

Ω= {0(k) | k ∈ N} ∪ {top(k)d , val(k)d | k ∈ N, d ∈ D},

where the operations in Ω are defined in the following: For every k ∈ N and d ∈ D

0(k) : (T u
D)

k→ T u
D (ξ1, . . . ,ξk) 7→ 0,

top(k)d : (T u
D)

k→ T u
D (ξ1, . . . ,ξk) 7→

§

d(ξ1, . . . ,ξk) if ξ1, . . . ,ξk are 0-free,
0 otherwise,

val(k)d : (T u
D)

k→ T u
D (ξ1, . . . ,ξk) 7→ Val(top(k)d (ξ1, . . . ,ξk)).

Note that val(k)d (ξ1, . . . ,ξk) = 0 if ξ1, . . . ,ξk are not 0-free since the valuation function itself
requires 0-freeness. ©

All functions in the above definition require 0-free arguments. Since 0 can be considered as
an unranked tree which is certainly not 0-free, this property also ensures that the monoid is
absorptive. This is stated together with the correctness of the construction in the following
lemma.

Lemma 3.1.2 AD (Construction 3.1.1) is an absorptive m-monoid.

PROOF. Recall that D ⊆ T u
D and especially 0 ∈ T u

D. We show that (T u
D,⊕, 0) is a commutative

monoid.
⊕ only generates elements in T u

D: This can easily be seen from the definition as the result of
⊕ is an unranked tree over D.

0 is the neutral element: For every ξ ∈ T u
D it is clear that 0⊕ ξ= ξ= ξ⊕ 0 as (D,+, 0) is a

monoid with 0 as neutral element.
Associativity: For every ξ1,ξ2,ξ3 ∈ T u

D and w ∈ pos(ξ1)∪ pos(ξ2)∪ pos(ξ3) it holds that

((ξ1 ⊕ ξ2)⊕ ξ3)(w) = (d1(w) + d2(w)) + d3(w)
= d1(w) + (d2(w) + d3(w)) (Associtativity of +)

= (ξ1 ⊕ (ξ2 ⊕ ξ3))(w)

As the above equation holds for all positions w, we can conclude that (ξ1 ⊕ ξ2) ⊕ ξ3 =
ξ1 ⊕ (ξ2 ⊕ ξ3).

The m-monoid is absorptive by definition. �
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3.2 Construction of the M-WTA

Observation 3.1.3 From the definition of ⊕ it is easy to see that d1 ⊕ d2 = d1 + d2 for every
d1, d2 ∈ D.

Using this observation we will not explicitly distinguish between ⊕ and + on elements from
D. The used addition is clear from the context.

3.2 Construction of the M-WTA

In this section we describe the construction of an m-wta MN simulating the behavior of a
tv-wta N . As discussed earlier, the main task of the automaton is to build the tree of values
and apply the valuation function at the root of a tree. The required operations are present in
the m-monoid AD.

In order to recognize the root of a tree we require special states. These are designed such
that they only occur at the root of the tree. Every run having one of these special states at
any other position than the root is evaluated to 0.

The following definition is based on a construction from [DPV05, Lemma 4.8] for semiring
weighted tree automata.

Definition 3.2.1 A tv-wta N = (Q,µ, F) is in final-state normal form if for every k ∈ N,
σ ∈ Σ(k), and q, q1, . . . , qk ∈ Q such that there is an i ∈ [k] with qi ∈ F it holds that
µσ(q1 . . . qk, q) = 0. �

Note that the normal form in [DPV05] requires a single final state, whereas an arbitrary
number of final states are admissible here.

Lemma 3.2.2 For every tv-wta N = (Q,µ, F) over Σ and D there is a tv-wta N ′ over Σ and D
which is in final-state normal form such that ¹Nº= ¹N ′º.

PROOF. We construct the automaton N ′ = (Q ∪ (F × {1}),µ′, F × {1}) where for every k ∈ N,
σ ∈ Σ(k), and q, q1, . . . , qk ∈Q ∪ (F × {1})

µ′σ(q1 . . . qk, q) =







µσ(q1 . . . qk, q) if q1, . . . , qk, q ∈Q,
µσ(q1 . . . qk, q̄) if q1 . . . , qk ∈Q, q = (q̄, 1) ∈ F × {1},

0 otherwise.

From this construction it is clear to see that ¹Nº= ¹N ′º. �

An automaton in final state normal form ensures that only runs are evaluated which label
only the root of a tree with a final state. To illustrate this property we introduce the following
example which will be reused later.

Example 3.2.3 Consider the tv-monoid Davg = (R,+, 0,Valavg), where Valavg calculates the
average of all elements in the tree. All values in the tree are summed up and divided by the
number of nodes.

Due to the definition of the valuation function, the average is only defined if the tree is
0-free. Hence, it is not possible to assign 0 to a transition. If this is required, a special element
can be introduced working as 0 of the monoid. The addition needs to be adapted to respect
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3 From TV-WTA to M-WTA

the new element. This construction, similar to [FSV12, p. 245], is omitted here, as the value
0 is not assigned to a transition.

We can define an automaton N = (Q,µ, F) over Σ= {σ(2),γ(1),α(0),β (0)} and Davg which
assigns values to certain patterns in the tree as it might be used in natural language processing
to evaluate pattern occurrences. To simplify this we make up some random patterns which
should illustrate the process. We assume that every tree has the root symbol σ (‘sentence
symbol’), the pattern σ(α,β) anywhere in the tree is very valuable, σ(β ,α) is acceptable,
and γ(γ(. . .)) is undesirable.

Let Q = {qσ, qγ, qα, qβ}, F = {qσ}, and set µ as follows:

µα(qα) = 2, µβ(qβ) = 3,

µγ(qγ, qγ) = −8, µγ(qx , qγ) = 2 for x ∈ {α,β ,σ},
µσ(qαqβ , qσ) = 15, µσ(qβqα, qσ) = 9,

µσ(
−→q , qσ) = 1 for −→q ∈ {qα, qβ , qγ, qσ}2 \ {(qα, qβ), (qβ , qα)},

and µ assigns 0 to every state combination not mentioned. Trees including at least one
zero are mapped to the neutral element of the monoid and hence, do not contribute to the
semantics.

The way the automaton works can be seen from the transition mapping as every state
is used to record the previous symbol and every combination is associated with a value.
‘Valuable’ patterns are mapped to higher values and the ‘undesirable’ combination γ(γ(...)) is
associated with a negative number.

In order to transform this automaton into an automaton N ′ = (Q′,µ′, F ′) in final-state
normal form we extend the state set by the state q̄σ = (qσ, 1) as follows: Q′ = Q ∪ {q̄σ}
and the set of final states is only the newly introduced state: F = {q̄σ}. We show all state
combination where µ′ differs from µ and is not 0:

µ′σ(qαqβ , q̄σ) = 15, µ′σ(qβqα, q̄σ) = 9,

µ′σ(
−→q , q̄σ) = 1 for −→q ∈ {qα, qβ , qγ, qσ}2 \ {(qα, qβ), (qβ , qα)}.

It is easy to see that the newly introduced final state q̄σ never occurs as state of a subtree.
Hence, it can only be assigned to the root. If it is associated with any other position, the
corresponding tree of values contains a 0 and is evaluated to 0. ©

The final-state normal form allows to detect the root of a tree. Hence the automaton works
as follows. While not arrived at the root it builds the tree of values. Arriving at the root the
automaton additionally applies the valuation function. This is formalized in the following
construction.

Construction 3.2.4 Given a tv-wta N = (Q,µ, F) over Σ and D in final-state normal form,
we can construct the corresponding m-wta MN = (Q,δ, F) over Σ and AD. The transition
function δ is defined as follows: For every k ∈ N, σ ∈ Σ(k), and q, q1, . . . , qk ∈Q

δσ(q1 . . . qk, q) =











top(k)
µσ(q1...qk ,q) if q ∈Q \ F,

val(k)
µσ(q1...qk ,q) if q ∈ F.

©
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3.2 Construction of the M-WTA

In the sequel let N = (Q,µ, F) denote an arbitrary tv-wta over Σ and D in final-state
normal form. Moreover, let MN = (Q,δ, F) over Σ and AD denote the m-wta over AD and Σ
corresponding to N .

We will now show the correctness of the construction and therefore introduce some inter-
mediate lemmas. Consider a run of the original automaton on a tree. As the state sets are
equal, this run is also a run of the constructed automaton. We assume that its tree of values
is 0-free, i.e. the states are assigned according to our intuition that the only final state is at
the root of the tree. Hence, the automaton builds trees of values as long as it does not reach
the root. This means that for every position unequal to the root the weight function should
result in a corresponding subtree of µ(ξ, r).

Note that it is possible to generate trees of values which are not 0-free, but still meet all
requirements from the intuition of the state behavior. If the original automaton assigns a 0 to
a certain state combination, this is also repeated in the constructed automaton. Since in both
cases the weight of the run is 0, this case is not considered for the time being.

The following lemma formally describes the above intuition that the automaton builds
subtrees of the tree of values µ(ξ, r) while not at the root symbol.

Lemma 3.2.5 For every tree ξ ∈ TΣ, position w ∈ pos(ξ) \ {ε}, and run r ∈ RQ(ξ) such that
µ(ξ, r) is 0-free we have that µ(ξ, r)|w = δ(ξ, r, w).

PROOF. We show this claim by induction on the positions of ξ. Let w ∈ pos(ξ)\{ε}, σ = ξ(w),
and k = rk(σ).

µ(ξ, r)|w = µσ(r(w1) . . . r(wk), r(w))(µ(ξ, r)|w1, . . . ,µ(ξ, r)|wk)
= µσ(r(w1) . . . r(wk), r(w)) (δ(ξ, r, w1), . . . ,δ(ξ, r, wk))

︸ ︷︷ ︸

0-free

(I.H.)

= top(k)
µσ(r(w1)...r(wk),r(w))(δ(ξ, r, w1), . . . ,δ(ξ, r, wk))

= δ(ξ, r, w) (r(w) /∈ F)

In the last equation the fact that r(w) /∈ F is used. This follows from w 6= ε and µ(ξ, r) being
0-free as N is in final-state normal form. �

It is clear to see that the valuation of µ(ξ, r) is equal to the weight of the run r at the
root of ξ as there has to be a final state triggering the execution of the valuation function.
This case also formally considers trees which are not 0-free. As mentioned before, these are
valuated to 0 by definition of Val. Since the m-monoid is absorptive, the same holds true for
all trees which include zero-nodes.

Lemma 3.2.6 For every tree ξ ∈ TΣ and run r ∈ RQ with r(ε) ∈ F we have that Val(µ(ξ, r)) =
δ(ξ, r,ε).

PROOF. If µ(ξ, r) is not 0-free then there is a position w ∈ pos(ξ) with σ = ξ(w) and
k = rk(σ) such that µσ(r(w1) . . . r(wk), r(w)) = 0. Hence, Val(µ(ξ, r)) = 0 and as AD is
absorptive, δ(ξ, r,ε) = 0 holds as well.
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5

72

41

⊕

3

32

72

6 =

(5+ 3)

3(7+ 2)

72

(2+ 6)

41

Figure 3.1: The summation ⊕ of ADavg
(Example 3.2.8)

We assume that µ(ξ, r) is 0-free. Let σ = ξ(ε) and k = rk(σ). Then

δ(ξ, r,ε) = val(k)
µσ(r(1)...r(k),r(ε))

(δ(ξ, r, 1), . . . ,δ(ξ, r, k))

= Val(top(k)
µσ(r(1)...r(k),r(ε))

(δ(ξ, r, 1), . . . ,δ(ξ, r, k)))

= Val(top(k)
µσ(r(1)...r(k),r(ε))

(µ(ξ, r)|1, . . . ,µ(ξ, r)|k)) (Lemma 3.2.5)

= Val(µσ(r(1) . . . r(k), r(ε))(µ(ξ, r)|1, . . . ,µ(ξ, r)|k))
= Val(µ(ξ, r))

�

With these considerations we can prove the following theorem and show the correctness of
Construction 3.2.4.

Theorem 3.2.7 ¹Nº= ¹MNº.

PROOF. For every ξ ∈ TΣ we have:

¹Nº(ξ) =
∑

r∈RQ(ξ)
r(ε)∈F

Val(µ(ξ, r)) (Definition 2.4.6)

=
∑

r∈RQ(ξ)
r(ε)∈F

δ(ξ, r,ε) (Lemma 3.2.6)

= ¹MNº(ξ) (Definition 2.3.7)

�

This transformation is illustrated based on the previously introduced example.

Example 3.2.8 Recall the automaton in final-state normal form from Example 3.2.3 cal-
culating the weighted average of patterns that occur in the tree. In order to construct
the corresponding m-wta the m-monoid needs to be constructed first. The required m-
monoid ADavg

= (T u
R,⊕, 0,Ω) operates on unranked trees of real numbers and includes

top-concatenation operations for every value from R, although, during the construction of
the automaton only finitely many are used. The functions in Ω are self-explaining from the
definitions. Refer to Figure 3.1 for an example of the summation ⊕.

The corresponding m-wta is the tuple MN = (Q,δ, F), where Q = {qα, qβ , qγ, qσ, q̄σ},
F = {q̄σ}, and δ is defined as

δα(qα) = top(0)1 , δβ(qβ) = top(0)1 ,
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δγ(qγ, qγ) = top(1)−8 , δγ(qx , qγ) = top(1)1 for x ∈ {α,β ,σ},

δσ(qαqβ , qσ) = top(2)15 , δσ(qβqα, qσ) = top(2)9 ,

δσ(
−→q , qσ) = top(2)1 for −→q ∈ {qα, qβ , qγ}2 \ {(qα, qβ), (qβ , qα)},

δσ(qαqβ , q̄σ) = val(2)15 , δσ(qβqα, q̄σ) = val(2)9 ,

δσ(
−→q , q̄σ) = val(2)1 for −→q ∈ {qα, qβ , qγ}2 \ {(qα, qβ), (qβ , qα)},

where every other state combination is mapped to 0(k) with the correct arity. Note that the
val-functions are only applied if the automaton enters a final state. As the original automaton
is in final-state normal form, it has to be at the root of the tree. Hence, it is guaranteed that
the valuation function is only applied once. ©

Furthermore, note that the concrete behavior can also be achieved without using the valuation
function in the monoid, but requires insight into the semantics of the function. The more
intuitive automaton works over tuples of numbers. In the first component it sums up all
values seen so far. The second component is just a count of nodes. To evaluate the result
these two numbers need to be divided into the average.
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4 From M-WTA to TV-WTA

In this chapter we present a transformation from m-wta to tv-wta. As before, the corresponding
monoid structure needs to be constructed first. The monoid is able to output operations as
weights and evaluates those with the help of a specially designed homomorphism. After that,
the construction of the corresponding automaton is straightforward.

As result of this chapter, we prove the following theorem.

Theorem 4.0.1 Let Σ be a finite ranked alphabet, A an m-monoid, and L : TΣ→ A a weighted
tree language. If there is an m-wta M over Σ and A such that ¹Mº= L, then there is a tv-wta
NM over Σ and DA such that ¹NMº= L.
DA is the tv-monoid from Construction 4.1.2 and NM is the tv-wta from Construction 4.2.1.

The theorem is a direct consequence of Theorem 4.2.4 at the end of the chapter.

4.1 Construction of the TV-Monoid

Consider an m-wta. At every transition, an operation on A is applied to the values calculated
for the successors. In order to shift the evaluation of the run to a global level, operations are
not evaluated, but just remembered. It comes to mind to use the operations as weights for
the tv-wta. Hence, the carrier set of the tv-monoid which is to be constructed is the set of all
operations on A. There are nullary functions mapping the empty tuple to an element in A.
These can be considered as elements from A and we have A⊆ Ops(A).

As before, an appropriate addition �: Ops(A)→ Ops(A) needs to be defined. The valuation
function handles trees over operation symbols. It comes to mind that using the homomorphism
on the term algebra, denoted by hϕ, does the job for well-structured, ranked trees. If the
formalism produces ‘invalid’ trees, these are mapped to 0. Later on, we show that these cases
are not of interest.

Note that Ops(A) can also be considered as a ranked alphabet. Hence, it is possible to build
ranked trees over operations interpreted as symbols. We present the following example to
illustrate the different viewpoints of well-formed expressions.

Example 4.1.1 Refer to Figure 4.1 for a visualization of different possibilities to interpret the
operation symbols. The difference between (a) and (c) is clear from the notation, whereas
(b) and (c) look identical, but have a different meaning.

The type of the symbols is clear from the context. A clear distinction is not needed for
understanding. Hence, we refrain from introducing distinct symbols to simplify the notation.©

With this difference in mind, it is easier to understand the construction. Recall that every
m-monoid can easily be converted into an absorptive one [FSV12, p. 245]. The following
construction yields a tv-monoid according to the intuition given at the beginning of this
section.
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+

5×

32
(a) symbols

in a tree

⇐⇒ +(×(2,3), 5)
(b) tree as string

of symbols

hϕ
7→ +(×(2,3), 5) = 11

(c) functions

Figure 4.1: The different interpretations of operation symbols

Construction 4.1.2 Given an absorptive m-monoid A= (A,+, 0,Ω), we construct the corre-
sponding tv-monoid, denoted by DA, as follows: DA = (Ops(A),�, 0(0), Val).

We define

�: Ops(A)×Ops(A)→ Ops(A)

(ω(k)1 ,ω(l)2 ) 7→ω
(m) : Am→ A

(a1, . . . , am) 7→ω1(a1, . . . , ak) +ω2(a1, . . . , al)

where m=max{k, l}. Val is defined for every ξ ∈ T u
Ops(A) as

Val(ξ) =







ξ if ξ ∈ Ops(A)
hϕ(ξ) if ξ ∈ TOps(A) \Ops(A)
0(0) if ξ ∈ T u

Ops(A) \ TOps(A)

where hϕ : TOps(A)→ (A,ϕ) is the unique Ops(A)-homomorphism with ϕ : Ops(A)→ Ops(A)
being the identity function, i.e. ϕ(ω) = ω for every ω ∈ Ops(A). The homomorphism is
unique as the term-algebra is initial in the class of all Ops(A)-algebras (cf. Section 2.1). ©

Ops(A) is considered as a ranked alphabet to build trees. The function ϕ uses this ranked
alphabet as its domain and maps the symbols to the actual functions. Since we do not
distinguish between the symbol and the function, ϕ is the identity mapping, but it needs to
be strictly regarded as mapping from symbols to the corresponding functions in A.

Furthermore, note that the local calculations of the original m-wta are partly encoded in
the homomorphism in the valuation function which is evaluated on a global level. In order to
proceed, we show that the construction yields a valid tv-monoid with the following lemma.

Lemma 4.1.3 DA (Construction 4.1.2) is a tv-monoid.

PROOF. Note that A⊆ Ops(A) as the set of nullary operations is isomorphic to A and especially
0(0) ∈ Ops(A). We show that (Ops(A),�, 0(0)) is a commutative monoid.
� only generates elements in Ops(A): This can easily be seen from the definition as the

result of � is another operation on A.
0(0) is neutral element: For every k ∈ N and ω(k) ∈ Opsk(A) it is clear that 0(0) �ω(k) =

ω(k) =ω(k) � 0(0) as k =max{k, 0} for all k ∈ N and (A,+, 0) is a monoid with 0 as neutral
element and thus ω(a1, . . . , ak) + 0() = 0() +ω(a1, . . . , ak) =ω(a1, . . . , ak).
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4.2 Construction of the TV-WTA

Associativity: For every ω(k)1 , ω(l)2 , ω(n)3 ∈ Ops(A), m = max{k, l, n}, and a1, . . . , am ∈ A it
holds that

((ω1 �ω2)�ω3)(a1, . . . , am) = (ω1(a1 . . . , ak) +ω2(a1, . . . , al)) +ω3(a1, . . . , an)
=ω1(a1 . . . , ak) + (ω2(a1, . . . , al) +ω3(a1, . . . , an))

(associativity of +)

= (ω1 � (ω2 �ω3))(a1, . . . , am)

In addition, we need to show the following:

• For every ω ∈ Ops(A) : Val(ω) =ω. This holds by definition of Val.

• For every ξ ∈ T u
Ops(A) which is not 0-free, Val(ξ) = 0(0). This follows directly from either

ξ= 0(0), from A being an absorptive m-monoid, or ξ ∈ T u
Ops(A) \ TOps(A). �

Observation 4.1.4 From the definition of � it is easy to see that a1 � a2 = a1 + a2 for every
a1, a2 ∈ A.

Using this observation, we will not explicitly distinguish between � and + on elements from
A. The used addition is clear from the context.

4.2 Construction of the TV-WTA

Recall the definition of the semantics for tv-wta from Section 2.4. The local weight of every
transition is collected in a tree over the carrier set. This corresponds exactly to the intuition
not to apply the functions directly, but track them for later evaluation. No change is needed
in the automaton itself. The evaluation of the symbols is done globally by the valuation
function.

Hence, the following construction changes only the interpretation of the formalisms:

Construction 4.2.1 Given an m-wta M = (Q,δ, F) over Σ and A, we can construct the
corresponding tv-wta NM = (Q,µ, F) over Σ and DA by letting µ= δ. ©

As the definitions of the two automaton structures are identical, it is clear that the construction
yields a well-defined automaton. Although the transition functions are identical, we denote
the transition function of the tv-wta by µ.

Furthermore, since the set of states is identical, the set of runs for each automaton is equal
as well.

Observation 4.2.2 Recall that δ = (δσ | σ ∈ Σ) where δσ : Qk ×Q → Ω(k) for every σ ∈ Σ
and k = rk(σ). Hence, µ(ξ, r) ∈ TOps(A) for all ξ ∈ TΣ and r ∈ RQ as all transitions return a
function of the correct arity.

As hϕ(ω) =ω for all ω ∈ Ops0(A), this observation enables us to ignore the case distinction
of Val and we will hereafter assume Val= hϕ.

In the following let M = (Q,δ, F) be an m-wta and NM = (Q,µ, F) the corresponding tv-wta.
As mentioned before there is a close connection between calculating the weights of an

m-wta and the evaluation of the tree of function symbols with the homomorphism. This is
formalized in the following lemma.
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Lemma 4.2.3 The following holds for every ξ ∈ TΣ, w ∈ pos(ξ), and r ∈ RQ(ξ):

δ(ξ, r, w) = hϕ(µ(ξ, r)|w)

PROOF. We will show this claim by well-founded induction on the positions of ξ:
Let w ∈ pos(ξ), σ = ξ(w), and k = rk(σ). Assume that the claim holds for all positions

wi ∈ pos(ξ) where i ∈ [k].

δ(ξ, r, w) = δσ(r(w1) . . . r(wk), r(w))(δ(ξ, r, w1), . . . ,δ(ξ, r, wk))
= µσ(r(w1) . . . r(wk), r(w))(hϕ(µ(ξ, r)|w1), . . . , hϕ(µ(ξ, r)|wk)) (I.H.)

= hϕ(µ(ξ, r)|w) �

The following theorem proves the correctness of Construction 4.2.1 and concludes the
construction in this direction.

Theorem 4.2.4 ¹Mº= ¹NMº.

PROOF. For every ξ ∈ TΣ

¹Mº(ξ) =
∑

r∈RQ(ξ)
r(ε)∈F

δ(ξ, r,ε) (Definition 2.3.7)

=
∑

r∈RQ(ξ)
r(ε)∈F

hϕ(µ(ξ, r)|ε) (Lemma 4.2.3)

=
∑

r∈RQ(ξ)
r(ε)∈F

Val(µ(ξ, r)|ε) (Observation 4.2.2)

= ¹NMº (Definition 2.4.6)

�

The shown transformation can be understood as a different point of view. Instead of
evaluating the functions when they are generated by the automaton, the operations are stored
first and applied after the run completed.
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5 Logics

In this chapter the logics over tv-monoids and m-monoids are introduced based on the general
notion of mso logic. Preliminary lemmas and definitions are given to simplify notation and
application of general results. In order to evaluate tv-mso formulas, a special tv-monoid is
needed which enables to model conjunction by a special ‘multiplication’.

The introduction of m-expressions contrasts tv-mso to a logic which differs in syntax. M-
expressions are closely related to m-wta and the Büchi/Elgot theorem can also be shown for
weighted tree languages recognizable by m-wta and definable by m-expressions [FSV12].

Throughout this chapter let Σ be a finite ranked alphabet.

5.1 General

In this section we recall the standard definition of mso formulas as in the classical notion (cf.
[GS97]) and prepare some results applying to both extended logics which will be introduced
later.

Definition 5.1.1 The set of all first order and second order variables, denoted by X , contains
the countably infinite set of first order variables X1 ⊂ X , usually denoted by small letters
from the end of the alphabet, e.g. x , y, z, x1, x2, . . ., and the countably infinite set of second
order variables X2 ⊂ X , usually denoted by capital letters from the end of the alphabet, e.g.
X , Y, Z , X1, X2, . . ., such that X = X1 ∪̇X2.

A finite set of variables is usually denoted by V ⊂ X where V1 = V ∩X1, V2 = V ∩X2 and
V = V1 ∪̇ V2. �

First order variables are used to address objects, e.g. positions in a tree, whereas second
order variables represent sets of objects.

Definition 5.1.2 The syntax of monadic second order logic over Σ is defined by the following
EBNF rules

ϕ ::= labelσ(x) | edgei(x , y) | x ∈ X | ¬ϕ | ϕ∧ϕ | ∀x .ϕ | ∀X .ϕ

where ϕ is the non-terminal, σ ∈ Σ, i ∈ [maxrk(Σ)], x , y ∈ X1, and X ∈ X2.
The set of all mso formulas over Σ is denoted by MSO(Σ). �

We define the following macros for mso formulas ϕ,ψ ∈ MSO(Σ), x , y ∈ X1, and X , Y ∈ X2:

• ψ1∨ψ2 = ¬(¬ψ1∧¬ψ2)

• ∃x .ψ= ¬∀x .¬ψ

• ∃X .ψ= ¬∀X .¬ψ.
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5 Logics

• ψ1⇒ψ2 = ¬ψ1∨ψ2

• ψ1⇔ψ2 = (ψ1∧ψ2)∨ (¬ψ1∧¬ψ2)

• (x = y) = ∀Z .(x ∈ Z⇔y ∈ Z)

• (x 6= y) = ¬(x = y)

• (X = Y ) = ∀z.(z ∈ X⇔z ∈ Y )

• (x /∈ X ) = ¬(x ∈ X )

Note that disjunction and existential quantification are left out of the syntactical definition
intentionally, as they can be modeled as macros by conjunction and universal quantification
which avoids problems in the weighted case.

The free variables of a formula can syntactically be determined as follows.

Definition 5.1.3 Given a formula ϕ ∈ MSO(Σ), we define the set of free variables occurring in
ϕ, denoted by free(ϕ), inductively on the structure of ϕ. For every σ ∈ Σ, i ∈ [maxrk(Σ)],
ϕ1,ϕ2,ψ ∈ MSO(Σ), x , y ∈ X1, and X ∈ X2

• free(labelσ(x)) = {x},

• free(edgei(x , y)) = {x , y},

• free(x ∈ X ) = {x , X },

• free(¬β) = free(β),

• free(ϕ1∧ϕ2) = free(ϕ1∨ϕ2) = free(ϕ1)∪ free(ϕ2),

• free(∀x .ψ) = free(ψ) \ {x},

• free(∀X .ψ) = free(ψ) \ {X }. �

Mso formulas describe properties of a tree: the label at a position, the edge relation, or
whether a position is in a set of positions. First order variables represent tree positions, second
order variables represent sets of tree positions. To evaluate a formula all free variables need
to be assigned to a position or a set of positions. This is done by a variable assignment which
maps a finite set of variables to positions in the tree. In the following, it is required that this
set of variables is always a superset of the free variables occurring in the formula which is
being evaluated.

Definition 5.1.4 Given a finite set of variables V and a tree ξ′ in TΣ, a (V,ξ′)-assignment is a
function ρ : V → pos(ξ′)∪P(pos(ξ′)) with the following property: For every x ∈ V1 we have
ρ(x) ∈ pos(ξ′), and for every X ∈ V2 it holds that ρ(X ) ⊆ pos(ξ′).

The update of a (V,ξ′)-assignment ρ with a first order variable x to w ∈ pos(ξ′), denoted
by ρ[x 7→ w], is defined as (V ∪ {x},ξ′)-assignment where for every v ∈ V ∪ {x}

ρ[x 7→ w](v) =
§

w if v = x ,
ρ(v) otherwise.
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The update of a (V,ξ′)-assignment ρ with a second order variable X to W ⊆ pos(ξ′), denoted
by ρ[X 7→W ], is defined as (V ∪ {X },ξ′)-assignment where for every v ∈ V ∪ {X }

ρ[X 7→W ](v) =
§

W if v = X ,
ρ(v) otherwise. �

The variables can also be marked ‘in the tree’ by handling them as an extension to the
alphabet. A variable assignment can then be represented by a tree over this new extended
alphabet. For each position a label is chosen which represents the label of the original tree
together with the first order variables assigned to this position and the second order variables
which are assigned to a set including the current position by the variable assignment.

Definition 5.1.5 Let V be a finite set of variables. Then we define the extended ranked
alphabet, denoted byΣV , asΣV = Σ×P(V) and for everyσ ∈ Σ and V ⊆ V we set rk((σ, V )) =
rk(σ). �

With the help of this extended ranked alphabet it is possible to assign a first order variable
to two distinct positions in the tree. This contradicts the interpretation of a first order variable.
Hence, we want to disallow such trees, formalized as follows:

Definition 5.1.6 Let V be a finite set of variables. A tree ξ in TΣV
is called valid if for every

first order variable x ∈ V1 there is exactly one position w ∈ pos(ξ) such that x occurs in the
second component of ξ(w).

The set of all valid trees in TΣV
is denoted by T v

ΣV
. A tree which is not valid is called

invalid. �

As suggested earlier, variable assignments and valid trees over ΣV correspond to each other.
Each symbol in the tree can be extended by the variables assigned to the position. In the
other direction, each first order variable can be assigned to the unique position of the tree
where it occurs coded in the label, whereas second order variables are assigned to the set of
positions of their occurrences (including the empty set).

Definition 5.1.7 Given a finite set of variables V, a tree ξ ∈ T v
ΣV

corresponds to a pair (ξ′,ρ)
of a tree ξ′ ∈ TΣ and a (V,ξ′)-assignment ρ if pos(ξ) = pos(ξ′) and for every position
w ∈ pos(ξ)

ξ(w) = (ξ′(w), {x ∈ V1 | w = ρ(x)} ∪ {X ∈ V2 | w ∈ ρ(X )}). �

We can identify ξ and the corresponding (ξ′,ρ) as there is a one-to-one correspondence
between a valid tree and the corresponding pair. This allows to lift Definition 5.1.4 to ξ and
for a position w ∈ pos(ξ′) and first order variable x ∈ X1 we write ξ[x 7→ w] and refer to
the tree (ξ′,ρ[x 7→ w]). The tree ξ[X 7→W ] is defined very similar for every second order
variable X and set of position W .

Note that since Σ; = Σ we have that every tree ξ′ ∈ TΣ is also in T v
Σ;

and can be considered
as a tree with an (;,ξ′)-assignment. Hence, even trees over ranked alphabets which are not
extended can be equipped with variables.

With the help of the previous considerations the semantics of mso can be defined in the
usual way:
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Definition 5.1.8 Let ϕ ∈ MSO(Σ), V be a finite set of variables such that V ⊇ free(ϕ), and
ξ = (ξ′,ρ) ∈ T v

ΣV
. ξ satisfies ϕ, denoted by ξ � ϕ, is defined by the relation � on the structure

of ϕ. For every σ ∈ Σ, i ∈ [maxrk(Σ)], ϕ1,ϕ2,ψ ∈ MSO(Σ), x , y ∈ X1, and X ∈ X2

ξ � labelσ(x) if ξ′(ρ(x)) = σ,

ξ � edgei(x , y) if ρ(y) = ρ(x)i,
ξ � x ∈ X if ρ(x) ∈ ρ(X ),
ξ � ¬ψ if ξ 6�ψ,

ξ � ϕ1∧ϕ2 if ξ � ϕ1 and ξ � ϕ2,

ξ � ∀x .ψ if for all positions w ∈ pos(ξ) it holds that ξ[x 7→ w] �ψ,

ξ � ∀X .ψ if for all subsets of positions W ⊆ pos(ξ) it holds that ξ[X 7→W ] �ψ.

The set of all trees satisfying ϕ, denoted by LV(ϕ), is defined as

LV(ϕ) = {ξ ∈ T v
ΣV
| ξ � ϕ}.

We call LV(ϕ) the tree language of ϕ. �

Example 5.1.9 The following formula determines whether the free variable x is assigned to
the root of a tree:

root(x) = ¬∃y.
∨

i∈[maxrk(Σ)]
edgei(y, x)

Note that the disjunction is only finite as the maximal rank of a finite alphabet is always finite.
Clearly, free(root(x)) = {x}.

It is easy to realize that ξ[x 7→ ε] ∈ L{x}(root(x)) for every ξ ∈ TΣ{x} , whereas for x being
associated with positions other than the root, this is not the case, i.e. ξ[x 7→ w] /∈ L{x}(root(x))
for every w ∈ pos(ξ) \ {ε}. ©

5.2 PTV-Monoids

In this section we prepare the definition of the semantics of tv-mso (Section 5.3). A tv-mso
formula defines a weighted tree language, i.e. every tree is mapped to a value of a tv-monoid.
Hence, we need to interpret the predicates with the help of elements and operations of
the monoid. Intuitively, disjunction can be interpreted by the sum of the monoid. This
interpretation is very similar to resolving the nondeterminism in the automaton case and
behaves nicely with the neutral element 0 which is interpreted as ‘false’.

The interpretation of the formula ‘true’ as well as the conjunction can not intuitively be
modeled in a tv-monoid. Hence, the monoid has to be extended in order to provide tv-mso
with an intuitive possibility to cope with conjunction. A ‘multiplication’ and a one element
are added to the monoid.

This extended tv-monoid and associated properties are recalled in this chapter based on
[DGMM11, Section 4] together with examples to illustrate the concept.

Definition 5.2.1 A product tree valuation monoid (for short: ptv-monoid) is a tuple D =
(D,+,�, 0, 1,Val) consisting of a tv-monoid (D,+, 0, Val), an operation �: D2 → D, and an
element 1 ∈ D satisfying the following properties:
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{3} � Val
�
{1}

{2}

�

= {3 1 2} 6= ;= Val
�
{3} � {1}

{2}

�

Figure 5.1: Dpos is not left-multiplicative

• 0 � d = d � 0= 0 for every d ∈ D,

• 1 � d = d � 1= d for every d ∈ D,

• Val(ξ) = 1 for every ξ ∈ T u
D where ξ(w) = 1 for every w ∈ pos(ξ). �

Note that we changed the order of the components in the tuple compared to [DGMM11,
Definition 4.1] to emphasize the included sub monoid and use consistent notation throughout
this thesis.

The operation � is very similar to the multiplication in the semiring weighted case, although
it does not require any other properties. This is why we refer to the operation � as (pseudo-)
multiplication.

There are different properties which are needed in order to show the recognizability of
tv-mso [DGMM11, Theorem 5.5]. These properties are needed for the transformation of the
logics (Chapter 6 and 7) and are introduced in the following:

Definition 5.2.2 A ptv-monoid D= (D,+,�, 0, 1,Val) is called

• left-�-distributive if d � (d1 + d2) = (d � d1) + (d � d2) for all d, d1, d2 ∈ D;

• left-multiplicative if for every d ∈ D and ξ ∈ T u
D we have that d �Val(ξ) = Val(ξd), where

ξd is the tree such that pos(ξ) = pos(ξd) and ξd(ε) = d � ξ(ε) and for every other
position the value is equal;

• left-distributive if it is left-�-distributive and left-multiplicative.

In the following, let D= (D,+,�, 0, 1,Val) denote a ptv-monoid if not stated otherwise.

Example 5.2.3 We extend the tv-monoid Dbool from Example 2.4.2 to a ptv-monoid

Dbool = ({0, 1}, max,min, 0,1, Val).

The additional properties needed for Dbool being a ptv-monoid can be checked easily. Since
max and min behave nicely with respect to 0 and 1, this structure is left-�-distributive.
Furthermore, the valuation function multiplies the values in the tree which is, considering
only 0 and 1, the same as taking the minimum. Since both operations are commutative the
ptv-monoid is left-multiplicative and thus, left-distributive. ©

Example 5.2.4 The tv-monoid Dpos from Example 2.4.3 can be extended to the ptv-monoid

Dpos = (P((N+)∗),∪,�,;, {ε}, Val),

where �: P((N+)∗)×P((N+)∗)→ P((N+)∗) as follows for every P1, P2 ∈ P((N+)∗):

P1 � P2 = {w1w2 | w1 ∈ P1, w2 ∈ P2}.

It remains to show the following properties:
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• ; � P = ; for every P ∈ P((N+)∗): This is clear by definition of �.

• {ε} � P = P for every P ∈ P((N+)∗): {εw | w ∈ P}= P

• Val(ξ) = {ε} for every ξ ∈ T u
P((N+)∗)

where ξ(w) = {ε} for every w ∈ pos(ξ): This holds
true by definition of Val (c.f. Example 2.4.3).

It can be seen that Dpos is left-�-distributive. Note that it is not left-multiplicative. Refer to
the counterexample in Figure 5.1. ©

5.3 TV-MSO

In this section we define tv-mso and its semantics as in [DGMM11, Section 4] based on
[DG07] and [BG09].

The syntax of the logic is very similar to the syntax of unweighted mso. To include weights,
elements from the carrier set of the tv-monoid can be used as atomic formulas. Since negating
an arbitrary monoid element cannot be defined in an intuitive way, negation is restricted to
only occur in front of Boolean formulas, i.e. mso formulas. For reasons of recognizability,
second order universal quantification is not allowed on weighted formulas.

The syntax of tv-mso is formally defined in the following.

Definition 5.3.1 Given a finite ranked alphabet Σ and a tv-monoid D, the syntax of the
weighted monadic second order logic over Σ and the tv-monoid D is defined by the following
EBNF rules

β ::= labelσ(x) | edgei(x , y) | x ∈ X | ¬β | β ∧β | ∀x .β | ∀X .β

ϕ ::= d | β | ϕ∨ϕ | ϕ∧ϕ | ∃x .ϕ | ∀x .ϕ | ∃X .ϕ

where β and ϕ are non-terminals, d ∈ D, σ ∈ Σ, i ∈ [maxrk(Σ)], x , y ∈ X1, and X ∈ X2.
Formulas created by β are called Boolean formulas, whereas those created by ϕ are weighted

formulas.
The set of all tv-mso formulas is identified with tvMSO(Σ,D). �

Note that Boolean formulas follow the structural definition of mso formulas. Recall the
macros from Definition 5.1.2 where β ,β1, and β2 are Boolean formulas:

β1∨β2 = ¬(¬β1∧¬β2) ∃x .β = ¬∀x .¬β , ∃X .β = ¬∀X .¬β .

Hence, we can interpret every Boolean tv-mso formula also as mso formula, which will be
used later in the transformation from tv-mso to m-expressions (Chapter 6).

Definition 5.3.2 Given a formula ϕ ∈ tvMSO(Σ,D), the set of free variables occurring in
ϕ, denoted by free(ϕ), is defined inductively on the structure of ϕ. For every σ ∈ Σ,
i ∈ [maxrk(Σ)], d ∈ D, Boolean formula β , ϕ1,ϕ2,ψ ∈ tvMSO(Σ,D), x , y ∈ X1, and X ∈ X2:

• free(labelσ(x)) = {x},

• free(edgei(x , y)) = {x , y},

• free(x ∈ X ) = {x , X },
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• free(d) = ;,

• free(¬β) = free(β),

• free(ϕ1∧ϕ2) = free(ϕ1∨ϕ2) = free(ϕ1)∪ free(ϕ2),

• free(∀x .ψ) = free(∃x .ψ) = free(ψ) \ {x},

• free(∀X .ψ) = free(∃X .ψ) = free(ψ) \ {X }. �

Note that the free variables are determined very similar to mso formulas and simply require
the special case for handling values of D.

In the following we recall some classes of tv-mso formulas. These classes restrict weighted
formulas on a syntactical level. Especially conjunction and universal quantification are limited,
closely related to the modeling capabilities of the tv-monoid fragments (c.f. Definition 5.2.2).

Definition 5.3.3 A formula ϕ ∈ tvMSO(Σ,D) is

• an almost Boolean formula if it only consists of finitely many conjunctions and disjunc-
tions of Boolean formulas or values of D;

• called ∀-restricted if for every sub-formula ∀x .ψ occurring in ϕ the sub formula ψ is
almost Boolean;

• strongly ∧ -restricted if for all sub-formulas ψ1∧ψ2 occurring in ϕ one of the following
holds:

– ψ1 is Boolean or ψ2 is Boolean,

– ψ1 and ψ2 are almost Boolean;

• ∧ -restricted if for all sub-formulas ψ1∧ψ2 occurring in ϕ one of the following holds:

– ψ1 is almost Boolean,

– ψ2 is Boolean. �

Note that every strongly ∧ -restricted formula is also ∧ -restricted, since every Boolean formula
is also almost Boolean.

Although the syntax of tv-mso is defined for arbitrary tv-monoids, the semantics of a formula
is only defined for ptv-monoids, which are denoted by D (refer to Section 5.2). Hence, only
formulas over such ptv-monoids need to be considered. We keep this difference in definition
to keep the notation closely related to the original paper [DGMM11].

As already mentioned in Section 5.2, the semantics of ‘false’ is modeled by 0 and disjunction
as well as existential quantification are interpreted by the sum of the monoid. The value ‘true’
is modeled by the value 1 and the ‘multiplication’ of the ptv-monoid is used for conjunction.
First order universal quantification is evaluated with the help of the valuation function as it
effects all nodes of a tree.

Formally, the semantics of tv-mso is defined in the following:
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Definition 5.3.4 Letϕ ∈ tvMSO(Σ,D) and V be a finite set of variables, such that V ⊇ free(ϕ).
We define the semantics of ϕ with respect to V as the weighted tree language ¹ϕºV : TΣV

→ D.
It is the function which assigns 0 to all invalid trees and is defined inductively on the structure
of ϕ as follows. For valid trees ξ = (ξ′,ρ) ∈ T v

ΣV
and every weighted formula ϕ1,ϕ2,ψ,

Boolean formula β , d ∈ D, variables x , y ∈ X1, X ∈ X2, σ ∈ Σ, and i ∈ [maxrk(Σ)] we define:

¹labelσ(x)ºV(ξ) =
§

1 if ξ′(ρ(x)) = σ
0 otherwise

¹edgei(x , y)ºV(ξ) =
§

1 if ρ(y) = ρ(x)i
0 otherwise

¹x ∈ XºV(ξ) =
§

1 if ρ(x) ∈ ρ(X )
0 otherwise

¹¬βºV(ξ) =
§

1 if ¹βºV = 0
0 otherwise

¹dºV(ξ) = d
¹ϕ1∨ϕ2ºV(ξ) = ¹ϕ1ºV(ξ) + ¹ϕ2ºV(ξ)
¹ϕ1∧ϕ2ºV(ξ) = ¹ϕ1ºV(ξ) � ¹ϕ2ºV(ξ)

¹∃x .ϕºV(ξ) =
∑

w∈pos(ξ)
¹ϕºV∪{x}(ξ[x 7→ w])

¹∃X .ϕºV(ξ) =
∑

W⊆pos(ξ)
¹ϕºV∪{X }(ξ[X 7→W ])

¹∀X .βºV(ξ) =
§

1 if ¹βºV∪{X }(ξ[X 7→W ]) = 1 for every W ⊆ pos(ξ)
0 otherwise

¹∀x .ψºV(ξ) = Val(ξ[ψ])) where the tree ξ[ψ] ∈ T u
D is defined

for every w ∈ pos(ξ) as pos(ξ) = pos(ξ[ψ]) and

ξ[ψ](w) = ¹ψºV∪{x}(ξ[x 7→ w])

�

We write ¹ϕº instead of ¹ϕºfree(ϕ) as an abbreviation. We cite [DGMM11, p. 41] stating that
¹ϕº= ¹ϕºV for every V ⊇ free(ϕ).

Note that we have changed the notation in the case of the universal first order quantification.
In the original paper [DGMM11, page 41], the authors used ξD instead of ξ[ψ]. We changed
this notation in order to associate the tree with the formula responsible to generate the values.
It also gives an intuition of the applied definition.

Furthermore, note that Boolean formulas are evaluated exactly as in the mso case. This
can be seen with respect to the definitions of the multiplication � and the valuation function.
Both respect the 1 of the ptv-monoid as ‘neutral element’.

The syntactical restrictions of formulas also allow for semantical simplifications. A formula
only consisting of finitely many disjunctions, conjunctions and values can be represented as
a step function, i.e. it returns only finitely many values. These are associated with certain
Boolean properties. This can be formalized as follows based on [DGMM11, Definition 5.8 &
Lemma 5.11] and similar to [FSV12, Lemma 5.8].
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Lemma 5.3.5 For every almost Boolean formula ϕ ∈ tvMSO(Σ,D) we can effectively construct
a sequence of pairs (d1,ϕ1), . . . , (dn,ϕn) such that free(ϕ) =

⋃

i∈[n] free(ϕi) and

¹ϕºV =
∑

i∈[n]
di � 1LV (ϕi),

where d1, . . . , dn ∈ D, ϕ1, . . . ,ϕn ∈ MSO(Σ), and (LV(ϕi))i∈[n] are recognizable tree languages
which form a partition of T v

ΣV
for every V ⊇ free(ϕ). The requirement of LV(ϕi) forming a

partition of T v
ΣV

is called partition property.
The sequence (d1,ϕ1), . . . , (dn,ϕn) is called step function and denoted by step(ϕ).

PROOF. We will construct the step function explicitly inductively on the structure of the
formula. It takes an almost Boolean formula ϕ and returns a sequence of values from D and
mso formulas.
ϕ = d for some d ∈ D: step(ϕ) = (d,∃x .root(x)).
ϕ = β for some Boolean formula β ∈ tvMSO(Σ,D): step(ϕ) = (1,β), (0,¬β)
ϕ = ϕ1{∨∧}ϕ2 for almost Boolean formulas ϕ1,ϕ2 ∈ tvMSO(Σ,D) which are not both

Boolean: Let step(ϕ1) = (ai ,ψ
1
1), . . . , (an,ψ1

n) and step(ϕ2) = (b1,ψ2
1), . . . , (bm,ψ2

m). Then

step(ϕ) = c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm,

where for all i ∈ [n] and j ∈ [m] we have that ci j = (ai{+�}b j ,ψ
1
i ∧ψ

2
j ).

It is clear to see that no additional free variables are introduced. Furthermore, the semantic
equivalence and the partitioning property hold in the first two cases by definition. Hence, we
only consider the last case. Assume that step(ϕ1) and step(ϕ2) have all desired properties.
As the recognizable step functions form partitions of T v

ΣV
it is clear that the conjunctive

connection of all of these partitions is a partition of T v
ΣV

again.
Hence the values inside the sums are only non-zero in a specific combination of i and j,

denoted by iξ and jξ, and we can conclude without needing distributivity:

¹ϕºV(ξ) = ¹ϕ1ºV(ξ){+�}¹ϕ2ºV(ξ)

=
�

∑

i∈[n]
ai � 1LV (ψ1

i )

�

(ξ){+�}
�

∑

j∈[m]
b j � 1LV (ψ2

j )

�

(ξ)

=
�

∑

i∈[n]
(ai � 1LV (ψ1

i )
)(ξ)

�

{+�}
�

∑

j∈[m]
(b j � 1LV (ψ2

j )
)(ξ)

�

= aiξ{
+
�}b jξ

=
�

∑

i∈[n]

∑

j∈[m]
(ai{+�}b j) � 1LV (ψ1

i )∩LV (ψ2
j )

�

(ξ) (Partition)

=
�

∑

i∈[n]

∑

j∈[m]
(ai{+�}b j) � 1LV (ψ1

i ∧ψ
2
j )

�

(ξ) �

As completion for this section we present two examples illustrating the modeling of weighted
tree languages with the help of tv-mso formulas.

Example 5.3.6 Recall the tv-wta from Example 2.4.7. It recognizes a weighted tree language
over the alphabet Σ= {σ(2),α(0),β (0)} which assigns 1 to trees labeled with α at every leaf.

The same weighted tree language can be defined by a tvMSO(Σ,Dbool)-formula as follows:

ϕα = ∀x .¬labelβ(x)
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It is easy to see that the formula inside the scope of the universal quantification is Boolean
and hence, ϕα is ∀-restricted and, since there is no conjunction, strongly ∧ -restricted. ©

Example 5.3.7 Recall the automaton from Example 2.4.8. It recognizes a weighted tree
language which results in the positions of the pattern σ(α,α) in trees over the alphabet
Σ = {σ(2),γ(1),α(0)}. The same language can be defined by a more complicated formula. We
first introduce a Boolean tv-mso formula with free variables X1, X2, and xσ. The formula
describes a path from the root of a tree to a node identified by the variable xσ. Intuitively,
this variable is the σ-occurrence The second order variable X1 marks that the path continues
in the first successor, the variable X2 symbolizes it to continue in the second successor.

path(X1, X2,xσ) =

∃x .
�

root(x)∧
�

(x ∈ X1)∨ (x ∈ X2)∨ (x = xσ)
��

∧∀x .
�

((x ∈ X1)⇒¬(x ∈ X2))∧ ((x ∈ X2)⇒¬(x ∈ X1))
�

∧∀x .
�

(x ∈ X1)⇒∃y.
�

edge1(x , y)∧ ((y ∈ X1)∨ (y ∈ X2)∨ (y = xσ))
�

∧ (x ∈ X2)⇒∃y.
�

edge2(x , y)∧ ((y ∈ X1)∨ (y ∈ X2)∨ (y = xσ))
��

We extend this Boolean tv-mso formula to a weighted one in the following way:

∃X1, X2,xσ, xα,1, xα,2.
�

labelσ(xσ)∧ labelα(xα,1)∧ labelα(xα,2)
∧edge1(xσ, xα,1)∧edge2(xσ, xα,2)
∧path(X1, X2, xσ)
∧∀x .((x ∈ X1)∧{1}
∨ (x ∈ X2)∧{2}

∨¬(x ∈ X1)∧¬(x ∈ X2)∧{ε})
�

A picture visualizing one variable assignment to a tree can be found in Figure 5.2. The
dotted line indicates the path from the root to the position marked by the variable xσ. The
first line quantifies over all variable assignments. The second and third line ensure that the
labels correspond to the intended meaning of the variables and that the two α-variables are
successors of the σ-variable (and thus, a pattern is detected). The fourth line checks for the
path property and the rest of the formula assigns the corresponding weights.

Note that only one occurrence of the pattern is detected with one assignment of the variables
X1, X2, xσ, xα,1, and xα,2.

The weighted existential quantification ensures that all patterns in the tree are found as
we combine all values using the set union of the tv-monoid. ©
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σ

σ

αα

σ

σ

αα

γ

α

X1

X2

xσ

xα,1 xα,2

Figure 5.2: Sample tree with variable assignment for Examples 5.3.7 and 5.4.6

5.4 M-Expressions

This section recalls the logic associated with m-monoids, called m-expressions, based on
[FSV12]. The logic differs from the classical mso logic. Among the familiar notions of
disjunction and existential quantification, the logic has two new predicates. The atom H(ω)
allows to apply a homomorphism to a tree-variable combination. This homomorphisms
evaluates a given tree by operations associated with the label and variables at every position.
The second new predicate is the guard operator . . Taking an unweighted mso formula ϕ
and an m-expression e as arguments, it evaluates e only if ϕ holds and assigns 0 otherwise.
This allows to check for certain properties in an unweighted environment.

Note that in the following syntactic definition disjunction and existential quantification are
represented by the summation symbols.

Definition 5.4.1 Given an m-monoid A, the syntax of the multioperator expressions over Σ
and A is defined by the following EBNF rules

e ::= H(ω) | (e+ e) |
∑

x e |
∑

X e | (ϕ. e),

where e is the non-terminal, ω is a ΣU -family of operations in A for some finite set U ⊂ X ,
ϕ ∈ MSO(Σ), x ∈ X1, and X ∈ X2.

The set of all m-expressions is identified with MExp(Σ,A). �

The free variables of a formula are similarly defined as in the mso case, but need one
special case to handle the atom H(ω).

Definition 5.4.2 Given a formula e ∈MExp(Σ,A), we define the set of free variables occurring
in e, denoted by free(e), inductively on the structure of e. For every ΣU -family ω, e1, e2, e′ ∈
MExp(Σ,A), ϕ ∈ MSO(Σ), x ∈ X1, and X ∈ X2,

• free(H(ω)) = U ,

• free(e1 + e2) = free(e1)∪ free(e2),

• free(
∑

x e′) = free(e′) \ {x},

• free(
∑

X e′) = free(e′) \ {X },

37



5 Logics

• free(ϕ. e′) = free(ϕ)∪ free(e′). �

One important part of m-expressions is the homomorphic evaluation of trees. The concept
of Σ-families of operations can be lifted to trees with variables. The following definition
ensures to be able to handle different sets of variables with the same family of operations, if
all ‘necessary’ variables are present.

Definition 5.4.3 Let A be an m-monoid, U ,V be two finite sets of variables with U ⊆ V and
ω be a ΣU -family of operations in A. Then the extension of ω to a ΣV -family, denoted by
ω[U   V], is defined as follows: For every σ ∈ Σ and subset W ⊆ V:

ω[U   V](σ,W ) =ω(σ,U∩W ) �

In words: we just drop ‘unwanted’ variables from the index of ω.
Given these ingredients the semantics of m-expressions can be defined straightforward. The

homomorphic evaluation is associated with the atom H(ω), whereas the guard-operation .
ensures properties, encoded in an mso formula, of the tree-variable combination before
evaluating the guarded part of the formula. Formally, this can be defined as follows:

Definition 5.4.4 Let e ∈MExp(Σ,A) and V be a finite set of variables such that V ⊇ free(e).
The semantics of e with respect to V is the weighted tree language ¹eºV : TΣV

→ A which is 0
for all invalid trees and inductively defined on the structure of e for valid trees as follows.
For every ΣU -family ω, e1, e2, e′ ∈MExp(Σ,A), ϕ ∈ MSO(Σ), x ∈ X1, and X ∈ X2

¹H(ω)ºV(ξ) = hω[U V](ξ),
¹e1 + e2ºV(ξ) = ¹e1ºV(ξ) + ¹e2ºV(ξ),

¹

∑

x e′ºV(ξ) =
∑

w∈pos(ξ)¹e′ºV∪{x}(ξ[x 7→ w]),

¹

∑

X e′ºV(ξ) =
∑

W⊆pos(ξ)¹e′ºV∪{X }(ξ[X 7→W ]),

¹ϕ. e′ºV(ξ) =
§

¹e′ºV(ξ) if ξ ∈ LV(ϕ)
0 otherwise

�

As before, we abbreviate ¹eºfree(e) with ¹eº and cite [FSV12, Lemma 3.8] showing that
¹eº= ¹eºV for every V ⊇ free(e).

The following two examples show how to model the already known weighted tree languages
with m-expressions. We thereby want to focus on the new atom H(ω) which can be used in
several ways to produce values or additionally check for certain properties using the fact that
the m-monoid is absorptive.

Example 5.4.5 Recall the m-monoid Abool from Example 2.3.3. In Example 2.3.8 an au-
tomaton is constructed over the alphabet Σ = {σ(2),α(0),β (0)} and Abool. This automaton
recognizes a weighted tree language assigning 1 to trees where all leaves are labeled by α
and 0 to all other trees. The same language can be defined by an m-expression in several
ways.

It is sufficient to use the atom H(ω), where

ωα = 1(0), ωβ = 0(0), ωσ =mul(2).
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These assignments correspond exactly to the one-state automaton from Example 2.3.8.
Another way of representing this weighted tree language is to use the guard operator:
∀x .¬labelβ(x).H(ω′), where

ω′α = 1(0), ω′β = 1(0), ω′σ =mul.

The homomorphism just produces the value 1 and the condition on the tree is checked by the
unweighted mso formula. ©

Example 5.4.6 Recall the m-monoid Apos from Example 2.3.4 which is used to recognize the
pattern σ(α,α) in trees over the alphabet Σ= {σ(2),γ(1),α(0),β (0)}. The same can be done
using an m-expression. We take the Boolean tv-mso formula from Example 5.3.7 which can
also be interpreted as mso formula. We define the Σ{X1,X2,xσ,xα,1,xα,2}-family of operations ω as
follows:

ω(α,;) = ε
(0), ω(α,{xα,1}) = ε

(0), ω(α,{xα,2}) = ε
(0),

ω(γ,;) = ε
(1), ω(γ,{X1}) = �

(1)
1 ,

ω(σ,;) = ε
(2), ω(σ,{X1}) = �

(2)
1 , ω(σ,{X2}) = �

(2)
2 ,

ω(σ,{xσ}) = ε
(2).

All other entries are mapped to ;(k) according to the rank of the symbol.
Then the following m-expression generates all positions of the pattern:

∑

X1

∑

X2

∑

xσ

∑

xα,1

∑

xα,2

�

labelσ(xσ)∧ labelα(xα,1)∧ labelα(xα,2)

∧edge1(xσ, xα,1)∧edge2(xσ, xα,2)

∧path(X1, X2, xσ)
�

.H(ω).

Reusing the sample tree in Figure 5.2 (page 37) illustrates the intuition of the homomor-
phism. ©
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In this chapter we describe the transformation of tv-mso formulas into m-expressions. Analo-
gously to the recognizability result for automata and tv-mso [DGMM11, Theorem 5.5], there
is a difference between strongly ∧ -restricted formulas and ∧ -restricted formulas. As said
before, strongly ∧ -restricted formulas can be considered as ∧ -restricted, but we separate
these cases as the transformation of the first is easier and enhances understanding of the
underlying process.

As in the case of automata the first step is to construct an appropriate m-monoid. After-
wards, the formulas can be transformed into an m-expression. The transformation is purely
syntactical, as the construction of the step function can also be done on a pure syntactical
level.

The findings of this chapter are summarized in the following theorem:

Theorem 6.0.1 Let Σ be a finite ranked alphabet, D be a ptv-monoid and L : TΣ → D a tree
language. Furthermore, let ϕ ∈ tvMSO(Σ,D) be a ∀-restricted tv-mso formula.

1. If ϕ is strongly ∧ -restricted and L = ¹ϕº, then there is an m-expression e ∈MExp(Σ,AD)
such that L = ¹eº.
AD is the transformation m-monoid from Construction 6.1.1 and e = t(ϕ) according to
Construction 6.1.2.

2. If D is left-multiplicative, ϕ is ∧ -restricted, and L = ¹ϕº, then there is an m-expression
e ∈MExp(Σ,AD) such that L = ¹eº.
AD is the transformation m-monoid from Construction 6.1.1 and e = t1(ϕ) according to
Construction 6.2.1.

The first part of the theorem is a direct consequence of Theorem 6.1.9. The second part
follows from Theorem 6.2.3.

6.1 Transforming strongly ∧ -restricted TV-MSO formulas

The following construction of an m-monoid is almost the same as in Construction 3.1.1, but
adds functions to generate single values. These are necessary, as ‘5’ could be a tv-mso formula,
which does not need the valuation function to be evaluated. Hence, a possibility to produce
single values needs to be added to the m-monoid.

Recall from Section 2.2 that we assume D ⊆ T u
D. Also recall from Construction 3.1.1 the

m-monoid AD corresponding to a tv-monoid D.

Construction 6.1.1 Let D = (D,+,�, 0, 1,Val) be a ptv-monoid. We construct the trans-
formation m-monoid AD = (T u

D,⊕, 0,Ω ∪ Ω′), where AD = (T u
D,⊕, 0,Ω) is the m-monoid

41



6 From TV-MSO to M-Expressions

corresponding to the tv-monoid D = (D,+, 0,Val) and Ω′ = {d(k) | d ∈ D, 0≤ k ≤maxrk(Σ)}.
For every d ∈ D, 0≤ k ≤maxrk(Σ), and a1, . . . , ak ∈ A we define

d(k)(a1, . . . , ak) =

�

d if 0 /∈ {a1, . . . , ak}
0(0) otherwise. ©

Note that the AD is absorptive and the additional operations do not invalidate any properties
required or proven in Construction 3.1.1.

The construction of the m-expression is based on the structure of the original formula.
Boolean formulas are modeled by the guard operator and an expression to produce the value
1. Values from the monoid can explicitly be generated by the corresponding functions and
disjunction as well as existential quantification can be modeled by the sum of the respective
monoids.

The transformation of conjunctions uses the fact that either one part of every conjunction
is a Boolean formula, i.e. an mso formula, and the operator � respects 1 and 0 as neutral
element and annihilating element, respectively. The second alternative (both parts are almost
Boolean) is handled through the step function construction.

The application of the valuation function (modeled by the universal first order quantifi-
cation) is simulated by a formula ensuring a certain variable assignment representing the
partitions of the step function as well as a homomorphism building the required tree over
monoid values and applying the valuation function at the top.

Construction 6.1.2 Let ϕ ∈ tvMSO(Σ,D) be a ∀-restricted and strongly ∧ -restricted formula.
We construct the corresponding formula t(ϕ) ∈MExp(Σ,AD) inductively on the structure of
ϕ as follows:

• For every Boolean formula β ∈ tvMSO(Σ,D): t(β) = β . t(1).

• For every d ∈ D: t(d) = H(ωd), where ωd is a Σ;-family such that for every σ ∈ Σ
with rk(σ) = k we have (ωd)σ = d(k).

For every ϕ1,ϕ2 ∈ tvMSO(Σ,D) which are not both Boolean formulas the following holds:

• t(ϕ1∨ϕ2) = t(ϕ1) + t(ϕ2).

• As ϕ = ϕ1∧ϕ2 is strongly ∧ -restricted one of the two following cases must hold:

– ϕ1 orϕ2 Boolean: W.l.o.g. we assumeϕ1 is Boolean: Then t(ϕ1∧ϕ2) = ϕ1 . t(ϕ2).

– ϕ1 and ϕ2 are almost Boolean, i.e. there are recognizable step functions, such that

step(ϕ1) = (a1,ψ1
1), . . . , (an,ψ1

n) step(ϕ2) = (b1,ψ2
1), . . . , (bm,ψ2

m)

and we set

t(ϕ1∧ϕ2) =
∑+

i∈[n]
j∈[m]
(ψ1

i ∧ψ
2
j ).H(ωi, j)

where, for every i ∈ [n] and j ∈ [m], the Σ-familyωi, j is defined such that for each
σ ∈ Σ we have (ωi, j)σ = (ai � b j)(rk(σ)). The finite summation of the m-expressions
is abbreviated by

∑+.
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For every ψ ∈ tvMSO(Σ,D) which is not a Boolean formula the following holds:

• t(∃x .ψ) =
∑

x t(ψ)

• t(∃X .ψ) =
∑

X t(ψ)

• As ϕ = ∀x .ψ is ∀-restricted, ψ is almost Boolean and we can compute step(ψ) =
(d1,ψ1), . . . , (dn,ψn). Let U = {z, X1, . . . , Xn} and ω be a ΣU -family such that for every
U ⊆ U , σ ∈ Σ, and k = rk(σ)

ω(σ,U) =

¨

top(k)dU
if z /∈ U ,

val(k)dU
if z ∈ U ,

where dU =
∑

i∈[n]
X i∈U

di .

Based on an idea from [DG07, Lemma 4.4] and [DG09, Lemma 5.4] we define, similarly
to the proof in [FSV12, Lemma 5.10],

t(∀x .ψ) =
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.H(ω).

Note that the formula ensures that at every position there is exactly one X i , due to the
recognizable step function forming a partition. ©

Clearly, the construction yields an m-expression for every tv-mso formula as during the process
only permitted operations were used in order to construct the expression.

The following intermediate lemmas aim to provide results in order to show the correctness
of the construction, i.e. that ¹ϕº= ¹t(ϕ)º.

Firstly, we prove that the Σ;-families ωd evaluate all trees to the respective value d.

Lemma 6.1.3 For every d ∈ D, finite set of variables V, and tree ξ ∈ T v
ΣV

we have that
¹H(ωd)ºV(ξ) = d.

PROOF. We prove this claim by induction on ξ.
Let ξ= σ(ξ1, . . . ,ξk) for some k ∈ N, σ ∈ Σ(k)V , and ξ1, . . . ,ξk ∈ T v

ΣV
:

¹H(ωd)ºV(σ(ξ1, . . . ,ξk)) = hωd [;  V](σ(ξ1, . . . ,ξk))

= d(k)(hωd [;  V](ξ1), . . . , hωd [;  V](ξk))

= d(k)(d, . . . , d) = d �

Furthermore, we observe that the construction used in the case of transforming the conjunc-
tion of two almost Boolean formulas indeed results in the same weighted language. Although
this observation seems to use distributivity, this is not required as both step functions form
a partition on TΣ and the characteristic function 1LV (ψ1

i )∩LV (ψ2
j )

is only true for one specific
combination of i and j. Thus, distributivity is not needed.

Observation 6.1.4 For almost Boolean formulas ϕ1,ϕ2 ∈ tvMSO(Σ,D) and every finite set of
variables V ⊇ free(ϕ1)∪ free(ϕ2) with

step(ϕ1) = (a1,ψ1
1), . . . , (an,ψ1

n), step(ϕ2) = (b1,ψ2
1), . . . , (bm,ψ2

m),
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it holds for every ξ ∈ T v
ΣV

that

¹

∑+
i∈[n]
j∈[m]
(ψ1

i ∧ψ
2
j ).H(ωi, j)ºV(ξ) =

∑

i∈[n]
j∈[m]
(ai � b j) � 1LV (ψ1

i )∩LV (ψ2
j )
(ξ).

In order to prove the correctness of the construction of the universal first order quantification,
it needs to be shown that the built formula behaves in the way intended. Thus, the partitioning
property is exploited once more in order to argue that only one specific variable assignment
is generated and accepted by the guard operator.

Lemma 6.1.5 Let ϕ = ∀x .ψ ∈ tvMSO(Σ,D), ψ be almost Boolean, U = {X1, . . . , Xn}, V ⊇
free(ψ) ∪ {x} ∪̇ U , step(ψ) = (d1,ψ1), . . . , (dn,ψn), and ξ ∈ T v

ΣV
. Then there is exactly one

combination of W1, . . . , Wn ⊆ pos(ξ) such that

ζ= ξ[X1 7→W1, . . . , Xn 7→Wn] and

ζ ∈ LV

�

∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

PROOF. Firstly, we show that there is at least one such combination. It is clear to see that for
every i ∈ [n] the sets Wi = {w ∈ pos(ξ) | ξ[x 7→ w] ∈ LV(ψi)} satisfy this property.

Secondly, we show that there is not more than one combination. Assume there are two
different possibilities for the Wi . Then we have

ζ1 = ξ[X1 7→W 1
1 , . . . , Xn 7→W 1

n ],

ζ2 = ξ[X1 7→W 2
1 , . . . , Xn 7→W 2

n ], and

ζ1,ζ2 ∈ LV

�

∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.

As the combinations are not equal, there is at least one i ∈ [n] such that W 1
i 6=W 2

i and thus,
w.l.o.g. there is a w ∈W 1

i with w /∈W 2
i . Furthermore, as the step function forms a partition

of T v
ΣV

, there is a j 6= i such that w ∈W 2
j .

Since ζ1 and ζ2 satisfy the mso formula above, we can conclude that ξ[x 7→ w] ∈ LV(ψi)
and ξ[x 7→ w] ∈ LV(ψ j) which contradicts the partition property. �

The last lemma can be used to show yet another step: If the valuation function is not
applied, the homomorphism produces the same tree of values as the tv-mso formula in the
scope of the universal first order quantification.

Lemma 6.1.6 Let ϕ = ∀x .ψ ∈ tvMSO(Σ,D), ψ be almost Boolean, U = {X1, . . . , Xn}, V ⊇
free(ψ)∪ {x} ∪̇ U , step(ψ) = (d1,ψ1), . . . , (dn,ψn), and ξ ∈ T v

ΣV
. Then the following holds:

ξ[ψ] = ¹
∑

X1
. . .
∑

Xn

�

∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.H(ω′)ºV(ξ),

where ω′ is the ΣU -family defined for every U ⊆ U and σ ∈ Σ as ω′(σ,U) = top(rk(σ))dU
with

dU =
∑

i∈[n]
X i∈U

di .
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6.1 Transforming strongly ∧ -restricted TV-MSO formulas

PROOF. We prove this by using the partitioning property of the step function. Let w ∈ pos(ξ)
be an arbitrary position. We assume that ξ[x 7→ w] ∈ LV(ψ j) for some j ∈ [n]. Then the
following holds:

ξ[ψ](w) = ¹ψºV∪{x}(ξ[x 7→ w]) (Definition 5.3.4)

=
∑

i∈[n]
di � 1LV (ψi)(ξ[x 7→ w])

= d j (ξ[x 7→ w] ∈ LV(ψ j))

=
�

hω′[U V](ξ[X1 7→W1, . . . , Xn 7→Wn])
�

(w) (w ∈Wj , U = {X j}, Lemma 6.1.5)

=
�

¹H(ω′)ºV(ξ[X1 7→W1, . . . , Xn 7→Wn])
�

(w)

= ¹
∑

X1
. . .
∑

Xn

�

∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω′)ºV(ξ)(w) (Lemma 6.1.5)

The argumentation U = {X j} in the third-to-last equation refers to the topdU
-functions. By the

partitioning property of the step function, there is exactly one of the second order variables
X1, . . . , Xn at any position. �

It is now easy to conclude that the valuation of the same tree yields the same result:

Observation 6.1.7 Let ϕ = ∀x .ψ ∈ tvMSO(Σ,D), ψ be almost Boolean, V ⊇ free(ψ) ∪ {x},
step(ψ) = (d1,ψ1), . . . , (dn,ψn), and ξ ∈ T v

ΣV
. Then

Val(ξ[ψ]) = Val(¹
∑

X1
. . .
∑

Xn

�

∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω′)ºV(ξ))

as Lemma 6.1.6 proves the equality of the tree inside of the valuation function.

After building up the tree of values, the valuation function can be applied at the top of the
tree by marking the root with an additional variable z. Although this sounds intuitive, this
finding needs to be formalized in the following lemma.

Lemma 6.1.8 Let ϕ = ∀x .ψ ∈ tvMSO(Σ,D), ψ be almost Boolean, V ⊇ free(ψ) ∪ {x},
step(ψ) = (d1,ψ1), . . . , (dn,ψn), and ξ ∈ T v

ΣV
. Then

Val(¹
∑

X1
. . .
∑

Xn

�

∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω′)ºV(ξ))

= ¹
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω)ºV(ξ),

where ω is defined in Construction 6.1.1 and ω′ in Lemma 6.1.6.

PROOF. It is clear to see that Lemma 6.1.5 can be extended to the additional variable z as
there is only one root. Let U = {z, X1 . . . , Xn}.

Val(¹
∑

X1
. . .
∑

Xn

�

∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω′)ºV(ξ))

= Val(hω′[U\{z} V∪̇U\{z}](ξ[X1 7→W1, . . . , Xn 7→Wn])) (Lemma 6.1.5)

= Val(hω′[U\{z} V∪̇U](ξ[z 7→ ε, X1 7→W1, . . . , Xn 7→Wn]))
= hω[U V∪̇U](ξ[z 7→ ε, X1 7→W1, . . . , Xn 7→Wn])

= ¹
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω)ºV(ξ) �
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6 From TV-MSO to M-Expressions

Bringing all intermediate results together, we can prove the correctness of Construction 6.1.1
in the following theorem.

Theorem 6.1.9 Let ϕ ∈ tvMSO(Σ,D) be a ∀-restricted and strongly ∧ -restricted formula and
V ⊇ free(ϕ). Then ¹ϕºV = ¹t(ϕ)ºV .

PROOF. We show this claim by induction on the structure of the formula for every tree ξ ∈ T v
ΣV

.
ϕ = d for all d ∈ D:

¹ϕºV(ξ) = ¹dºV(ξ) = d
∗
= ¹H(ωd)ºV(ξ) = ¹t(ϕ)ºV(ξ),

where the equation marked with ∗ holds due to Lemma 6.1.3.
ϕ = β for a Boolean formula β ∈ tvMSO(Σ,D):

¹ϕºV(ξ) = ¹βºV(ξ)

=
§

1 if ξ ∈ LV(β)
0 otherwise (Definition 5.3.4)

=
§

¹H(ω1)ºV(ξ) if ξ ∈ LV(β)
0 otherwise (Lemma 6.1.3)

= ¹β .H(ω1)ºV(ξ) (Definition 5.4.4)

= ¹t(ϕ)ºV(ξ) (Construction 6.1.1)

ϕ = ϕ1∨ϕ2 for formulas ϕ1,ϕ2 ∈ tvMSO(Σ,D) which are not both boolean:

¹ϕºV(ξ) = ¹ϕ1∨ϕ2ºV(ξ)
= ¹ϕ1ºV(ξ) + ¹ϕ2ºV(ξ) (Definition 2.4.6)

= ¹t(ϕ1)ºV(ξ) + ¹t(ϕ2)ºV(ξ) (IH)

= ¹t(ϕ1) + t(ϕ2)ºV(ξ) (Definition 5.4.4)

= ¹t(ϕ)ºV(ξ) (Construction 6.1.1)

ϕ = ϕ1∧ϕ2 for formulas ϕ1,ϕ2 ∈ tvMSO(Σ,D): We consider the two cases from the
construction:

• W.l.o.g. ϕ1 is a Boolean formula and ϕ2 is not a Boolean formula. Then

¹ϕºV(ξ) = ¹ϕ1∧ϕ2ºV(ξ)
= ¹ϕ1ºV(ξ) � ¹ϕ2ºV(ξ) (Definition 5.3.4)

=
§

1 if ξ ∈ LV(ϕ1)
0 otherwise

ª

� ¹ϕ2ºV(ξ) (Definition 5.3.4)

=
§

¹ϕ2ºV(ξ) if ξ ∈ LV(ϕ1)
0 otherwise (Definition 5.2.1)

=
§

¹t(ϕ2)ºV(ξ) if ξ ∈ LV(ϕ1)
0 otherwise (I.H.)

= ¹ϕ1 . t(ϕ2)ºV(ξ) (Definition 5.4.4)

= ¹t(ϕ)ºV(ξ) (Construction 6.1.1)
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6.1 Transforming strongly ∧ -restricted TV-MSO formulas

• ϕ1 and ϕ2 are not Boolean, but almost Boolean where

step(ϕ1) = (a1,ψ1
1), . . . , (an,ψ1

n) step(ϕ2) = (b1,ψ2
1), . . . , (bm,ψ2

m).

Then

¹ϕºV(ξ) = ¹ϕ1∧ϕ2ºV(ξ)
= ¹ϕ1ºV(ξ) � ¹ϕ2ºV(ξ) (Definition 5.3.4)

= (
∑

i∈[n]
ai � 1LV (ψ1

i )
)(ξ) � (

∑

j∈[m]
b j � 1LV (ψ2

j )
)(ξ) (Lemma 5.3.5)

=
�

(
∑

i∈[n]
ai � 1LV (ψ1

i )
) � (

∑

j∈[m]
b j � 1LV (ψ2

j )
)
�

(ξ) (Definition 2.2.7)

=
�

∑

i∈[n]

∑

j∈[m]
(ai � b j) � 1LV (ψ1

i )∩LV (ψ2
j )

�

(ξ) (Partition)

= ¹
∑+

i∈[n]
j∈[m]

ψ1
i ∧ψ

2
j .H(ωi, j)ºV(ξ) (Lemma 6.1.4)

= ¹t(ϕ1∧ϕ2)ºV(ξ) (Construction 6.1.1)

= ¹t(ϕ)ºV(ξ)

ϕ = ∃x .ψ for some non-Boolean formula ψ ∈ tvMSO(Σ,D): By definition it holds that

¹ϕºV(ξ) = ¹∃x .ψºV(ξ)

=
∑

w∈pos(ξ)
¹ψºV∪{x}(ξ[x 7→ w]) (Definition 5.3.4)

=
∑

w∈pos(ξ)
¹t(ψ)ºV∪{x}(ξ[x 7→ w]) (Induction)

= ¹
∑

x t(ψ)ºV(ξ) (Definition 5.4.4)

= t(ϕ)V(ξ) (Construction 6.1.1)

ϕ = ∃X .ψ for some non-Boolean formula ψ ∈ tvMSO(Σ,D): This case is very similar to the
previous one. It follows the same steps, but uses subsets of positions for the second order
variable.
ϕ = ∀x .ψ for some non-Boolean formula ψ ∈ tvMSO(Σ,D). As ϕ is ∀-restricted, ψ is

almost Boolean and hence step(ψ) = (d1,ψ1), . . . , (dn,ψn).
We conclude the following:

¹ϕºV(ξ) = ¹∀x .ψºV(ξ)
= Val(ξ[ψ]) (Definition 5.3.4)

= Val(¹
∑

X1
. . .
∑

Xn

�

∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω′)ºV(ξ))
(Observation 6.1.7)

= ¹
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .
�
∧

i∈[n]
(x ∈ X i)⇔ψi

�

�

.H(ω)ºV(ξ)
(Lemma 6.1.8)

= ¹t(∀x .ψ)ºV(ξ) (Construction 6.1.1)

�
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6 From TV-MSO to M-Expressions

To illustrate the whole process, we present two examples. They are chosen rather simple
to emphasize the different cases of the construction.

Example 6.1.10 Let Σ= {σ(2),γ(1),α(0),β (0)} and Davg = (R,+, 0, Valavg) be the tv-monoid
from Example 3.2.3. We extend this tv-monoid with multiplication and 1 to the ptv-monoid
Davg = (R,+, ·, 0, 1,Valavg).

The following tvMSO(Σ,Davg)-formula counts twice the amount of α-labeled nodes:

∃x .labelα(x)∧2

We create the transformation m-monoid ADavg
= (T u

R,⊕, 0,Ω). Note that for every a ∈ R, Ω

contains the absorptive functions a(0), a(1), a(2). Every suitable argument combination where
no argument is zero is mapped to the respective value a.

The following steps are needed to transform this formula into an m-expression:

t(∃x .labelα(x)∧2) =
∑

x t(labelα(x)∧2)

=
∑

x labelα(x). t(2)

=
∑

x labelα(x).H(ω2)

where (ω2)σ = 2(2), (ω2)γ = 2(1), (ω2)α = 2(0), and (ω2)β = 2(0). ©

Example 6.1.11 Let Σ = {σ(2),γ(1),α(0)} and Davg be the ptv-monoid from the previous
example. We consider the slightly more complex tvMSO(Σ,Davg)-fomula

∀x .
�

(labelα(x)∧2)∨ (labelβ(x)∧4)∨ (labelγ(x)∧6)
︸ ︷︷ ︸

=ψ

�

,

which calculates the average of the weighted tree labels.
Transforming this into an equivalent m-expression results in the same m-monoid as in

Example 6.1.10, but as the formula contains an universal quantification the transformation is
more complex:

As the formula is ∀-restricted, the sub-formula ψ needs to be a step function:

step(ψ) = (2, labelα(x)), (4, labelγ(x)), (6, labelσ(x))

Note, that following the construction of the proof of Lemma 5.3.5 yields elements like
(12, labelα(x)∧ labelγ(x)∧ labelσ(x)), which are not satisfiable and hence left out. This is a
pure semantical analysis, but simplifies the example. Furthermore, the given step-function
still satisfies the partitioning property, as there are no other symbols in the alphabet than σ,
γ, and α.

We can compute:

t(∀x .ψ) =
∑

X1

∑

X2

∑

X3

∑

z

�

root(z)

∧∀x .(
((x ∈ X1)⇔labelα(x))
∧ ((x ∈ X2)⇔labelγ(x))

∧ ((x ∈ X3)⇔labelσ(x)))
�

.H(ω),
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6.2 Transforming ∧ -restricted TV-MSO formulas

where ω is defined for every δ ∈ Σ as

ωδ,{X1} = top(rk(δ))2 , ωδ,{X1,z} = val(rk(δ))2 ,

ωδ,{X2} = top(rk(δ))4 , ωδ,{X2,z} = val(rk(δ))4 ,

ωδ,{X3} = top(rk(δ))6 , ωδ,{X3,z} = val(rk(δ))6 . ©

6.2 Transforming ∧ -restricted TV-MSO formulas

This section generalizes the transformation to ∧ -restricted formulas. As noted previously,
every strongly ∧ -restricted formula is also a ∧ -restricted formula. The disadvantage of the
more general construction is the requirement of a more restricted ptv-monoid. This restriction
is similar to the result in [DGMM11, Theorem 5.5] for recognizability of tv-mso definable
weighted tree languages.

Recall the two definitions of (strongly) ∧ -restricted formulas (c.f. Definition 5.3.3). The
case where one of the formulas is Boolean stays unchanged. The interesting difference
between the two classes is the case of almost Boolean formulas. Consider the formula ϕ1∧ϕ2,
where ϕ1 is almost Boolean. While strongly ∧ -restricted formulas required ϕ2 to be almost
Boolean as well, this is no longer the case for ∧ -restricted formulas. In this case, ϕ2 can
be any ∀-restricted and ∧ -restricted formula as the whole formula is still required to be
∧ -restricted.

Recall the transformation from Construction 6.1.2. In the more complicated part of the
conjunction, the transformation relied on calculating both step functions. This made it
possible to calculate all arising values in advance. This is no longer possible in general.

To solve this problem, we require left-distributivity from the ptv-monoid. This enables us
to apply the multiplication with the result of ψ1 at every point needed in the transformation
of ϕ2. Consider the following minimal example: ¹5∧ (2∨3)º. This formula is evaluated
to 5 � (2 + 3). This cannot be modeled in the m-monoid, because the operation � is not
available. Hence, we use distributivity and obtain (5 � 2) + (5 � 3) which can be simulated by
an m-expression.

This intuitive idea is used in the extended transformation defined in the following.

Construction 6.2.1 Let ϕ ∈ tvMSO(Σ,D) be a ∀-restricted and ∧ -restricted formula and
d ∈ D. We construct the d-corresponding formula, denoted by td(ϕ), inductively as follows:

• for every Boolean formula β ∈ tvMSO(Σ,D): td(β) = β . t(d);

• for every d ′ ∈ D: td(d ′) = H(ωd�d ′), where for all σ ∈ Σ with rk(σ) = k:

(ωd�d ′)σ = (d � d ′)(k);

For every ϕ1,ϕ2 ∈ tvMSO(Σ,D) which are not both Boolean:

• td(ϕ1∨ϕ2) = td(ϕ1) + td(ϕ2);

• As ϕ = ϕ1∧ϕ2 is ∧ -restricted, one of the two following cases must hold:

– ϕ2 is Boolean: Then td(ϕ1∧ϕ2) = ϕ2 . td(ϕ1);
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6 From TV-MSO to M-Expressions

– ϕ2 is not Boolean and ϕ1 is almost Boolean, i.e. its semantics is a recognizable
step function, such that step(ϕ1) = (d1,ψ1), . . . , (dn,ψn) and we set

td(ϕ1∧ϕ2) =
∑+

i∈[n]
(ψi . td�di

(ϕ2)),

where
∑+ abbreviates the finite summation of m-expressions;

For every ψ ∈ tvMSO(Σ,D) which is not Boolean:

• td(∃x .ψ) =
∑

x td(ψ);

• td(∃X .ψ) =
∑

X td(ψ);

• As ϕ = ∀x .ψ is ∀-restricted, ψ is almost Boolean, i.e. we can compute step(ψ) =
(d1,ψ1), . . . , (dn,ψn). Let U = {z, X1, . . . , Xn} and ωd� be a ΣU -family such that for
every U ⊆ U and σ ∈ Σ

(ωd�)(σ,U) =

(

top(rk(σ))dU
if z /∈ U

val(rk(σ))d�dU
if z ∈ U

where dU =
∑

i∈[n]
X i∈U

di .

Based on [DG07, Lemma 4.4], [DG09, Lemma 5.4] ,[FSV12, Lemma 5.10] and very
similar to Construction 6.1.2, we set

td(∀x .ψ) =
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.H(ωd�).

The difference to the previous construction is the additional value as parameter to ω.
Recall that the formula ensures that at every position there is exactly one X i , due to the
recognizable step function forming a partition. ©

With the following lemma we prove the main part of the correctness of the construction. We
show that the intuition behind the parameter of the transformation function is justified. The
case of the disjunction is of special interest, as the parameter of the transformation function
changes.

Lemma 6.2.2 Let D be a left-distributive ptv-monoid, ϕ ∈ tvMSO(Σ,D) be a ∀-restricted and
∧ -restricted formula, and d ∈ D. Then ¹td(ϕ)ºV = d � ¹ϕºV for every V ⊇ free(ϕ).

PROOF. For every tree ξ ∈ T v
ΣV

we show this claim by induction on the structure of the
formula.
ϕ = d ′ for some d ′ ∈ D:

¹td(ϕ)ºV(ξ) = ¹H(ωd�d ′)ºV(ξ)
∗
= d � d ′ = d � ¹d ′ºV(ξ) = d � ¹ϕºV(ξ),

where the equation marked with ∗ holds due to Lemma 6.1.3.
ϕ = β for some Boolean formula β ∈ tvMSO(Σ,D):

¹td(β)ºV(ξ) = ¹β . t(d)ºV(ξ)
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6.2 Transforming ∧ -restricted TV-MSO formulas

=
§

¹t(d)ºV(ξ) if ξ ∈ LV(β)
0 otherwise (Definition 5.4.4)

=
§

¹H(ωd)ºV(ξ) if ξ ∈ LV(β)
0 otherwise (Construction 6.1.2)

=
§

d if ξ ∈ LV(β)
0 otherwise (Lemma 6.1.3)

= d �
§

1 if ξ ∈ LV(β)
0 otherwise (Definition 5.2.1)

= d � ¹βºV(ξ) = d � ¹ϕºV(ξ) (Definition 5.3.4)

ϕ = ϕ1∨ϕ2 for some formulas ϕ1,ϕ2 ∈ tvMSO(Σ,D) which are not both Boolean:

¹td(ϕ)ºV(ξ) = ¹td(ϕ1) + td(ϕ2)ºV(ξ) (Construction 6.2.1)

= ¹td(ϕ1)ºV(ξ) + ¹td(ϕ2)ºV(ξ) (Definition 5.4.4)

= (d � ¹ϕ1º)V(ξ) + (d � ¹ϕ2º)V(ξ) (I.H.)

= d � (¹ϕ1ºV(ξ) + ¹ϕ2ºV(ξ)) (left-�-distributive)

= d � ¹ϕ1∨ϕ2ºV(ξ) = d � ¹ϕºV(ξ) (Definition 5.3.4)

ϕ = ϕ1∧ϕ2 for some formulas ϕ1,ϕ2 ∈ tvMSO(Σ,D) which are not both Boolean: We
consider the two cases from the construction:

• ϕ2 is a Boolean formula. Then

¹td(ϕ)ºV(ξ) = ¹ϕ2 . td(ϕ1)º (Construction 6.2.1)

=
§

¹td(ϕ1)ºV(ξ) if ξ ∈ LV(ϕ2)
0 otherwise (Definition 5.4.4)

=
§

d � ¹ϕ1ºV(ξ) if ξ ∈ LV(ϕ2)
0 otherwise (I.H.)

= d � ¹ϕ1ºV(ξ) �
§

1 if ξ ∈ LV(ϕ2)
0 otherwise (Definition 5.2.1)

= d � ¹ϕ1ºV(ξ) � ¹ϕ2ºV(ξ) (Definition 5.3.4)

= d � ¹ϕ1∧ϕ2ºV(ξ) = d � ¹ϕºV(ξ) (Definition 5.3.4)

• ϕ1 is almost Boolean with step(ϕ1) = (d1,ψ1), . . . , (dn,ψn). Then

¹td(ϕ)ºV(ξ) = ¹td(ϕ1∧ϕ2)ºV(ξ)

= ¹
∑+

i∈[n]
(ψi . td�di

(ϕ2))ºV(ξ) (Construction 6.2.1)

=
∑

i∈[n]
¹ψi . td�di

(ϕ2)ºV(ξ) (Definition 5.4.4)

=
∑

i∈[n]

§

¹td�di
(ϕ2)ºV(ξ) if ξ ∈ LV(ψi)

0 otherwise (Definition 5.4.4)

=
∑

i∈[n]
(1LV (ψi) � ¹td�di

(ϕ2)ºV)(ξ) (Definition 5.2.1)
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=
∑

i∈[n]
(1LV (ψi) � d � di � ¹ϕ2ºV)(ξ) (I.H.)

=
∑

i∈[n]
1LV (ψi)(ξ) � d � di � ¹ϕ2ºV(ξ) (Definition 2.2.7)

=
∑

i∈[n]
d � 1LV (ψi)(ξ) � di � ¹ϕ2ºV(ξ) (� commutes with 1)

= d �
�

∑

i∈[n]
1LV (ψi)(ξ) � di

�

� ¹ϕ2ºV(ξ) (Partition)

= d � ¹ϕ1ºV(ξ) � ¹ϕ2ºV(ξ) (Lemma 5.3.5)

= d � ¹ϕ1∧ϕ2ºV(ξ) = d � ¹ϕºV(ξ) (Definition 5.3.4)

Note that
∑+ is an abbreviation for the finite summation of the m-expressions.

ϕ = ∃x .ψ for some non-Boolean formula ψ ∈ tvMSO(Σ,D): By definition it holds that

¹td(ϕ)ºV(ξ) = ¹
∑

x td(ψ)ºV(ξ) (Construction 6.2.1)

=
∑

w∈pos(ξ)
¹td(ψ)ºV∪{x}(ξ[x 7→ w]) (Definition 5.4.4)

=
∑

w∈pos(ξ)
d � ¹ψºV∪{x}(ξ[x 7→ w]) (I.H.)

= d �
∑

w∈pos(ξ)
¹ψºV∪{x}(ξ[x 7→ w]) (left-�-distributive)

= d � ¹ϕºV(ξ) (Definition 5.3.4)

ϕ = ∃X .ψ for some non-Boolean formula ψ ∈ tvMSO(Σ,D): This case is very similar to the
previous one. It follows the same steps, but uses subsets of positions for the second order
variable.
ϕ = ∀x .ψ for some non-Boolean formula ψ ∈ tvMSO(Σ,D). As ϕ is ∀-restricted, ψ is

almost Boolean and we can construct step(ϕ) = (d1,ψ1), . . . , (dn,ψn).
Let U = {z, X1, . . . , Xn}. We define the tree ξ[ψd] ∈ T u

D such that pos(ξ) = pos(ξ[ψd]),
and for every position w ∈ ξ we have

ξ[ψd](w) =
§

d � ¹ψºV(ξ[x 7→ w]) if w = ε
¹ψºV(ξ[x 7→ w]) if w 6= ε.

Adding one variable z with the condition of z being at the root to the formula in Lemma 6.1.6
shows that the following must also hold:

ξ[ψd] = ¹
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.H(ω′d�)ºV(ξ),

where ω′d� is the ΣU -family defined for every U ⊆ U and σ ∈ Σ with dU =
∑

i∈[n]
X i∈U

di .

(ω′d�)(σ,U) =







top(rk(σ))d�dU
if z ∈ U

top(rk(σ))dU
if z /∈ U .

We can conclude:

¹td(ϕ)ºV(ξ) = ¹td(∀x .ψ)ºV(ξ)
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= ¹
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.H(ωd�)ºV(ξ)
(Construction 6.2.1)

= Val(¹
∑

X1
. . .
∑

Xn

∑

z

�

root(z)∧∀x .(
∧

i∈[n]
(x ∈ X i)⇔ψi)

�

.H(ω′d�)ºV(ξ))
(Lemma 6.1.8)

= Val(ξ[ψd]) (Observation 6.1.7)

= d � Val(ξ[ψ]) (D is left-multiplicative)

= d � ¹∀x .ψºV(ξ) (Definition 5.3.4)

In the third and fourth line of the equation we use Lemma 6.1.8 and Observation 6.1.7. Note
that both need to be extended to cover for the special case with the variable z at the root
and the slightly different ω and ω′. Since this is easy to reconstruct, we omitted to explicitly
state the very similar results. �

Using the above lemma, we relate the semantics of the original formula as well as the
transformed one. The value 1 is neutral with respect to the operation �. Hence, the following
is a direct consequence of Lemma 6.2.2.

Theorem 6.2.3 Let D be a left-distributive ptv-monoid, ϕ ∈ tvMSO(Σ,D) be a ∀-restricted and
∧ -restricted formula, and V ⊇ free(ϕ). Then ¹ϕºV = ¹t1(ϕ)ºV .

PROOF. By Lemma 6.2.2 we know that ¹t1(ϕ)ºV = 1 � ¹ϕºV and as 1 is neutral element by
definition, the claim follows. �

To illustrate the carrying of ‘left-distributed’ values, consider the following example. Note
especially the difference in the construction between t2(4) and t0(4).

Example 6.2.4 we introduce the following tvMSO(Σ,Davg)-formula extending the formula
of Example 6.1.10 with an conjunction:

ϕ = ∃x .[(labelα(x)∧2)∧4]

In order to transform this formula into an m-expression defining the same weighted tree lan-
guage, we need to calculate the step-function of the almost Boolean sub-formula labelα(x)∧2,
which can be simplified to (2, labelα(x)), (0,¬labelα(x)). Then

t1(ϕ) =
∑

x t1((labelα(x)∧2)∧4)

=
∑

x[(labelα(x). t1�2(4)) + (¬labelα(x). t1�0(4))]

=
∑

x[(labelα(x). t2(4)) + (¬labelα(x). t0(4))]

=
∑

x[(labelα(x).H(ω2�4)) + (¬labelα(x).H(ω0�4))]

=
∑

x[(labelα(x).H(ω8)) + (¬labelα(x).H(ω0))]

As semantical simplification, the right part of the sum could be omitted, since H(ω0) = 0.©
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7 From M-Expressions to TV-MSO

This chapter describes the reversed direction of the previous one: transforming m-expressions
into tv-mso formulas. As in the sections before, we need to construct the corresponding
algebraic structure first. Afterwards, the formula can be syntactically transformed into an
m-expression defining the same language.

The findings of this chapter are summarized in the following theorem:

Theorem 7.0.1 Let Σ be a finite ranked alphabet, A an m-monoid and L : TΣ → A a tree
language. Furthermore, let e ∈ MExp(Σ,A) be an m-expression. If L = ¹eº, then there is a
tv-mso formula ϕ ∈ tvMSO(Σ,DA) such that L = ¹ϕº.
DA is the corresponding ptv-monoid from Construction 7.1.1 and ϕ = t(e) according to Con-
struction 7.2.1.

The theorem is a direct consequence of Theorem 7.2.6.

7.1 Construction of the PTV-Monoid

In order to evaluate tvMSO-formulas, we need to construct a ptv-monoid, declare an operation
� and require special properties for 0 and 1. The carrier set stays the same as in the automaton
construction (Construction 4.1.2), but the valuation function needs to be extended to cope
with the additional requirements due to the introduction of the 1 element.

Note that the definition of � exclusively specifies the cases where one of the arguments is 1.
All other cases are mapped to 0. As a side note: The �-function can be defined freely as long
as it respects 1 as neutral and 0 as absorbing element. Recall that A⊆ Ops(A)

Construction 7.1.1 Let A = (A,+, 0,Ω) be an absorptive m-monoid such that there is an
1 ∈ A with 1 6= 0. We construct the corresponding product tree valuation monoid DA =
(Ops(A),�,�, 0(0), 1(0), Val), where � is defined as in Construction 4.1.2, �: D2

Ω → DΩ is
defined for ω1,ω2 ∈ Ops(A) as

ω1 �ω2 =







ω1 if ω2 = 1(0)

ω2 if ω1 = 1(0)

0(0) otherwise,
(7.1)

and 0(0) as well as 1(0) are nullary functions mapping to 0 ∈ A and 1 ∈ A respectively. The
function Val is defined for every ξ ∈ T u

Ops(A)

Val(ξ) =















ξ if ξ ∈ Ops(A)
1(0) if ξ ∈ T u

{1(0)} \ {1
(0)}

hϕ(ξ) if ξ ∈ TOps(A) \Ops(A)
0(0) if ξ ∈ T u

Ops(A) \ (Ops(A)∪ T u
{1(0)})
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where hϕ : TOps(A)→ (A,ϕ) is the unique Ops(A)-homomorphism with ϕ : Ops(A)→ Ops(A)
being the identity function, i.e. ϕ(ω) = ω for every ω ∈ Ops(A). The homomorphism is
unique as the term-algebra is initial in the class of all Ops(A)-algebras. ©

We firstly prove the correctness of the monoid-transformation in the succeeding lemma.

Lemma 7.1.2 DA (Construction 7.1.1) is a product tree valuation monoid.

PROOF. We already showed in Lemma 4.1.3 that Construction 4.1.2 yields a tv-monoid which
is very similar to this construction. It is easy to see that the additional case in the valuation
function does not violate the validity of the tv-monoid. Hence it suffices to show the following
properties:

• 0 � d = d � 0= 0 for every d ∈ Ops(A),

• 1 � d = d � 1= d for every d ∈ Ops(A), and

• Val(ξ) = 1(0) for every ξ ∈ TOps(A) where ξ(w) = 1(0) for all w ∈ pos(ξ),

which are all satisfied by definition. �

Note that due to the simple construction of the multiplication operation �, the constructed
ptv-monoid is not left-�-distributive in general.

7.2 Construction of the TV-MSO Formula

Given the ptv-monoid, we can now transform any m-expression into an equivalent tv-mso
formula. Except for the case of H(ω) this can be done straightforward as tv-mso is able to
emulate all other predicates available in m-expressions. The homomorphic evaluation of
a tree is more complicated and requires the use of the valuation-function together with a
rather complex formula to produce the corresponding operations (as weights in the tree).
The intuition of the formulas is stated in the names. Generally, we check for the symbol and
first order as well as second order variables at the current position. Finding a match, we
associate the corresponding operation of the ΣU -family.

Construction 7.2.1 Given an absorptive m-monoid A, the corresponding product tree val-
uation monoid DA, and a formula e ∈ MExp(A,Σ), we construct the corresponding tvMSO-
formula t(e) ∈ tvMSO(Σ,DA) inductively as follows: For every e1, e2, e′ ∈ MExp(Σ,A) and
ϕ ∈ MSO(Σ) we define:

• e = H(ω), where ω is a ΣU -family of operations in A: Let U1 = U ∩X1 and U2 = U ∩X2.
For every σ ∈ Σ, V1 ⊆ U1, and V2 ⊆ U2 we define:

ψlabel
σ,V1,V2

= labelσ(x)∧
∧

v∈V1
x = v∧

∧

v∈U1\V1
x 6= v

∧
∧

X∈V2
x ∈ X ∧

∧

X∈U2\V2
x /∈ X ,

ψvalue
σ,V1,V2,ω =ψ

label
σ,V1,V2

∧ω(σ,V1∪V2),

ψH(ω) =
∨

σ∈Σ

∨

V1⊆U1

∨

V2⊆U2
ψvalue
σ,V1,V2,ω ,
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7.2 Construction of the TV-MSO Formula

where the macros are defined in Definition 5.1.2 for mso formulas, but can be used
here as they can be considered as Boolean tv-mso formulas.

We set t(H(ω)) = ∀x .ψH(ω),

• t(e1 + e2) = t(e1)∨ t(e2),

• t(
∑

x e′) = ∃x .t(e′),

• t(
∑

X e′) = ∃X .t(e′), and

• t(ϕ. e′) = ϕ∧ t(e′). ©

In order to evaluate the the transformed formula, we need to show that it follows the
semantical restrictions required for general ptv-monoids.

Lemma 7.2.2 The corresponding formula t(e) is ∀-restricted and strongly ∧ -restricted.

PROOF. The claim can easily be seen from the construction. The sub-formula in the scope
of the universal quantification in the transformation of H(ω) consists of finite disjunctions.
Inside these disjunctions, only conjunctions of Boolean formulas and exactly one value from
Ops(A) appear. Thus, ψH(ω) is an almost Boolean formula.

Furthermore, the only other generated conjunction appears in the transformation of ϕ. e′.
As we use the mso formula ϕ on the left hand side of the conjunction, this is a Boolean tv-mso
formula and hence, the transformed formula is strongly ∧ -restricted. �

To show the correctness of the construction, we introduce the following intermediate
definitions and results. We define a tree labeled by the operations of a ΣU -family to easily
compare it to the tree of values generated by the formula in the construction.

Definition 7.2.3 Let ω be a ΣU -family of operations in A and V ⊇ U a finite set of variables.
For every tree ξ ∈ T v

ΣV
and position w ∈ pos(ξ) we define

ξ[ω[U   V]](w) =ω[U   V](ξ(w))

as a tree labeled by operations in A. �

It can be shown that the homomorphic image of the tree defined above is equal to the
evaluation of the homomorphism induced by ω.

Lemma 7.2.4 Let ω be a ΣU -family of operations in A and V ⊇ U a finite set of variables. For
every tree ξ ∈ T v

ΣV
the following holds:

hω[U V](ξ) = hϕ(ξ[ω[U   V]])

PROOF. We prove this claim by induction on the tree. Let ξ= (σ, U)(ξ1, . . . ,ξk) ∈ T v
ΣV

with
σ ∈ Σ, U ∈ V, and ξ1, . . . ,ξk ∈ T v

ΣV
. Then the following proves the claim:

hω[U V]((σ, U)(ξ1, . . . ,ξk)) =ω(σ,U)

�

hω[U V](ξ1), . . . , hω[U V](ξk)
�

=ω(σ,U)

�

hϕ(ξ1[ω[U   V]]), . . . , hϕ(ξk[ω[U   V]])
�

= hϕ
�

ω(σ,U)

�

ξ1[ω[U   V]], . . . ,ξk[ω[U   V]]
�

�

= hϕ(ξ[ω[U   V]]) �
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Additionally, we prove that the formula evaluates exactly to a tree of operational symbols
induced by a ΣU -family ω by analyzing the different parts of the formula. This supports the
general intuition of the formula in a formal way.

Lemma 7.2.5 For every ΣU -family ω, V ⊇ U , and ξ ∈ T v
ΣV

we have that ξ[ω[U   V]] =
ξ[ψH(ω)].

PROOF. It can be seen that the formula ψlabel
σ,V1,V2

determines whether the arguments match the
label of ξ at the position represented by x: For every w ∈ pos(ξ)

¹ϕlabel
σ,V1,V2

ºV(ξ[x 7→ w]) =
§

1 if ξ(w) = (σ, Z) with Z ∩ U = V1 ∪ V2,
0 otherwise,

and hence, due to the definition of �,

¹ϕvalue
σ,V1,V2

ºV(ξ[x 7→ w]) =
§

ω(σ,V1∪V2) if ξ(w) = (σ, Z) with Z ∩ U = V1 ∪ V2,
0 otherwise.

Since the label of a tree at a position is unique, there is only one combination of σ, V1 ⊆ U1,
and V2 ⊆ U2 for every position w ∈ pos(ξ) and the following holds:

¹ψH(ω)
ºV(ξ[x 7→ w]) =ω[U   V]ξ(w)

That means the trees are equal on all positions. �

Based on induction on the structure of the formula we can now show the correctness of
Construction 7.2.1.

Theorem 7.2.6 Let e ∈MExp(Σ,A) and V ⊇ free(e). Then ¹eºV = ¹t(e)ºV .

PROOF. We show this by induction on the formula e. Let ξ ∈ T v
ΣV

.
e = H(ω), where ω is a ΣU -family of operations in A:

¹H(ω)ºV(ξ) = hω[U V](ξ)
= hϕ(ξ[ω[U   V]]) (Lemma 7.2.4)

= Val(ξ[ω[U   V]]) (ξ[ω[U   V]] ∈ TOps(A))

= Val(ξ[ψH(ω)]) (Lemma 7.2.5)

= ¹∀x .ψH(ω)
ºV(ξ) (Definition 5.3.4)

= ¹t(H(ω))ºV(ξ) (Construction 7.2.1)

e = e1 + e2:

¹e1 + e2ºV(ξ) = ¹e1ºV(ξ) + ¹e2ºV(ξ) (Definition 5.4.4)

= ¹t(e1)ºV(ξ)� ¹t(e2)ºV(ξ) (I.H.)

= ¹t(e1)∨ t(e2)ºV(ξ) (Definition 5.3.4)

= ¹t(e1 + e2)ºV(ξ) (Construction 7.2.1)
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7.2 Construction of the TV-MSO Formula

e =
∑

x e′:

¹

∑

x e′ºV(ξ) =
∑

w∈pos(ξ)
¹e′ºV(ξ[x 7→ w]) (Definition 5.4.4)

=
∑

w∈pos(ξ)
¹t(e′)ºV(ξ[x 7→ w])) (I.H.)

= ¹∃x .t(e′)ºV(ξ) (Definition 5.3.4)

= ¹t(
∑

x e′)ºV(ξ) (Construction 7.2.1)

e =
∑

X e′:

¹

∑

X e′ºV(ξ) =
∑

W⊆pos(ξ)
¹e′ºV(ξ[X 7→W ]) (Definition 5.4.4)

=
∑

W⊆pos(ξ)
¹t(e′)ºV(ξ[X 7→W ])) (I.H.)

= ¹∃X .t(e′)ºV(ξ) (Definition 5.3.4)

= ¹t(
∑

X e′)ºV(ξ) (Construction 7.2.1)

e = ϕ. e′:

¹ϕ. e′ºV(ξ) =
§

¹e′ºV(ξ) if ξ ∈ LV(ϕ)
0 otherwise (Definition 5.4.4)

=
§

¹t(e′)ºV(ξ) if ξ ∈ LV(ϕ)
0 otherwise (I.H.)

= 1LV (ϕ)(ξ) � ¹t(e′)ºV(ξ) (Definition 5.2.1)

= ¹ϕ∧ t(e′)ºV(ξ) (since ϕ is Boolean)

= ¹t(ϕ. e′)ºV(ξ) (Construction 7.2.1)

�

As before, we end with an example showing the transformation of a simple atom H(ω), as
the other transformations are very straightforward and easy to understand.

Example 7.2.7 Recall Example 5.4.5, where an m-expression is used in order to accept trees
that only have leaves labeled by α. It used the m-monoid Abool with A= {0, 1} and consisted
only of the formula H(ω) with

ωα = 1(0), ωβ = 0(0), ωσ =mul(2).

The corresponding ptv-monoid is DAbool
= (Ops(A),�,�, 0(0), 1(0), Val).

We transform the formula into a tv-mso formula, as this is the most interesting case in the
construction. Note that this example is very simple, as ω is a Σ;-family and hence U = ;, but
enables insight in the mechanism of this in the general case very complex formula.

t(H(ω)) =∀x .
�

(labelα(x)∧1(0))

∨ (labelβ(x)∧0(0))

∨ (labelσ(x)∧mul(2))
�

It is easy to see that the constructed formula is ∀-restricted. ©
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8 Conclusion

This chapter summarizes the results of this thesis, gives additional remarks, and addresses open
problems. Starting from the argumentation in favor of quantitative automata especially over
trees, two specific formalisms were recalled. The main difference between both approaches
lies in the handling of weights. While one calculates weights locally, the other evaluates all
local weights in a global manner. This allows a different perspective on the values of the
respective automata.

It was shown that weighted tree automata over multioperator monoids and tree valuation
monoids can be converted into each other. The respective constructions shift parts of the
semantics into the underlying monoid structure. In both constructions, the defined addition
of the monoid is only used with representations of values of the original monoid. Hence, for
implementation, this addition is not necessary, as long as only constructed automata are used
over the newly generated monoid.

A similar argument holds with respect to the constructed tv-monoid which contains all
operations on the carrier set. If only transformed tv-wta should be evaluated, it suffices to
model only functions occurring in the original automaton as well as nullary operations on
the original carrier set which correspond to the elements themselves.

The second main result of this diploma thesis is the definition of the transformation
functions from tv-mso to m-expressions and vice versa. By pure syntactical transformations
each formalism can be encoded in the other. This enables a user to model in the better
suited language. However, complexity was left out of this considerations. While the result
establishes a basis for further theoretical considerations, the practical value of both formalisms
themselves as well as the newly introduced constructions need to be separately investigated.

Another open question regards the expressiveness of the original automaton classes and
the constructed equivalents. While it is obvious that the constructed monoid structures allow
definition of more tree languages than the original monoid, since elements can be used as
weights which were not present before, restrictions on the automata or certain properties
of the monoid might change this. In order to better compare the formalisms, the languages
recognized by both automata structures as well as the languages definable by the logics can
be explored further.
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