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1 Introduction

The scientific field of Natural Language Processing (NLP) deals with capturing natural, i.e.
human, languages in a form that enables machine-based processing and translation. In this
field, there has been a long tradition of using phrase-based formalisms in order to do so, which
account for the hierarchical structure of natural sentences, whose basic building blocks—subject,
predicate, object, etc.—are each again recursively built up from smaller units, down to the level
of single words of the sentence. An analysis of the phrasal structure of a sentence can then be
represented by an unranked tree, often called the (full-)parse tree of the sentence. In fact, it can
be shown that phrase-based models are necessary to grasp the complexity of human language,
compare the argument that English is not a regular language, made by Chomsky (1957).

Phrase-Based Models

The most noted phrase-based models are context-free grammars (Chomsky, 1956, originally
called phrase-structure grammars), but there are also several possible alternatives. One of these
are tree adjoining grammars (introduced by Joshi, Levy, and Takahashi, 1975) and, as a restriction
of this formalism, tree insertion grammars (introduced as lexicalized context-free grammars by
Schabes and Waters, 1994). The elementary objects manipulated by such grammars, and the
products of their derivations, are trees instead of mere symbols. This suits the modelling of the
phrasal structure of languages quite well, giving focus to parse trees instead of flat sentences.

Tree adjoining grammars allow the basic operations of substitution and adjoining. Both of
those have straightforward applications for natural languages. The languages generated by such
tree-adjoining grammars are a proper superset of the set of context-free languages (cf. Joshi and
Schabes, 1991), while tree-insertion grammars generate only context-free languages (see Schabes
and Waters, 1994).

Probabilistic Grammars

As detailed by Manning and Schütze (1999, ch. 1), there are convincing arguments against a
categorical view of natural language, i.e., against the belief that one can give a fixed grammar for,
e.g., modern English, which generates all grammatically correct (grammatical) sentences of this
language. This view is problematic because of the ambiguity inherent to spoken (and written)
language: there are examples for constructions which one speaker might deem as correct, but
might be accepted by the next one only with a furrowed brow, or might not be accepted at all.
Moreover, since language constantly develops, there are phrases which may have been usual
several decades ago, but may sound rather odd or incorrect to the modern ear. Nevertheless, it
would be hard to find a sharp date up to which such a construction was considered grammatical,
and after which it was not used any longer. Instead, it gradually faded out of use.
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These observations lead to the notion that a theory of natural language should not so much
try to divide all human utterances into two disjoint sets of grammatical and ungrammatical
sentences, but rather concern itself with how usual such a sentence is. A measure of this can
be derived with probabilistic measures, and, indeed, there are probabilistic versions of most
grammar formalisms which assign each of their production rules a certain probability. The
probability of a derivation is then defined as the product of the probabilities of the rules used
in it. In Section 4.1 of this work, we will apply this idea to one of the grammars mentioned
above and give a formal definition of probabilistic tree insertion grammars.

The KA* Algorithm
In such a probabilistic framework, given a grammar, the problem arises to generate its possible
derivations, in the order of their respective probabilities. As the set of these derivations is
frequently infinite and its computation may be prohibitively expensive, one often settles with
determining a number k of the best, i.e. most probable derivations. One efficient solution for
this k-best problem is the KA* algorithm (Pauls and Klein, 2009a), which uses a supplied external
heuristic function, as well as internal heuristics generated on-the-fly, to prioritize its search over
the derivation space of a grammar.

In Chapter 3, we detail the idea behind an optimized lazy variant of this algorithm and
present a Haskell implementation written during the course of this work. In this implemen-
tation, KA* does not operate directly on the supplied grammar, but instead on a probabilistic
hypergraph representation, whose derivations are equivalent to those of the grammar. This
allows decoupling between the concrete type of the supplied grammar, be it a context-free
grammar, a tree insertion grammar, or another formalism, and the KA* algorithm. In a way,
one can think of this hypergraph representation as an interface provided to KA*. Of course, for
this to work out, the transformation from grammars to hypergraphs has to be defined. In our
case, for probabilistic tree insertion grammars, this is accomplished along with their definition
in Section 4.1.

State-Split and the Learning of Grammars
Probabilistic grammars bring the additional advantage that there are algorithms for their
unsupervised learning. Supplied with a corpus, i.e., in this case, with a collection of hand-
parsed natural language sentences, those algorithms generate the probabilistic grammar that is
most likely to generate the analyses contained in that corpus, or at least a good candidate for
such a grammar. Their performance in capturing human language can then be evaluated on
another corpus, giving rise to several metrics which may be used to compare different grammars
(for a basic introduction, refer to Charniak, 1997).

Section 4.2 contains a description of one particular method of learning probabilistic gram-
mars, the State-Split method (first presented by Petrov, Barrett, Thibaux, and Klein, 2006). State-
Split starts out with a corpus of analyses of sentences, together with a grammar grasping this
corpus in some way. This grasp is then continually refined by splitting the grammar’s phrasal
categories into two by the use of annotations, reestimating the new production probabilities
with the help of the Expectation-Maximization (EM) algorithm, which facilitates maximum-
likelihood estimation from incomplete data, and merging back together subcategories which
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turn out to be irrelevant for achieving higher likelihood. Again, in our case, we will define State-
Split not directly on the grammars involved, but instead on their hypergraph representations,
promoting abstraction from their concrete types.

Subsection 4.2.3 will detail a definition for the EM algorithm, applied to annotated deriva-
tions, with less annotated derivations serving as incomplete data. This formulation of EM is
based on the work by Prescher (2005). One should take note that there are much more general
definitions for EM, which is applicable for many problems where a maximum-likelihood es-
timate from incomplete data is sought. Examples for such problems are already given in the
algorithm’s introductory paper by Dempster, Laird, and Rubin (1977).

Subsequently, Subsection 4.2.4 addresses the Inside-Outside algorithm, which can be seen as a
dynamic programming instance of EM. Inside-Outside was originally presented for corpora
of unparsed sentences by Baker (1979), and adapted to corpora of parse trees by Pereira and
Schabes (1992). We will show how, in this case, the Inside-Outside algorithm emerges from EM
quite naturally, by reshaping a few formulas.

Discussion: Induction of Heuristics
Finally, we intended to describe a method, presented by Pauls and Klein (2009b), to extract
admissible and consistent heuristics, applicable to the KA* algorithm, from the intermediate
products of the State-Split procedure. However, as the assertion this method relies on does not
hold, at least for our case, we had to give up on this intent.

Instead, in Chapter 5 we will try to outline the idea of Pauls and Klein and the conjecture it
rests on, as well as a small counterexample to the latter. We will proceed by discussing possible
reasons for this surprising discrepancy.
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2 Prelude

Note that in the following we will assume N to be the set of non-negative integers, i.e.

N= {0,1,2, . . .}.

To avoid tedious repetition, we introduce the abbreviation [n] = {1, . . . , n} for every n ∈ N.
Note that [0] = ;. Moreover, R will denote the set of the real numbers, and

R≥0 = {r ∈R | r ≥ 0}

the set of the non-negative reals. Presuming a function f : A→ B , for every subset S ⊆ B , we
define its preimage under f as

f −1(S) = {a ∈A | f (a) ∈ S}.

When we have finite sets, we will sometimes abbreviate f −1({s1, . . . , sn}) by f −1{s1, . . . , sn}. For
the same function f : A→ B , and for every subset S ⊆A, its image under f is given by

f (S) = { f (a) | a ∈ S}.

The Kronecker delta1 is a notational shorthand which allows to condition equations on the
equality of two terms. Assume a set A and two values a, b ∈A, then

δ(a, b ) =
¨

1 if a = b
0 otherwise.

The powerset 2A of a set A is declared as the set of all subsets of A:

2A= {B | B ⊆A}.

Finally, the set of words of length n ∈N over a set A is defined as

An = {a1 · · ·an | a1, . . . ,an ∈A},

where for n = 0 the empty word is denoted by ε. The set of words over A is correspondingly
defined as

A∗ =
⋃

n∈N

An .

If we have a word w = a1 · · ·an ∈ An and an index i ∈ [n], we will define access to the i -th
symbol by w(i) = ai .

1Traditionally denoted by δa b , but since we will deal with comparatively long terms in place of a and b , we will
write δ(a, b ) instead.

9



2.1 Algebraic Necessities

Since later we will have to give a canonical sequence for elements in certain finite sets, we must
define a few basic concepts regarding partial and total orders.

Definition 2.1. A partially ordered set (poset) is a structure P= (P,≤) where P is a set and ≤ a
binary relation on P such that for every p, q , r ∈ P

• p ≤ p (reflexivity),

• p ≤ q and q ≤ p implies p = q (antisymmetry) and

• p ≤ q and q ≤ r implies p ≤ r (transitivity).

For such a poset P, we also say that its carrier set P is partially ordered by ≤. If we additionally
have p ≤ q or q ≤ p for every p, q ∈ P (totality), we call P a totally ordered set resp. P totally
ordered by ≤. We will write p < q as a shorthand for “ p ≤ q and p 6= q”.

Definition 2.2. If a set A is partially ordered by ≤, we can define a poset (A∗,≤∗) where A∗ is
the set of words over A, as defined above, and where for v, w ∈A∗ we have v ≤∗ w if

• v is a prefix of w or

• there are u, v ′, w ′ ∈A∗, a, b ∈A such that v = uav ′, w = u b w ′ and a < b .

We call the defined partial order the lexicographic order on A∗. If A is totally ordered, A∗ is also
totally ordered (cf. Baader and Nipkow, 1998)

Definition 2.3. A monoid is an algebraic structure M= 〈M ,◦, e〉 comprising a binary operation
◦ : M ×M →M and an element e ∈M such that

• the operation ◦ is associative: a ◦ (b ◦ c) = (a ◦ b ) ◦ c for every a, b , c ∈M and

• e acts as a neutral element regarding this operation: a ◦ e = e ◦ a = a for every a ∈M .

We call M commutative if a ◦ b = b ◦ a for every a, b ∈ M and cancellative if we can cancel
equations from the left and the right, i.e. if a ◦ b = a ◦ c implies b = c , and a ◦ c = b ◦ c implies
a = b , for every a, b , c ∈M .

A partial order (M ,≤) is said to be compatible to a monoid M = 〈M ,◦, e〉 if a ≤ b implies
a ◦ c ≤ b ◦ c and c ◦ a ≤ c ◦ b for every a, b , c ∈M . Supplied with such a compatible order, M
is called an ordered monoid or ordered by ≤. If (M ,≤) is even a total order, we call M totally
ordered by ≤.

Example 2.4. The most prominent monoid in the following developments will be the monoid
of probabilities, Pr= 〈[0,1], ·, 1〉, with [a, b] as the interval {r ∈R | a ≤ r ≤ b}, for a, b ∈R,
and · as multiplication on the real numbers. Note that this monoid is as well commutative as
cancellative, and ordered by the well-known order ≤ on the real numbers.
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2.2 Probability Theory
We also need a few basic definitions from the field of probability theory. Since in the work at
hand, we will not have to concern ourselves with the paradoxa often arising with uncountably
infinite sets, most of the measure-theoretic underpinnings of modern probability will be
done away with in the following. For a thorough mathematical treatise of this field, refer to
Kallenberg (2001) instead. Manning and Schütze (1999, ch. 2) also give a short introduction to
probability theory as it is utilized in Natural Language Processing.

Definition 2.5. Assuming a countable set Ω, called the sample space, we call a function p : Ω→
[0,1] a probability mass function (pmf), if

∑

ω∈Ω
p(ω) = 1.

Such a pmf naturally induces a probability distribution P : 2Ω→ [0,1] on Ω,2 defined by

P (A) =
∑

a∈A

p(a).

A tuple (Ω, P ) of a sample space Ω and a probability distribution P on Ω will henceforth be
called a probability space, while the subsets A⊆Σ will be designated as events.

Random elements give us the means to distill information from a probability space and to
derive corresponding probabilities.

Definition 2.6. Let (Ω, P ) be a probability space and S a countable set. A function X : Ω→ S
is then called a random element in S. We can infer a probability distribution on S from X and
P by defining

P (X ∈ B) = P (X−1(B))

for every B ⊆ S . If we have B = {b}, we will also write P (X = b ) instead of P (X ∈ B). Similarly,
for k > 1 random elements Xi : Ω→ Si , i ∈ [k], we define

P (X1 ∈ B1, . . . ,Xk ∈ Bk ) = P (X−1
1 (B1)∩ · · · ∩X−1

k
(Bk )).

Given a function f : S → T , with S and T countable, and X : S → T a random element, we
can derive the random element f (X ), which should not be interpreted as application of the
function f to X , but instead as an alternative for denoting f ◦X .3 A random element X : Ω→ S
will be called a random variable if S =R.4

2In the literature, this distribution is mostly defined on a σ -algebra, i.e., a set system on Ω with certain properties.
As mentioned above, we will omit such intricacies. Refer to Prescher (2005) for a justification of this omission.

3Of course, this notation is meant to resemble application of f to X . This is justified by the fact that, in many
cases, it is intuitive to think of X not as a function, but as a mere element from the codomain of X , hence the
name random element.

4In many works covering probability theory this distinction is not made and random elements are referred to as
random variables generally. However, as this naming issue only seems to be a matter of different tastes, we will
stick for now with the term random element, following Kallenberg (2001).
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Definition 2.7. Given a sample space Ω, a probability model on Ω is a non-empty setM of
probability distributions on Ω. The unrestricted probability modelM (Ω) is defined by

M (Ω) =
¦

P : 2Ω→ [0,1] | P is a probability distribution on Ω
©

.

All other probability models N on Ω (i.e. all probability models N withN 6=M (Ω)) are
called restricted.

Definition 2.8. For a probability space (Ω, P ), the conditional probability P (A | B) denotes the
posterior probability that some event A⊆ Ω occurs given the knowledge that B ⊆ Ω occurs
certainly or has already occured. It can be computed as

P (A | B) =
P (A∩B)

P (B)

if P (B) 6= 0. P (B) is then referred to as the prior probability. Note that this definition extends
naturally to random elements: Assume, e.g., two random elements X : Ω→ S and Y : Ω→ T ,
with S and T countable sets, then

P (X ∈A | Y ∈ B) =
P (X ∈A,Y ∈ B)

P (Y ∈ B)
=

P (X−1(A)∩Y−1(B))

P (Y−1(B))
.

For certain sums of probability distributions over two random elements, one can factor out
one of these random elements, arriving at the marginal distribution.

Lemma 2.9. For a probability space (Ω, P ) and two random elements X : Ω→ S, Y : Ω→ T , if
we know the joint probability distribution

P (X = s ,Y = t )

for every s ∈ S and t ∈ T , we can derive the marginal probability distributions

P (X = s) =
∑

t∈T

P (X = s ,Y = t )

as well as

P (Y = t ) =
∑

s∈S

P (X = s ,Y = t ). (�)

Next, let us introduce the idea of a maximum-likelihood estimate (mle), defined as an element
of a probability model which maximizes the likelihood on a certain corpus containing statistical
data. So first of all, we have to define the notion of corpora:

Definition 2.10. For a sample space Ω, we call a function f : Ω→R a corpus if for every x ∈Ω
we have f (x)≥ 0. For a corpus, we also call the elements x ∈Ω types and their values f (x) the
corresponding type frequencies. The size | f | of the corpus is given by

| f |=
∑

x∈Ω
f (x)

and we call f non-empty if | f |> 0 as well as finite if | f | ∈R.
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This allows us to denote the likelihood of a corpus, giving us a measure of how much a
probability distribution “fits” the statistical distribution of the underlying corpus.

Definition 2.11. Assume a sample space Ω, a probability modelM on Ω and a non-empty,
finite corpus f : Ω→ [0,1]. The likelihood (or just probability) of f allocated by an element of
the probability model P ∈M is defined as

L( f ; P ) =
∏

x∈Ω
P (x) f (x) ,

where we define 00 = 1.5 We call an assumed probability distribution P̂ a maximum-likelihood
estimate (mle) ofM on f if

L( f ; P̂ ) ∈ argmax
P∈M

L( f ; P ),

i.e., if the likelihood it allocates to f is maximal given the supposed probability model.

2.3 Hypergraphs and Probabilities
The concept of (directed) graphs, which comprise a set of nodes and a set of edges that connect
pairs of nodes, is well-known in the fields of Mathematics and Computer Science. Weighted
graphs are often used as data structures for path-finding problems, as e.g. in the A* algorithm.
One can generalize the idea of graphs by allowing edges to connect more than two nodes,
this leads to the notion of hypergraphs. In the work at hand, we will only concern ourselves
with directed hypergraphs—where every hyperedge connects a set of tail nodes to a set of head
nodes—which are also functional, i.e., each hyperedge has exactly one head node.

Definition 2.12. A hypergraph is a tuple G = (N , E ,µ, g ) where

• N is called the set of nodes of the hypergraph,

• E the set of hyperedges,

• µ : E →N ∗×N assigns a number of tail nodes and a unique head node to every edge,

• g ∈N is a certain node in the hypergraph, called the goal node.

We call G finite if both sets N and E are finite. For every edge e ∈ E , where µ(e) = (b1 · · · bk ,a),
we denote its tail nodes by tl(e) = b1 · · · bk , its head node by hd(e) = a and its arity by ar(e) =
| tl(e)|.

As for traditional graphs, we can equip every hyperedge of a hypergraph with a weight over
some monoid. In the general case, we will even assign each edge a weight function, of the same
arity as the hyperedge.

Definition 2.13. Presuming a monoid M = 〈M ,◦, e〉, an M-weighted hypergraph is a tuple
G = (N , E ,µ, g , w) where

5This definition is strongly suggested by the two well-known facts that the cardinality of the function space AA on
a set A is |A||A| and that there is exactly one function from the empty set onto itself.
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• (N , E ,µ, g ) is a hypergraph as defined in Def. 2.12 and

• w = (we : M ar(e)→M | e ∈ E) is a family of functions, supplying every edge with an edge
weight function.

If for every e ∈ E there is an m ∈M such that the corresponding edge weight function is of the
form we (m1, . . . , mn) = m1 ◦ · · · ◦mn ◦m for n = ar(e) and every m1, . . . , mn ∈M , we say that
G has multiplicative weights and write w(e) = m as a shorthand.

Definition 2.14. A probabilistic hypergraph (phg) is the same as a Pr-weighted hypergraph with
multiplicative weights. For such graphs, we will write p instead of w for the edge weight
function and call p(e) = w(e) the edge probability of an edge e ∈ E . The class of all probabilistic
hypergraphs will be abbreviated by PHG. A phg G is referred to as proper if, for every a ∈N ,

∑

e∈E
hd(e)=a

p(e) = 1.

Now we can define the notion of derivations in hypergraphs, which can be seen as analogous
to the concept of paths in a graph, but lifted to the world of hypergraphs. They can be
understood as trees, or as (typed) terms, over the set of hyperedges.

Definition 2.15. Presuming a weighted hypergraph G = (N , E ,µ, g , w), we define the set Da
G

of derivations of a in G for every node a ∈N to be the smallest set D with

D = {e(d1, . . . , dk ) | e ∈ E ,µ(e) = (b1 · · · bk ,a), di ∈D bi
G for i ∈ [k]}.

We can then denote the set of derivations in G by

DG =
⋃

a∈N

Da
G .

For a derivation d = e(d1, . . . , dk), we define the shorthand notation hd(d ) = hd(e), i.e., a
derivation’s head is defined as the head of the hyperedge at its root.

Contexts can be thought of as derivations with a “gap”, symbolized by �. This gap can act as
destination for substituting in other contexts or derivations.

Definition 2.16. For a hypergraph G = (N , E ,µ, g ), we demand that the symbol� 6∈ E . Then,
for every node a, b ∈N , we define the set C a

G, b
of a-contexts for b as the smallest set C with

• � ∈C and

•
�

c
�

e(d1, . . . , di−1,�, di+1, . . . , dn)
�

| c ∈C a
b0,G

, d j ∈D
b j

G for j ∈ [n] \ {i}
	

⊆C

for every e ∈ E , µ(e) = (b1 · · · bn , b0), i ∈ [n] with bi = b .

Here, c[c ′] denotes the substitution of all leaf nodes � in c with c ′. As for derivations, we let

C a
G =

⋃

b∈N

C a
G, b

denote the set of all a-contexts.
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For derivations in a weighted hypergraph, we can determine their weight by inductive
application of the weight functions (resp., multiplication of the weights) of the hyperedges
contained in the derivation. In the case of hypergraphs with multiplicative weights, this
technique works also for contexts (with non-multiplicative weights, we would have to represent
context-weights by unary operations on the monoid).

Definition 2.17. We can compute the weight of a derivation d = e(d1, . . . , dk) ∈ DG in a
〈M ,◦, e〉-weighted hypergraph G = (N , E ,µ, g , w) by structural induction:

weightG(d ) = we (weightG(d1), . . . ,weightG(dk )).

We call a phg G consistent if
∑

d∈D g
G

weightG(d ) = 1.

In the case that G is consistent and proper, weightG , restricted to the domain D g
G , is a pmf.

Then we will write P ( · | G) for the probability distribution on D g
G induced by weightG ,

compare Def. 2.5.6

In the course of this work, whenever we write about a probability distribution P ( · |G)
induced by a phg G = (N , E ,µ, g , p), we implicitly assume G to be proper and
consistent (else the notation would not make much sense). Moreover, we will sometimes
also denote probabilities P (d |G) of derivations d of nodes that are not the goal node
g . Then we read this as P (d |G′) with G′ = (N , E ,µ,a, p) instead and again assume
G′ is proper and consistent.

Definition 2.18. The weight of a context c ∈ C a
G in a 〈M ,◦, e〉-weighted hypergraph G =

(N , E ,µ, g , w) with multiplicative weights can be defined by structural induction as follows:

weightG(�) = e

as well as

weightG(c[e(d1, . . . , di−1,�, di+1, . . . dk )])
=weightG(c) ◦we ◦weightG(d1) ◦ · · · ◦weightG(di−1)
◦weightG(di+1) ◦ · · · ◦weightG(dk ).

Given a node a ∈N in a phg G = (N , E ,µ, g , p), we can define its Viterbi inside and outside
score β∗(a) resp. α∗(a) as

β∗(a) =max{weightG(d ) | d ∈Da
G}

α∗(a) =max{weightG(c) | c ∈C g
G,a}

6This way of denoting probability ditributions induced by a phg may seem like misuse of the notation for
conditional probabilities, but it is intuitive (read P (d |G) as “the probability of d under the knowledge of G’s
induced probability distribution”) and consistent with the notation by, e.g., Manning and Schütze (1999) and
Lari and Young (1991).
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We call a derivation of (resp. g -context for) a ∈N with weight β(a) (resp. α(a)) a best, lightest
or Viterbi derivation (context).

If we have a hypergraph which describes the possible structure of derivations, this allows us
to define a probability model, comprising all probability distributions induced by the assumed
hypergraph extended to a proper and consistent phg.

Definition 2.19. Let G = (N , E ,µ, g ) be an arbitrary hypergraph. The probability model of G
(on Ω=D g

G) arises as

MG =
¦

P ( · |G′) ∈M (D g
G) | p ∈ [0,1]E , G′ = (N , E ,µ, g , p) is proper and consistent

©

.

2.4 Unranked Trees
In the study of tree automata, one usually deals with ranked trees, which can be also thought of
as (typed) terms over some ranked alphabet of underlying symbols, each with a unique arity.
But with natural languages and the trees denoting their phrase structure, dealing with ranked
symbols becomes cumbersome. For example, in one linguistic role, an NP (noun phrase)
part-of-speech tag might have several children, in another one only one. This leads us to the
notion of unranked trees.

Definition 2.20. Assuming two disjoint set Σ and A, we can define the set of unranked trees
over Σ with leaves also from A, UΣ(A), as the smallest set fulfilling the following properties:

• For every a ∈A we have that a ∈UΣ(A).

• For every n ∈N and σ ∈Σ, if ξ1, . . . ,ξn ∈UΣ(A), then also σ(ξ1, . . . ,ξn) ∈UΣ(A).

Similar to ranked trees, we can now define various functions on UΣ(A).

Definition 2.21. First of all, we give a function generating the set of positions in an unranked
tree. A position uniquely determines an element in an unranked tree.

pos: UΣ(A)→ 2N
∗

pos(a) = {ε} for a ∈A

pos(σ(ξ1, . . . ,ξn)) = {ε} ∪
⋃

i∈[n]

{i w | w ∈ pos(ξi )} for σ ∈Σ

We can also restrict this function to only return the tree positions labeled with elements from a
certain set∆⊆Σ∪A:

pos∆ : UΣ(A)→ 2N
∗

pos∆(a) = {ε} for a ∈A∩∆
pos∆(a) = ; for a ∈A\∆

pos∆(σ(ξ1, . . . ,ξn)) = {ε} ∪
⋃

i∈[n]

{i w | w ∈ pos(ξi )} for σ ∈Σ∩∆

pos∆(σ(ξ1, . . . ,ξn)) =
⋃

i∈[n]

{i w | w ∈ pos(ξi )} for σ ∈Σ \∆
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Definition 2.22. Moreover, we have a function computing the positions of the leaves of an
unranked tree, i.e. of the tree nodes with no children.

lv: UΣ(A)→ 2N
∗

lv(a) = {ε} for a ∈A
lv(α()) = {ε} for α ∈Σ

lv(σ(ξ1, . . . ,ξn)) =
⋃

i∈[n]

{i w | w ∈ lv(ξi )} for n ≥ 1, σ ∈Σ

It is easy to see that lv(ξ )⊆ pos(ξ ) for every ξ ∈UΣ(A). Therefore, for every such ξ , we can
define the positions of its non-leaves, i.e. of its nodes with children, by nlv(ξ ) = pos(ξ ) \ lv(ξ ).
Again, we can adapt these functions to return only positions labeled with elements from a set
∆⊆Σ∪A: for every ξ ∈UΣ(A), let lv∆(ξ ) = lv(ξ )∩pos∆(ξ ) and nlv∆(ξ ) = nlv(ξ )∩pos∆(ξ ).

Definition 2.23. For every set∆⊆Σ∪A, the function yield∆ returns the left-to-right sequence
of the leaf nodes from∆ in an unranked tree and is defined by

yield∆ : UΣ(A)→∆
∗

yield∆(a) = ε for a ∈A\∆
yield∆(a) = a for a ∈A∩∆
yield∆(α()) = ε for α ∈Σ \∆
yield∆(α()) = α for α ∈Σ∩∆
yield∆(σ(ξ1, . . . ,ξn)) = yield∆(ξ1) · · ·yield∆(ξn) for n ≥ 1, σ ∈Σ

Definition 2.24. Similarly, for every set∆⊆Σ∪A, every unranked tree ξ ∈UΣ(A) and one
of its leaf positions w ∈ lv(ξ ), yield′∆(ξ , w) computes the sequence yield∆(ξ ) without the label
for the position w.

yield′∆ : UΣ(A)×N
∗→∆∗

yield′∆(a, w) = ε for a ∈A with a 6∈∆ or w = ε

yield′∆(a, w) = a for a ∈A∩∆ and w 6= ε
yield′∆(α(), w) = ε for α ∈Σ with α 6∈∆ or w = ε

yield′∆(α(), w) = α for α ∈Σ∩∆ and w 6= ε
yield′∆(σ(ξ1, . . . ,ξn), i w)

= yield∆(ξ1) · · ·yield∆(ξi−1)yield′∆(ξi , w)yield∆(ξi+1) · · ·yield∆(ξn)

for n ≥ 1, σ ∈Σ

Definition 2.25. Given a tree ξ = σ(ξ1, . . . ,ξn) ∈UΣ(A) and one of its positions w ∈ pos(ξ ),
we can give its label ξ (w) at the position w by recursively defining

ξ (ε) = σ
ξ (i w) = ξi (w).
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Similarly, its subtree ξw at the position w is given by

ξ |ε = ξ
ξ |i w = ξi |w .

Definition 2.26. Given two trees ξ ,ζ ∈UΣ(A) and a position w ∈ pos(ξ ), we define the tree
obtained by replacing ξ ’s subtree at w by ζ as ξ [ζ ]w according to

ξ [ζ ]ε = ζ
σ(ξ1, . . . ,ξk )[ζ ]i w = σ(ξ1, . . . ,ξi−1,ξi[ζ ]w ,ξi+1, . . . ,ξk ).

Similarly, for every tree ξ ∈ UΣ(A), list of leaf positions ω = w1 · · ·wk ∈ lv(ξ )∗, k ∈ N
with pairwise distinct wi , i ∈ [k], and other trees ζ1, . . . ,ζk ∈ UΣ(A), we can define parallel
substitution as

ξ [ζ1, . . . ,ζk]ω =
�

· · ·
�

(ξ [ζ1]w1
)[ζ2]w2

�

· · ·
�

[ζk]wk

for k > 0, else

ξ []ε = ξ .

Note that the k substitutions in this definition do not interfere with each other since they were
restricted to only occur at leaf positions.
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3 Lazy KA*

In the following chapter we will start out with describing the principles behind the lazy
variant of the KA* algorithm for heuristic-based search of k best derivations in a probabilistic
hypergraph. This comprises a short recap of the adaptation of the algorithm’s standard version,
detailed for pcfgs by Pauls and Klein (2009a), to probabilistic hypergraphs.

Subsequently, we will give a short argument how the probabilistic monoid’s monotony
properties can be exploited in order to cut back on the generation of unnecessary assignments,
and show how the standard algorithm has to be modified to achieve this.

The following section will then detail the realization of the developed ideas and describe
an implementation of Lazy KA* in the non-strict functional programming language Haskell
(Peyton-Jones, 2003), together with an account of some problems which arose during its
development process and certain optimizations which were applied.

3.1 Recapping KA*
Supplied with a probabilistic hypergraph G and a corresponding external heuristic function
h, the KA* algorithm computes the k best derivations of the graph’s goal node in G, often
referred to as the k-best problem or just k-best. Let us first define the mathematical notion of
such a heuristic.

Definition 3.1. For a phg G = (N , E ,µ, g , p), we call a function h : N → [0,1] a heuristic
function for G. Under the premise that for every edge e ∈ E with µ(e) = (b1 · · · bn ,a), and

derivations d j ∈D
b j

G for j ∈ [n],

P (di |G) · h(di )≥ P (e(d1, . . . , dn) |G) · h(a)

for every i ∈ [n], the heuristic h is said to be consistent. This property is also referred to as
monotony of the heuristic. Consistency of heuristics also implies that they are admissible, i.e.,
that for every node a ∈N ,

h(a)≥ α∗(a),

in particular h(g ) = 1. We call an admissible heuristic h perfect when we even have h(a) = α∗(a)
for every node a ∈N .

Given a heuristic like this, KA* tackles the k-best problem by a prioritized search in the
search graph G′ generated from G and h. This KA* search graph’s node set consists of three
different types of items, called inside items, outside items and derivation items.

The supplied external heuristic function contributes to the priorities of inside items in the
graph search. This allows KA* to efficiently compute the Viterbi inside scores of G’s nodes
with the computation of best derivations of inside items in G′. These inside scores are then
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used as a heuristic for the determination of best derivations of outside items in G′, providing
the algorithm with the value of each node’s Viterbi outside score. Finally, as clearly evident
from Def. 3.1, the outside scores comprise a perfect heuristic in G, facilitating the efficient
output of up to k best derivations, represented in G′ by the derivation items. The KA* search
graph can be defined as follows:

Definition 3.2. Let us assume a phg G = (N , E ,µ, g , p) as well as a consistent and admissible
heuristic function h : N → [0,1]. Then the KA* search graph derived from G and h is defined as
G′ = (N ′, E ′,µ′, g ′, w ′), where

• the node set N ′ consists of three disjoint sets of items, respectively called inside, outside
and derivation items:

N ′ = {I(a) | a ∈N} ∪ {O(a) | a ∈N} ∪ {D(d ) | d ∈DG}

where I(·), O(·) etc. can be understood as mere syntactical constructs providing disjoint-
ness of the respective sets,

• the edge set E ′ is constructed from the original one according to

E ′ ={in(e) | e ∈ E} ∪ {switch} ∪ {out(i , e) | e ∈ E , i ∈ [ar(e)]}

∪{cat(e , d1, . . . , dn) | e ∈ E ,µ(e) = (b1 · · · bn ,a), di ∈D bi
G for i ∈ [n]}

again with in(·) etc. as syntactical “tags”,

• the function µ′ : E ′→N ′∗×N ′ can be defined by distinction on the supplied edge types,
given µ(e) = (b1 · · · bn ,a):

µ′(in(e)) =
�

I(b1) · · · I(bn), I(a)
�

µ′(switch) = (I(g ),O(g ))
µ′(out(i , e)) =

�

O(a) I(b1) · · · I(bn),O(bi )
�

µ′(cat(e , d1, . . . , dn)) =
�

O(a) D(d1) · · ·D(dn),D
�

e(d1, . . . , dn)
��

• the goal node g ′ is some D(d ) with d ∈D g
G ,1

• and the weight function w ′σ : [0,1]ar(σ)→ [0,1] for σ ∈ E ′ given by

w ′in(e)(w1, . . . , wn) = w1 · · ·wn · p(e)

w ′switch(w) = 1

w ′out(i ,e)(w0, w1, . . . , wn) = w0 ·w1 · · ·wi−1 ·wi+1 · · ·wn · p(e)

w ′cat(e ,d1,...,dn)
(w0, w1, . . . , wn) = w1 · · ·wn · p(e).

To alleviate the reading effort, in this chapter we will use greek letters when quantifying over
nodes and derivations in the search graph G′, while reserving latin ones for the original graph.

1Or left undefined, it will not play any role in the execution of the KA* algorithm.
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Note that the hyperedges in G′ can be interpreted as statements about dependency between
different items. For example, an edge σ ∈ E ′ with µ(σ) = (O(a) I(b1) I(b2),O(b2)) can be read
as “in order to compute the Viterbi outside score for the node b2, we already have to know
the outside score of a and inside scores for b1 and b2.” This interpretation will come in handy
when we move on to Lazy KA*.

The priority function specifies the order in which the items of the search graph are explored:

Definition 3.3. The priority function ψ= (ψσ | σ ∈ E ′) is a family of functions ψσ : M ar(σ)→
M (for every σ ∈ E ′) defined by

ψin(e)(w1, . . . , wn) = w1 · · ·wn ·we · h(hd(e))

ψswitch(w) = w
ψout(i ,e)(w0, w1, . . . , wn) = w0 ·w1 · · ·wn ·we

ψcat(e ,d1,...,dn)
(w0, w1, . . . , wn) = w0 ·w1 · · ·wn ·we .

Algorithm 3.1 KA* Search

Input: A phg G = (N , E ,µ, g , w), a heuristic h : N → [0,1] and a number k ∈N
Output: A list L ∈

�

D g
G

�∗
of best derivations, with length |L| ≤ k

Construct the search graph G′ = (N ′, E ′,µ′, g ′, w ′) acc. to Def. 3.2
S←;, Q←;, L← ε
for all σ ∈ E ′ such that ar(σ) = 0 do

insert
�

hd(σ) = w ′σ (),ψσ ()
�

into Q
end for
while Q 6= ; and |L|< k do

pop a maximal priority assignment (Φ = p,ψ) from Q
if there is no assignment (Φ = p ′) ∈ S then

S← S ∪{(Φ = p)}
if Φ=D(d ) with hd(d ) = g then

append d to L
end if
for all σ ∈ E ′ do

if for every i ∈ [ar(σ)] exists (Φi = pi ) ∈ S s.t. Φi = tl(σ)(i) and Φ j = Φ for some
j ∈ [ar(σ)] then

insert
�

hd(σ) = w ′σ (p1, . . . , par(σ)),ψσ (p1, . . . , par(σ))
�

into Q
end if

end for
end if

end while

The search graph G′ is then traversed as detailed in Alg. 3.1. Throughout its execution, KA*
maintains two basic data structures. The first one is called the chart S, a set containing items
which have already been explored, together with their determined best probabilities. Such pairs
of items Φ ∈N ′ and probabilities p ∈ [0,1] are called assignments and written as (Φ = p), but
this is just a fancy way of denoting the tuple (Φ, p).
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The other data structure is called the agenda2 Q and contains prioritized assignments (i.e.
assignments together with some priority) which can be thought of as assignments on the
chart in spe, in the following sense: in each iteration of the algorithm’s main loop, a maximally
prioritized assignment (Φ = w,ψ) is removed from the agenda and a check is performed whether
another assignment of Φ is already contained in the chart. If this is not the case, (Φ = w) gets
promoted to an assignment and is inserted into the chart. Subsequently, all new prioritized
assignments derivable from (Φ = w) and other assignments already in the chart are generated
and inserted into the agenda, possibly to be processed in one of the later iterations.

The algorithm exits the loop when there are no more prioritized assignments left on the
agenda to process or when enough derivations of G’s goal node have been generated. These
constitute the algorithm’s succeeding output.

Keep in mind that this traversal does not necessarily imply that inside, outside and derivation
items are processed exactly in this order: on the contrary, it might well be the case that the
exploration of, e.g., some outside item O(a) is triggered well before the chart is saturated with
assignments to all possible inside items.

3.2 Laziness
Having refreshed their knowledge of KA*, one might wonder if there is not room for opti-
mizations. Let us imagine an iteration of the algorithm’s main loop, where some derivation
item D(d j ) is removed from the agenda. Our next step would be to combine the derivation
d j with all other compatible derivations d1, . . . , d j−1, d j+1, . . . , dk on the chart, along every
edge e ∈ E coming into question, and to immediately generate all possible derivation items
D(e(d1, . . . , dk )), storing them as prioritized assignments on the agenda. But that could amount
to an awful lot of new assignments! Not only would their generation, their future removal
from the agenda, as well as their possibly even unnecessary processing, cost computation time,
they would also require precious memory, which could otherwise be used more sensibly for,
e.g., another treebank holding linguistic data.

Providentially, we can devise a way to cut back on the amount of newly generated derivation
items. Let e ∈ E with µ(e) = (b1b2,a) be some fixed hyperedge.3 Then, the best derivation
with e at its root certainly consists of the best derivations of b1 and b2 (up to ties), enforced
by the monotony of the underlying monoid Pr. Employing the same reasoning, there are
two candidates for the second-best derivation with root e : e(d 1

1 , d 2
2 ) and e(d 2

1 , d 1
2 ), with d 1

1
and d 2

1 the best derivations of b1 resp. b2, as well as d 2
1 and d 2

2 the corresponding second-best
derivations. After all, for e(d 1

1 , d 3
2 ), with d 3

2 the third-best derivation of b2, we would have

P (e(d 1
1 , d 3

2 ) |G) = P (d 1
1 |G) · P (d

3
2 |G) · p(e)

≤ P (d 1
1 |G) · P (d

2
2 |G) · p(e) (by monotony of multiplication)

= P (e(d 1
1 , d 2

2 ) |G),

giving us no sufficient reason to prefer e(d 1
1 , d 3

2 ) as candidate to e(d 1
1 , d 2

2 ).

2Since, for reasons of efficiency, its implementation will most probably be a priority queue (Okasaki, 1999) we also
refer to it as the queue, but for now it will suffice to think of it as an ordinary set.

3Of course, the described idea also works on hyperedges with higher or lower arity, however, for the sake of this
exposition, let us first assume two tail nodes.
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Figure 3.1: Candidates for the i -th best derivation

We can continue this argument as far as necessary, as illustrated by Fig. 3.1, where d j
i stands

for the j -th best derivation of bi . The large numbers in the different cells denote the rank r
of the derivation in the cell, where a derivation d is said to have rank r if it is the r -th best
derivation of a in the underlying graph.

In Fig. 3.1a, the four best derivations of a have already been determined.4 This suggests the
derivations in the darker shaded cells as candidates for the fifth-best derivation. Let us say this
fifth-best one is e(d 2

1 , d 2
2 ). Then we would have to update our set of candidates, now for the

sixth-best derivation, by its neighbors in two dimensions, e(d 3
1 , d 2

2 ) and e(d 2
1 , d 3

2 ), as shown in
Fig. 3.1b.5

This observation actually provides us with an effective idea to cope with our problem—we
equip every derivation item with the corresponding edge, its rank and backpointers, i.e., with the
list of the ranks of the derivations it was created from. Such items will be fittingly called ranked
derivation items with backpointers, or, for brevity’s sake, just ranked derivation items. Having
done so, we can start out the computation with adding the candidate sets for best derivations to
the agenda, for each hyperedge coming into question. Their backpointers will necessarily be
of the form 1 · · ·1 (since best derivations must have been created from best derivations), while
their ranks will be undefined at this point, as it will be impossible to determine those until the
items have been processed. But as soon as a ranked derivation item is inserted into the chart,
we can easily fill in its rank and supply the agenda with its neighbors, as given in the examples
above, again for each hyperedge coming into question.

To make it more lucid, let us try to present this idea in the form of the search hypergraph
introduced in Def. 3.2.6 We introduce ranked derivation items with backpointers

¦

K(e , r, b ) | e ∈ E , r ∈N∪{⊥}, b ∈Nar(e)
©

4In this example, all of those four have the hyperedge e at their root. This need not be the general case, but it does
not invalidate the argument: We can keep such candidate sets for every ingoing hyperedge of a node.

5Since e(d 3
1 , d 2

2 ) was already a candidate, effectively we update only with e(d 2
1 , d 3

2 ).
6We will, however, omit a complete rigorous definition, due to the fact that the “filling in” of ranks into derivation

items after they have been processed does not conveniently fit into the search graph model.
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into the node set N ′ instead of “ordinary” derivation items. The value ⊥ here denotes yet
undetermined ranks of items. The ranked derivation hyperedges are then given by

{build0(e) | e ∈ E}

∪
¦

build(e , r, b , i) | e ∈ E , ar(e)≥ 1, r ∈N, b ∈Nar(e), i ∈ [ar(e)]
©

,

again replacing the derivation hyperedges in E ′. Their connectivity is given by

µ′(build0(e)) =
�

O(hd(e))
fa1
(1) · · · fan

(1),

K(e ,⊥, 1 · · ·1)
�

µ′(build(e , r, b , i)) =
�

O(hd(e)) K(e , r, b )
fa1
(b1) · · · fai−1

(bi−1)

fai
(bi + 1)

fai+1
(bi+1) · · · fan

(bn),

K(e ,⊥, b1 · · · bi−1(bi + 1)bi+1 · · · bn)
�

,

for every such hyperedge, with tl(e) = a1 · · ·an , backpointers b = b1 · · · bn and fa(k) denoting
the k-ranked derivation item for head a, for every k ∈N and a ∈N .

By reading these hyperedge definitions as statements about dependency, as suggested above,
they actually speak for themselves: “Presuming we have computed the outside score for a node
and all the best-ranked derivation items of the tails of an ingoing hyperedge e , we can devise a
rank one candidate for that node.”

And: “In order to construct the neighboring candidate for rank r + 1 in the i -th dimension
along hyperedge e , we require the outside score, the according ranked derivation item of rank
r , and the ranked derivation item for e’s i -th tail which comes in rank right after the i -th
backpointer. Moreover, we depend on the other ranked derivation items pointed to.”

As for ordinary derivation items, the outside scores serve as heuristic values, going only into
the assignments’ priorities. Hence the weight and priority functions arise as

w ′build0(e)
(x1, . . . , xn) = x2 · · · xn · p(e)

w ′build(e ,r,b ,i)(x1, . . . , xn) = x3 · · · xn · p(e)

and

ψbuild0(e)
(x) = x1 · · · xn · p(e)

ψbuild(e ,r,b ,i)(x1, . . . , xn) = x1 · x3 · · · xn · p(e).

Observe how for build-hyperedges the weight of the r -ranked derivation item is discarded in
the definitions above. Nevertheless, it has an effect, as its inclusion in the hyperedge’s tail nodes
prevents the candidate being constructed ahead of its time. Instead, its construction is only
triggered when one of its directly neighboring predecessors has been processed.

With the definition of the KA* search hypergraph modified in this way, Alg. 3.1 searches
it until no more assignments are on the agenda or k ranked derivation items with the goal
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node g as their hyperedge components’ heads have been found, while equipping every ranked
assignment inserted into the chart with its actual rank. After this, the actual derivations of g
have to be reconstructed, this is easily achieved by recursively following the ranked assignments’
backpointers and composing the stored hyperedges in the obvious way.

We should note that this lazy reformulation does not change the results of the algorithm: in
this way, lazy and non-lazy KA* are equivalent. We will try to ascertain this equivalence. Since
they are the only types of items that differ, let us have a look at the relation between derivation
items in non-lazy, and ranked derivation items in lazy KA*. As stated before, the creation
of the latter is only triggered by the processing of their directly predecessing neighbors. But,
eventually, if the algorithm runs that long, they will be processed and the ranked derivation
item in question will be inserted into the agenda, along with its computed weight and priority.

So what about the values of these? If we assume both prioritized assignments, once in
non-lazy, once in lazy KA*, were created from corresponding assignments with equal weights,
it is easy to see that the computed weights and priorities of both coincide. That is, let us assume
that (D(e(d1, . . . , dk)) = x, q) was created from the assignments (O(hd(e)) = x1), as well as
(D(di+1) = xi+1), for i ∈ [k]. Moreover, we presume that (K(e , r, b ) = x ′, q ′) was created from
assignments (O(hd(e)) = x1), (K(e , r ′, b ′) = y), and (K(ei , ri , bi ) = xi ) for i ∈ [k].

But then, according to the definitions for the weight function w ′ in the search hypergraph,
we have

x = w ′cat(e ,d1,...,dk )
(x1, . . . , xk+1)

= x2 · · · xk+1 · p(e)
= w ′build(e ,r,b ,i)(x1, y, x2, . . . , xk+1)

= x ′,

as well as

q =ψcat(e ,d1,...,dk )
(x1, . . . , xk+1)

= x1 · · · xk+1 · p(e)
=ψbuild(e ,r,b ,i)(x1, y, x2, . . . , xk+1)

= q ′,

i.e., their probabilities and priorities agree. An analogous computation can be made for
hyperedges of the form build0. Of course, this short argument does not constitute a proper
proof for the equivalence of the two algorithms. However, it should give us some assurance
that lazy KA* does not compute something completely different from its non-lazy alternative.

3.3 Implementation of Lazy KA*
With the gist of the idea behind laziness established, we can now begin thinking about its
implementation, which is to be achieved in the lazy functional programming language Haskell
(Peyton-Jones, 2003) and to be integrated into the in-house-developed project Vanda, a software
platform for research and teaching in the field of Machine Translation.

In a technical report, Shieber, Schabes, and Pereira (1995) introduced the idea of Deductive
Parsing, a formalism for specifying different parsing strategies (like, e.g., Cocke-Younger-Kasami
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or Earley-style parsing) as a set of axioms and deduction rules, formally and notationally
similar to logical calculi like natural reasoning. Moreover, they implemented a meta-interpreter,
facilitating inference from such rules and employing a chart and an agenda as given above,
which they brought about in the logic programming language Prolog.7

It is exactly this formalism of deductive parsing, refined with weights, in which the KA*
algorithm is presented in its introductory paper by Pauls and Klein (2009a). Hence, we can
draw many ideas from Shieber’s et al. Prolog implementation and apply it to the task at hand
with Haskell. However, we will also be faced with a few problems specific to our choice of
language, after all it immediately suggests itself that a logic programming language like Prolog is
more applicable to a formalism similar to natural reasoning than its functional and imperative
competitors.

Many ideas presented by Shieber et al. relate to the trigger item and associated matters
of efficiency. The trigger items (or for the weighted case we deal with, rather the trigger
assignments) are the items removed from the agenda in each iteration of the algorithm’s main
loop. They have this specific name because each trigger item possibly triggers the application
of an inference rule to it and other “fitting” chart items, to generate a number of new items on
the agenda. Since this may happen in every iteration, it is a matter of importance that these
other, in some manner compatible items, can be retrieved efficiently from the chart. In the
case of Prolog, Shieber et al. could achieve this with predicates mapping items to indices in the
chart, however, for our case, where nearly every rule is constructed from one of the graph’s
hyperedges, we suffice with structures mapping nodes to the hyperedges where they appear
in, as well as an organisation of the chart which allows fast access to the different types of
assignments. Both can be achieved with Haskell’s Data.Map datatype, as will be seen later,
promising logarithmic lookup times,

However, we will have to deal with matters of symmetry in the implementation of deduction
rules. For example, ranked derivation assignment can trigger rules in two ways, as can be seen
from the description in Section 3.2: In the first case, the trigger item could stand in the second
position of the tail of a build-hyperedge, which means that other fitting ranked items would
have to be looked up in order to generate the trigger’s neighbors. But the other case might
also apply, if the trigger appears in the third position or later, namely that the processing of
the trigger assignment allows the construction of new neighbors of another ranked derivation
item, which was already in the chart. While Prolog’s inference system allows Shieber’s et al.
meta-interpreter to steer clear of such difficulties with elegance, our implementation just splits
these rules up into two sub-rules, one for each possible role of the trigger.

Of course this is not the only difference from the Prolog meta-interpreter. Because of
Haskell’s purity, the property that all code is free of side-effects, there arises the problem of how
to deal with the state inherent to the algorithm. Of course, one might pass the state—comprised
mainly of chart and agenda—around as function arguments, but we chose to hide the current
state within a State monad.8 Monads, specifically the list monad [], can be applied to deal
with the non-determinism of rule application, too, which is also hidden by Prolog’s resolution

7For an introduction to Prolog, refer to Hölldobler (2001), for Prolog’s history to Colmerauer and Roussel (1993).
8Dealing with program and environment state was actually one of the first applications of the concept of monads

in Haskell. They are special functors, derived from the field of category theory, and can be used to denote
sequential computations with “programmable semicolons,” i.e., with modifiable behavior of composition. For a
category-theoretic definition, refer to the seminal work by MacLane (1971, ch. VI), for practical applications in
Haskell to O’Sullivan, Goerzen, and Stewart (2008, ch. 14).
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mechanism. We will see later how the backtracking behaviour implemented by the list monad
allows us to give a succinct way to apply rules to all their possible antecedents.

With its disadvantages covered, Haskell’s purity has the big advantage that it allows implicit
sharing of algebraic datatypes’ substructure. This outweighs many of the addressed hassles. Our
implementation is split into three modules, Data, State, and KAStar, dealing, respectively,
with basic data structures, monadic algorithm state, and the actual rules and execution of the
algorithm, each builing up on the previous. Hence, we will divide our exposition into three
parts, too.

3.3.1 Data Structures

Items and assignments are of course basic to the whole KA* algorithm.

data Assignment v l w i = Inside (I v l w i) w
| Outside (O v l w i) w
| Ranked (K v l w i) w

deriving (Show, Eq)
newtype I v l w i = I { iNode : : v } deriving (Show, Eq)
newtype O v l w i = O { oNode : : v } deriving (Show, Eq)
data K v l w i = K { kNode : : v

, kEdge : : Hyperedge v l w i
, kRank : : Int
, kBackpointers : : [Int]
} deriving (Show)

Here, the data types I, O and K stand for inside, outside and ranked items. The type Hyperedge
is imported from the Vanda project and introduces the type parametricity over v, l, w, i—
hypergraph nodes, labels, weights and IDs. For inside and outside items, it suffices to annotate
them with their respective node, hence we can use the more efficient newtype declaration.
Ranked items are constructed from hyperedges, the edge’s head nodes, their rank and their
backpointers. The Assignment algebraic data type equips every item with its priority, also of
parametric type w.

Next, we define the representation of the algorithm’s chart.

data Chart v l w i = C { cEdgeMap : : Map v (EdgeMapEntry v l w i)
, cBPMap : : Map (Hyperedge v l w i, Int, Int)

[Assignment v l w i]
}

data EdgeMapEntry v l w i = EM { emInside : : [Assignment v l w i]
, emOutside : : [Assignment v l w i]
, emRanked : : Seq (Assignment v l w i)
} deriving Show

Our chart consists of two maps: the first one, cEdgeMap, maps every node in the hypergraph to
its associated inside, outside, and ranked items. Since each node has at maximum one inside and
outside item, it might have been sensible to use the Maybe type constructor instead of a list for
them, but since the interface to the chart will export them as lists anyway, and since for this case,
the differences are merely cosmetical, we stuck with lists. Ranked assignments were initially
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stored in a list, too, but the linear lookup time proved to be too much of a slow-down and we
switched the internal representation to the Data.Sequence module, promising logarithmic
access times.

The reason of existence of the second map, cBPMap, is related to optimization, too: later, in
the application of the build-rule, we will require efficient lookup of all those ranked derivation
assignments containing a hyperedge e whose i -th backpointer has the value j . Of course, the
maintenance of this map during the algorithm’s execution leads to a certain overhead, but it
proved to be of advantage, nevertheless.

Finally, we define the chart’s interface with various accessor functions. Since their actual
implementation is lengthy, but certainly not very interesting, we stick with their type signatures.

insideAssignments : : Ord v ⇒ Chart v l w i → v → [Assignment v l w i]
outsideAssignments : : Ord v ⇒ Chart v l w i → v → [Assignment v l w i]
rankedAssignments : : Ord v ⇒ Chart v l w i → v → [Assignment v l w i]
nthRankedAssignment : : Ord v

⇒ Chart v l w i → v → Int → [Assignment v l w i]
rankedWithBackpointer : : (Ord v, Ord l, Ord w, Ord i)

⇒ Chart v l w i → (Hyperedge v l w i)
→ Int → Int → [Assignment v l w i]

The functions insideAssignments, outsideAssignments and rankedAssignments return
the respective lists of assignments for a node in the supplied chart. nthRankedAssignment
gives back a singleton list containing the ranked assignment to a node with supplied rank, or
the empty list if there is no such assignment. Ultimately, rankedWithBackpointer c e i j
returns those ranked assignments from the chart c which contain the hyperedge e and whose
i-th backpointer is equal to j. The agenda’s definition is quite short by comparison.

type Agenda p v l w i = Heap p (w, Assignment v l w i)

The module Data.Heap serves as an efficient implementation of priority queues. The type
parameter p can be instantiated with FstMaxPolicy or FstMinPolicy, toggling whether the
order on the weights or its dual order should be used in the comparisons employed by the
priority queue. This leads to k-best and k-worst, respectively.

3.3.2 State
Next, we will concern ourselves with the algorithm’s state. Central to this lies the KAStar
monad stack, which comprises not only state, but also configurational parameters, like the sup-
plied hypergraph, etc. Algorithmic state is stored in the State monad, while the configuration
is read out from the Reader monad, which is plugged onto the State monad in the form of
a monad transformer, ReaderT. Monad transformers are thoroughly described in O’Sullivan
et al. (2008).

newtype KAStar p v l w i a = KAStar {
runK : : ReaderT (KAConfig v l w i) (State (KAState p v l w i)) a

} deriving ( Monad
, MonadReader (KAConfig v l w i)
, MonadState (KAState p v l w i)
)
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In order of appearance, the configurational parameters denote the number k of derivations
searched for, the underlying weighted hypergraph, its goal node, a consistent heuristic, and two
auxiliary data structures, whose function, as mentioned above, is mapping hypergraph nodes
to the hyperedges they appear in, together with an integer for the position where they do so.

data KAConfig v l w i = KAConfig {
cfgNumDeriv : : Int

, cfgGraph : : Hypergraph v l w i
, cfgGoal : : v
, cfgHeuristic : : v → w
, cfgInEdges : : M.Map v [(Hyperedge v l w i, Int)]
, cfgOtherEdges : : M.Map v [(Hyperedge v l w i, Int)]
}

As mentioned above, the algorithm’s state is composed from the chart and the agenda. Addi-
tionally, we have counters for generation of assignments, as well as for insertions into the chart.
These may serve as a measure as to how many redundant assignments the algorithm produces.

data KAState p v l w i = KAState {
stChart : : Chart v l w i

, stAgenda : : Agenda p v l w i
, stItemsInserted : : Int
, stItemsGenerated : : Int
}

We also provide a function to run the monad stack defined above.

runKAStar
: : KAStar p v l w i a
→ Agenda p v l w i → Int
→ Hypergraph v l w i → v → (v → w)
→ M.Map v [(Hyperedge v l w i, Int)]
→ M.Map v [(Hyperedge v l w i, Int)]
→ (a, KAState p v l w i)

runKAStar kst agenda k graph goal heuristic ins others =
let cfg = KAConfig k graph goal heuristic ins others

state = KAState (C M.empty M.empty) agenda 0 0
in runState (runReaderT (runK kst) cfg) state

As shown in the code, the algorithm starts out with an empty chart and agenda, as well as
configuration data set by the environment, which is passed by function arguments.

Many of the accessor functions for the data structures from above are reexported in this
module, with their computations lifted into the KAStar monad. Since the code for these is
hardly surprising, we will omit them here and explain their behaviour when they are used, if it
does not emerge from their name and context, anyway. One of the more substantial parts of
this module is the function chartInsert.

chartInsert
: : (Ord v, Ord l, Ord w, Ord i)
⇒ Assignment v l w i → KAStar p v l w i (Maybe (Assignment v l w i))
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chartInsert assgmt = do
enough ← case assgmt of

(Ranked (K v _ _ _) _)
→ liftM2 (>) ((flip numRanked v) ‘liftM‘ chart) numDeriv

_ → return False
contained ← chartContains assgmt
if enough | | contained

then return Nothing
else do

incItemsInserted
bpInsert assgmt
Just ‘liftM‘ eInsert assgmt

where
bpInsert a@(Ranked (K _ e _ bps) _) = do

c ← chart
let bc’ = foldl

(λ m k → M.insertWith’ (++) k [rk c a] m)
(cBPMap c)
[(e, bp, val) | bp ← [1 .. length bps]

, let val = bps !! (bp - 1)]
putChart c{cBPMap = bc’}

bpInsert _ = return ()
eInsert a = do

c ← chart
putChart c{cEdgeMap = M.alter (Just ◦ update c a)

(node a)
(cEdgeMap c)}

return $ rk c a
update c a@(Inside _ _) Nothing = EM [a] [] empty
update c a@(Outside _ _) Nothing = EM [] [a] empty
update c a@(Ranked _ _) Nothing = EM [] [] (singleton $ rk c a)
update c a@(Inside _ _) (Just ce) = ce{emInside = [a]}
update c a@(Outside _ _) (Just ce) = ce{emOutside = [a]}
update c a@(Ranked _ _) (Just ce) = ce{emRanked = rk c a

Ã emRanked ce}
rk c (Ranked (K v e r bps) w) =

Ranked (K v e (succ $ numRanked c v) bps) w
rk _ x = x

For the passed assignment, it checks whether it is already contained in the chart, or, if it is
a ranked assignment, if k derivations of the same node were already computed. In this case,
we may safely discard it. Else, it is inserted into the chart, i.e. the maps for node-access
and backpointer-access are updated accordingly via the subfunctions eInsert and bpInsert.
Alongside, the counter for inserted items is incremented via the monadic function incItems-
Inserted and the rank of inserted ranked derivation item is determined via the subfunc-
tion rank. Finally, the item (annotated with its computed rank if applicable) is returned.
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Here empty, singleton and Ã stand for creation as well as concatenation operations of
Data.Sequence. Insertion of assignments into the agenda is much simpler:

agendaInsert
: : (Ord v, Ord w, H.HeapItem p (w, Assignment v l w i))
⇒ [(w, Assignment v l w i)] → KAStar p v l w i ()

agendaInsert assgnmts = do
incItemsGenerated $ length assgnmts
putAgenda =� flip (foldl’ (flip insert)) assgnmts ‘liftM‘ agenda

Supplied with a list of generated prioritized assignments, we insert these into the agenda and
increase the counter for generated assignments accordingly. Lastly, we provide a means to
remove items from the agenda.

popAgenda
: : H.HeapItem p (w, Assignment v l w i)
⇒ KAStar p v l w i (Assignment v l w i)

popAgenda = do
((p, popped), agenda’) ← (fromJust ◦ H.view) ‘liftM‘ agenda
putAgenda agenda’
return popped

Presuming the agenda is non-empty, popAgenda removes an assignment with maximal priority,
and saves the thus modified agenda. The removed assignment is returned.

3.3.3 Putting it all together
With the groundwork laid in the two previous modules, the implementation of Lazy KA*
poses no further trouble.

process
: : (Ord v, Ord w, Ord i, Ord l, H.HeapItem p (w, Assignment v l w i))
⇒ KAStar p v l w i (Maybe (Assignment v l w i))

process = do
d ← done
if d then return Nothing

else do -- agenda != empty
popped ← popAgenda
trigger ← chartInsert popped
case trigger of

Nothing → process
_ → return trigger

where done = do
e ← H.isEmpty ‘liftM‘ agenda
l ← liftM2 numRanked chart goal
k ← numDeriv
return $ e | | l ≥ k

The function process removes assignments from the agenda and tries to insert them into the
chart (via chartInsert), until it finds an assignment that was not already inserted and might
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therefore act as a trigger, which is then returned. If the agenda is empty, or k derivations of the
goal node have been found before that, the function returns Nothing.

The function process is employed in kastar, which models the whole of KA*.

kastar
: : (Num w, Ord v, Ord w, Ord l, Ord i,

H.HeapItem p (w, Assignment v l w i))
⇒ Agenda p v l w i → Hypergraph v l w i → v → (v → w) → Int
→ [(T.Tree (Hyperedge v l w i), w)]

kastar agenda graph g h k
= reverse ◦ mapMaybe (traceBackpointers res) $ rankedAssignments res g
where (res, info) = runKAStar kst agenda k graph g h ins others

(ins, others) = edgesForward graph
kst = initialAssignments�= agendaInsert � loop
loop = do

m ← process
case m of

Nothing → chart
(Just trigger) → newAssignments trigger�= agendaInsert

� loop

The function starts out with generating the auxiliary data structures cfgInEdges and cfg-
OtherEdges by invocation of edgesForward. Afterwards, the initial assignments are inserted
into the chart in kst, and then loop alternately pops new trigger assignments via process and
inserts their consequences into the agenda. When the work is done, process returns Nothing,
the derivations of the goal node are reconstructed with traceBackpointers, brought into
ascending order with reverse and emitted.

Since the function is still abstract in the ordering properties of the agenda, we will have to
introduce two specializations: one, kbest, where the agenda prioritizes higher weights, and
the other, kworst, where the contrary applies.

kbest, kworst
: : (Num w, Ord v, Ord w, Ord l, Ord i)
⇒ Hypergraph v l w i → v → (v → w) → Int
→ [(T.Tree (Hyperedge v l w i), w)]

kbest = kastar (H.empty : : H.MaxPrioHeap w (Assignment v l w i))
kworst = kastar (H.empty : : H.MinPrioHeap w (Assignment v l w i))

Let us view how the initial assignments, with which the agenda is populated at the beginning of
the algorithm, are created:

initialAssignments
: : (Num w, Ord v, Eq l, Eq i)
⇒ KAStar p v l w i [(w, Assignment v l w i)]

initialAssignments = do
g ← graph
h ← heuristic
return $ map (ins h) ◦ filter ((== 0) ◦ length ◦ eTail)
◦ concat ◦ M.elems ◦ edgesM $ g
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where ins h e = let w = eWeight e
p = w ∗ (h ◦ eHead $ e)

in (p, Inside (I ◦ eHead $ e) w)

As detailed in Alg. 3.1, at first we only process hyperedges of arity zero. Their weights
constitute the corresponding assignments’ weights, whose priorities are computed with the
external heuristic h.

All that is left to be done is to describe the rules used to generate new assignments from
the trigger. Every rule is implemented as a function, with the triggering assignment among its
arguments, as well as various auxiliary data structures, used for optimization. They all return a
list of new prioritized assignments, hence we can employ list-monadic computations in their
bodies, generating all possible instantiations of this rule at once, as well as dealing with failure,
behind the scenes.

The rules are called, depending on the type of the triggering assignment, by the function
newAssignments. Let us start out with the switch rule.

switchRule : : Chart v l w i
→ v
→ Assignment v l w i
→ [(w, Assignment v l w i)]

switchRule c g trigger = do
guard $ isInside trigger && node trigger == g
return $! (weight trigger, Outside (O g) 1)

If the trigger was an inside item containing the goal node, we can switch to the computation of
outside items, i.e., we emit the outside item, with weight 1.0 and priority determined from the
weight of the triggering assignment. Next, we will have a look at the inside rule.

inRule : : Chart v l w i → (v → w) → Assignment v l w i
→ (Hyperedge v l w i, Int) → [(w, Assignment v l w i)]

inRule c h trigger (e, r) = do
ibsl ← mapM (insideAssignments c) ◦ take r $ eTail e
ibsr ← mapM (insideAssignments c) ◦ drop (r + 1) $ eTail e
let ibs = ibsl ++ [trigger] ++ ibsr

w = eWeight e ∗ (product ◦ map weight $ ibs)
p = h (eHead e) ∗ w

return $! (p, Inside (I (eHead e)) w)

The rule is supplied with the trigger item trigger, together with an entry (e,r) from
cfgInEdges, detailing a hyperedge e whose tail the trigger’s associated node appears in, to-
gether with an integer r specifying the position. Then the chart is queried for compatible
inside assignments lying “around” this position. If that is so, we can generate a new prioritized
assignment, with priority taken from the external heuristic h. This rule can only be triggered
by inside items. The out-rule is slightly more complex:

outRule : : Chart v l w i → Assignment v l w i
→ (Hyperedge v l w i, Int)
→ [(w, Assignment v l w i)]

outRule c trigger (e, r) = do
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(oa, ibs)
← if r == 0

then do
guard $ isOutside trigger
liftM2 (,) [trigger] (mapM (insideAssignments c) (eTail e))

else do
guard $ isInside trigger
ibsl ← mapM (insideAssignments c) ◦ take (r - 1) $ eTail e
ibsr ← mapM (insideAssignments c) ◦ drop r $ eTail e
liftM2 (,) (outsideAssignments c $ eHead e)

[ibsl ++ [trigger] ++ ibsr]
i ← [0 .. (length ibs - 1)]
let w = eWeight e ∗ weight oa

∗ (product ◦ map weight $ take i ibs)
∗ (product ◦ map weight $ drop (i + 1) ibs)

p = w ∗ weight (ibs !! i)
return $! (p, Outside (O (eTail e !! i)) w)

Again, the rule is provided with the triggering assignment, a hyperedge, and the position of
the assignment’s node in this edge. Since the processing of inside and outside assignments is
interleaved, as described above, the rule can be triggered by both types of assignments. If the
trigger is an outside assignment of the edge’s head node (r = 0), compatible inside assignments
are queried from the chart, else if it is an inside assignment of one of the tail nodes (r > 0), we
look for fitting inside assignments around the trigger, as with the inside rule, and an outside
assignment for the edge’s head. The rule then goes on and constructs an outside item for each
of the hyperedge’s tail nodes, via monadic selection of i.

Next, we consider buildRuleO:

buildRuleO : : Chart v l w i → Assignment v l w i
→ (Hyperedge v l w i, Int) → [(w, Assignment v l w i)]

buildRuleO c trigger@(Outside _ _) (e, 0) = do
as ← mapM (flip (nthRankedAssignment c) 1) (eTail e)
let w = eWeight e ∗ (product ◦ map weight $ as)

p = w ∗ weight trigger
bps = map rank as

return $! (p, Ranked (K (eHead e) e 0 bps) w)
buildRuleO c trigger@(Ranked _ _) (e, r) = do

guard $ r 6= 0 && rank trigger == 1
oa ← outsideAssignments c $ eHead e
asl ← zipWithM (nthRankedAssignment c) (take (r - 1) $ eTail e)

(repeat 1)
asr ← zipWithM (nthRankedAssignment c) (drop r $ eTail e) (repeat 1)
let assmts = asl ++ [trigger] ++ asr

w = eWeight e ∗ (product ◦ map weight $ assmts)
p = w ∗ weight oa
bps = map rank assmts

return $! (p, Ranked (K (eHead e) e 0 bps) w)
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buildRuleO _ _ _ = []

This rule’s purpose lies in the construction of new ranked derivation assignments, with back-
pointers only to best-ranked assignments (i.e., every backpointer’s value is one). Thus, one
can think of the rule as initialization of the structures used for candidate search as described
in Section 3.2. Again, because processing of the different types of assignments is not clearly
divided into distinct phases, the triggering assignment may be an outside or a ranked assignment.
In the first case, we query the chart for best-ranked assignments of the tail nodes of the supplied
hyperedge, and construct the corresponding new ranked assignment. In the other case, the
triggering item is required to have rank one, and is then combined with compatible best-ranked
assignments along the supplied hyperedge, yielding a new ranked assignment to be inserted
into the agenda.

Note that when we disregard the above case distinction on the type of the trigger, the rule
can be thought of as an implementation of the build0-rule introduced in Section 3.2, once with
an outside assignment as trigger, and once with a best-ranked derivation assignment.

The following two rules, buildRuleL and buildRuleR, implement together the functional-
ity of the build-rule, again with a case distinction on the role of the triggering assignment.

buildRuleL : : Chart v l w i → Assignment v l w i
→ M.Map v [(Hyperedge v l w i, Int)]
→ [(w, Assignment v l w i)]

buildRuleL c trigger@(Ranked _ _) inEdges
= concatMap rule (M.findWithDefault [] (node trigger) inEdges)
where

rule (e, s) = do
Ranked (K _ e’ _ bps) _ ← rankedWithBackpointer c e (s + 1)

(rank trigger - 1)
asl ← take s ‘liftM‘

zipWithM (nthRankedAssignment c) (eTail e) bps
asr ← drop (s + 1) ‘liftM‘

zipWithM (nthRankedAssignment c) (eTail e) bps
oa ← outsideAssignments c (eHead e)
let assmts = asl ++ [trigger] ++ asr

w = eWeight e ∗ (product ◦ map weight $ assmts)
p = w ∗ weight oa
bps = map rank assmts

return $! (p, Ranked (K (eHead e) e 0 bps) w)
buildRuleL _ _ _ = []

The above rule is triggered by an r -ranked derivation assignment. It updates all assignments
in the chart possessing a backpointer to the corresponding (r − 1)-ranked assignment with
its trigger, thus generating new neighboring candidates to be inserted into the agenda. For
reasons of optimization, buildRuleL is directly supplied with the inEdges data structure.
Moreover, observe how the function utilizes rankedWithBackpointer for efficient lookup of
assignments with backpointers directly below the trigger’s rank. The inherent backtracking
behaviour of the list monad ensures that the rule is applied to every ranked assignment with
fitting backpointers.

The rule buildRuleR fulfills diametral purposes.
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buildRuleR : : Chart v l w i → Assignment v l w i
→ [(w, Assignment v l w i)]

buildRuleR c trigger@(Ranked (K _ e _ bps) _) = do
r ← [1 .. length bps]
let bps’ = zipWith (+) bps (unit (length bps) r)
assmts ← zipWithM (nthRankedAssignment c) (eTail e) bps’
oa ← outsideAssignments c (eHead e)
let w = eWeight e ∗ (product ◦ map weight $ assmts)

p = w ∗ weight oa
return $! (p, Ranked (K (eHead e) e 0 bps’) w)
where

unit n r = replicate (r - 1) 0 ++ [1] ++ replicate (n - r) 0
buildRuleR _ _ = []

Its trigger is a ranked assignment with backpointers. For each of its backpointers, the chart
is queried for the next-best ranked derivation assignment. This is achieved by pointwise
addition of all possible unit vectors (i.e., lists of the form [0,. . . ,0,1,0,. . . ,0]) to the item’s
backpointers and querying the chart for the appropriate ranked assignments. If such assignments
are in the chart, we can construct a neighboring candidate in the unit vector’s respective
dimension. With these rules, the exposition of Lazy KA*’s implementation is concluded.
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4 Grammars and Hypergraphs
Through the following chapter, we will occupy ourselves with the formalism of probabilistic
tree insertion grammars, used in the field of Natural Language Processing. We will develop a
notion of how to transform such grammars into probabilistic hypergraphs, and how to equip
these hypergraphs with latent annotation symbols. This allows use of the State-Split procedure,
facilitating accurate learning of probabilistic hypergraphs from supplied treebanks of natural
language samples.

In the course of this, we will detail the Expectation-Maximization algorithm for maximum-
likelihood estimation of complete data, given some incomplete data, and argue why the Inside-
Outside algorithm can be seen as a dynamic programming instance of EM.

4.1 Probabilistic Tree Insertion Grammars
Probabilistic tree insertion grammars (ptig) are seeing increasing use in the fields of Natural
Language Processing and Machine Translation (cf. Nesson, Shieber, and Rush, 2006). They
can be thought of as special instances of tree adjoining grammars (tag), first introduced by Joshi
(1985). Let us consider those, first of all.

In contrast to the well-known context-free grammars, the basic building blocks of tree
adjoining grammars are not mere strings over terminal and non-terminal symbols, but trees.
Accordingly, the products of derivations of tags are trees instead of strings, too. These trees are
called the derived trees, or also full-parse trees, of the tree adjoining grammar in question.

To be more precise, a tag consists of two sets of (unranked) trees over terminals and non-
terminals, called the set of initial trees and the set of auxiliary trees, with the union of these sets
simply referred to as the set of the grammar’s trees. These two types of trees correspond to the
two possible derivation operations in the formalism, namely substitution as well as adjoining.

Substitution facilitates handling the discontinuity introduced in natural languages by such
phrases as “drink sb. under the table”, “drive sb. mad”, etc.

It takes place on non-terminal leaf nodes of the grammar’s trees. During this operation,
the non-terminal is replaced by a tree derived from an initial tree, with its root node equal to
the replaced leaf node. An example for substitution is displayed in Fig. 4.1. There, we have
two trees (possibly already derived from other trees), with English words as terminals and
part-of-speech tags (cf. Manning and Schütze, 1999, ch. 3.1) as non-terminal symbols. The
upper tree, with the yield “drink (sb.) under the table”, has a leaf non-terminal NP, which is
ready for substitution. By convention, such nodes are marked with a downward arrow (↓) in
figures showing the trees in question.

Since the lower tree, with the yield “old Jim”, has NP as its root, and was derived from an
initial tree (at least we pretend so in this example), it can be substituted into the upper one,
deriving the tree on the right, with yield “drink old Jim under the table”.

Adjoining, on the other hand, allows to “plug” modifiers into already derived trees. This
may be used to add adjectives to noun phrases or adverbs to verb phrases, arriving at more
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Figure 4.1: Substitution of initial trees

complex noun or verb phrases.
For this plugging in to take effect, every auxiliary tree has a uniquely determined leaf node

with the same label as its root, called its foot node. Adjoining is then allowed for a non-leaf
position w of a tree t , designated as an adjoining site, together with an auxiliary tree t ′ with
root label equal to the label at w. It is performed by

(i) replacing the foot node of t ′ with the subtree of t at position w, arriving at the tree t ′′,
and then

(ii) replacing the subtree of t at position w with t ′′.

For an illustrative example of adjoining, let us turn our attention to Fig. 4.2. There, we
have a tree with yield “the cat sat on the mat” and an auxiliary tree with yield “yesterday.” As
customary for tags, the foot node of the auxiliary tree is marked with a star (∗). We adjoin the
auxiliary tree into the former tree’s only position labeled with PP (prepositional phrase) by
the approach from above: The auxiliary tree is substituted for the former’s PP node, while its
foot node is replaced by the subtree at PP (whose yield is “on the mat”). We arrive at the tree
displayed on the right, yielding “the cat sat on the mat yesterday.”

Similar to probabilistic context-free grammars, tags can also be extended with probabilities,
arriving at probabilistic tree adjoining grammars (ptag). There are manifold ways to add proba-
bilities to tags, compare Schabes (1992), but we will content ourselves with providing every
tree with the probability of it being used at a certain point in a derivation, as well as every
designated adjoining site of a tree with the probability that adjoining will take place on it. Note
that thus we can enforce adjoining on a certain site, by setting the corresponding probability to
one.

As argued by Nesson et al. (2006), the probability models induced by ptags have a definite
advantage over the ones induced by pcfgs: since for ptags, we assign probabilities to whole
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Figure 4.2: Adjoining of an auxiliary into an initial tree

subtrees of the resulting full-parse tree instead of separate rules, there is the possibility to prefer
certain idiomatic phrasal structures over the components they are built from—e.g., going back
to the example from above, the idiom “drink sb. under the table” might have a significantly
higher occurrence than the phrase “under the table”, depending on the domain of discourse.
With ptags, we can easily adapt to this by modifying the tree’s probability, but with pcfgs, there
is no such possibility.1

Finally, since parsing of tags is in O(n6) (in the length of input strings as well as non-terminal
symbols), we will restrict the (probabilistic) tree adjoining grammars used in the following to
(probabilistic) tree insertion grammars ((p)tig), for which there are parsing algorithms in O(n3),
as given by Schabes and Waters (1994).

Tree insertion grammars achieve this higher efficiency by disallowing wrapping trees, i.e.,
trees derived from an auxiliary tree whose foot node has other leaf nodes to its right as well as to
its left. Hence we will only allow those trees whose foot node is at the left (called right-auxiliary
trees), and those whose foot node is at the right of their yield (these are called left-auxiliary
trees). Adherence to this constraint has to be enforced throughout the whole derivation of
a full-parse tree. For an example for wrapping trees, refer to Fig. 4.3. There, adjoining of
the right-auxiliary tree (on the left) into the left-auxiliary tree (in the middle) results in the
wrapping tree on the right.

The occurrence of wrapping trees can be prevented by explicitly allowing resp. disallowing

1Compare also to the arguments regarding tree substitution grammars by Manning and Schütze (1999, p. 448),
which can be carried over to ptigs.
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Figure 4.3: Production of a wrapping tree by unwise adjoining

adjoining on every tree position via labeling the corresponding nodes with the symbols L and
R. These signal possibility of adjoining of a left, resp. right auxiliary tree. A position on the
spine of a left-auxiliary (resp. right-auxiliary) tree must then not be labeled with R (resp. L), or
else adjoining might result in a wrapping tree.

We now have the necessary tools to give a definition for probabilistic tree insertion gram-
mars. The subsequent definitions follow the formalization of probabilistic synchronous tree
insertion grammars by DeNeefe, Knight, and Vogler (2010), differing only in the omission of
the synchronous processing. First of all, we will give an idea of what the rules of ptigs look like.

Definition 4.1. Presuming two disjoint sets, T and N , of terminal and non-terminal symbols, a
substitution rule is a tuple r = (ζ ,W , P r

adj
) where

• ζ ∈UN (T ), called the tree of this rule,

• W ⊆ nlv(ζ )×{L, R}, denoting positions and allowed directions for possible adjunctions
in the tree above, called the set of potential adjoining sites,

• P r
adj

: W → [0,1], denoting the adjoining probability for each site.

Similarly, an auxiliary rule is a tuple r = (ζ ,W ,∗, P r
adj
) where ζ , W and P r

adj
are as above and

we demand additionally:

• The position ∗ ∈ lvN (ζ ), called the foot node of this rule, satisfies ζ (ε) = ζ (∗) as well
as ∗ 6= ε. The sequence of prefixes of ∗, ordered by ascending length, is called the tree’s
spine.

• ∗ is the left- or rightmost leaf, i.e. for every position w ∈ lv(ζ ), we have ∗ ≤∗ w, resp.
w ≤∗ ∗, according to the lexicographic order ≤∗ over N∗, defined in Def. 2.2 above. In
the first case, we call the rule R-auxiliary, in the second case L-auxiliary.

• there must be at least one leaf apart from the foot node: | lv(ζ )| ≥ 2,

• for every potential adjoining site (w,ρ) ∈ W , if w lies on the spine of ζ and r is L-
auxiliary, then ρ= L. Analogously, if the same condition applies and r is R-auxiliary,
then ρ= R.

For every substitution rule r = (ζ ,W , P r
adj
) and auxiliary rule r = (ζ ,W ,∗, P r

adj
), we define the

rule’s root category as rc(r ) = ζ (ε).
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Note that these two types of rules are basically nothing else than the initial and auxiliary
trees from above, supplied with possible adjoining sites, and the directions for these adjunctions,
which prevent the creation of wrapping trees, as outlined above. Moreover, every potential
adjoining site receives a probability for activation, i.e., the likelihood it will be used for adjoining
in the derivation of a full-parse tree later on.

Probabilistic tree insertion grammars comprise then nothing more than such rules, together
with their probabilities of application, and of course the sets of terminal and non-terminal
symbols.

Definition 4.2. A probabilistic tree insertion grammar (ptig) is a tuple G = (N ,T , S,S ,A , P )
where

• N and T are disjoint sets, called, resp., the set of non-terminals and terminals,

• S ∈N is called the start non-terminal,

• S and A are sets of substitution, resp. auxiliary rules with non-terminals N and
terminals T ,

• and P : S ∪A → [0,1] assigns probabilities to rules such that for every A ∈ N and
x ∈ {L, R}:

∑

r∈S
rc(r )=A

P (r ) = 1
∑

r∈A , rc(r )=A
r is x-auxiliary

P (r ) = 1,

provided that in each case the number of summands is greater than zero.

Moreover, we demand that derivations of such grammars can not become “stuck”: for every
tree ζ of a rule r ∈S ∪A , and every non-terminal leaf position w ∈ lvN (ζ ), there must be a
substitution rule s ∈S with rc(s ) = ζ (w). Similarly, for every potential adjunction site (w,ρ)
of r , there must be a ρ-auxiliary rule a ∈A with rc(a) = ζ (w).

Probabilistic tree insertion grammars with no auxiliary rules (A = ;) are called probabilistic
tree substitution grammars (ptsg). Since they are a special case of ptigs, the methods described for
ptigs throughout this work carry over naturally to ptsgs.

To give an intuition of what ptigs and their application may look like, let us consider a short
example.

Example 4.3. The ptig G = (N ,T , S,S ,A , P ) under consideration allows us to derive parse
trees over a comparably small domain of discourse, but it illustrates most phenomena associated
with ptigs. It is composed of

• non-terminal symbols

N = {S,NP, DT,NN,VP,VBZ,PP,IN,PRP, JJ},

a set of part-of-speech tags in the style of the Penn treebank (Marcus, Santorini, and
Marcinkiewicz, 1994),
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Figure 4.4: Initial and auxiliary trees of an example ptig

• a set of English words as terminal symbols,

T = {The, the,man,dog,bites, in,his, leg, angry},

• substitution rules given by S = {s1, s2} with

s1 = (ζ1,{(12, L), (222, L)}, P s1
adj
),

with adjoining probabilities, say, P s1
adj
(12, L) = 0.5 as well as P s1

adj
(222, L) = 0.3 and

s2 = (ζ2,;, P s2
adj
),

where, since the rule has no adjoining sites, P s2
adj
= ;,

• and one single auxiliary ruleA = {a} where

a = (ξ ,;,∗, P a
adj)

with the position of the foot node ∗= 2 and, as above, P a
adj
= ;.

• Since our grammar is rather small, there is not much choice for rule probabilities—we
have

P (s1) = P (s2) = P (a) = 1.

The trees ζ1, ζ2 and ξ are as displayed in Fig. 4.4. With this grammar we can, e.g., derive a tree
which yields the sentence “The angry dog bites the man in his leg.” An example derivation of
such a tree is displayed in Fig. 4.5.

One could now formally define such derivations as in the example above, directly for this
grammar formalism, as given by DeNeefe, Knight, and Vogler. However, we will take a detour
over probabilistic hypergraphs, defining a transformation from ptigs into phgs. The derivations
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in the created hypergraph can be thought of as a road-map, describing what substitutions
and adjoining operations are applied at which sites in a corresponding derivation in the ptig
formalism.2

Definition 4.4. Assume a ptig G = (N ,T , S,S ,A , P ). Then we define its generated proba-
bilistic hypergraph as HG(G ) = (N ′, E ,µ, g , p) with

• the set of nodes containing the non-terminals of the grammar as well as rules annotated
with one of their possible adjoining sites:

N ′ = {rc(r ) | r ∈S }∪ {(r, w) | r = (ζ ,W ,∗, P r
adj) ∈A , w ∈W }

∪ {(r, w) | r = (ζ ,W , P r
adj) ∈S , w ∈W },

• edges comprising substitution edges, which denote substitution into other trees and
activation of adjoining sites, as well as adjoining edges, which allow adjoining into other
trees, but also further substitution and activation of other adjoining sites:

E = { subst(r, u) | r = (ζ ,W , P r
adj) ∈S , u ∈W ∗}

∪{adj(r, u, s , v) | r = (ζ ,W ,∗, P r
adj) ∈A , u ∈W ∗, s = (ξ ,V , P s

adj) ∈S ,

v = (w,ρ) ∈V ,ξ (w) = ζ (∗), r is ρ-auxiliary}
∪{adj(r, u, s , v) | r = (ζ ,W ,∗, P r

adj) ∈A , u ∈W ∗, s = (ξ ,V ,∗′, P s
adj) ∈A ,

v = (w,ρ) ∈V ,ξ (w) = ζ (∗), r is ρ-auxiliary},

where for each of the u = (w1,ρ1) · · · (wk ,ρk ) ∈W ∗, denoting the activated substitution
sites, we demand that, for all i , j ∈ [k],

(i) the symbols of u are ordered by their first components: i < j implies wi ≤∗ w j ,

(ii) and they are unique in u: wi = w j and ρi = ρ j implies i = j ,

• for edge connectivity, we will have non-terminals as head nodes of substitution edges,
while the head nodes of an adjoining edge is the pair of a rule and some adjoining site of
this rule which allows adjoining:

µ
�

subst(r, u1 · · · uk )
�

=
�

yieldN (ζ )(r, u1) · · · (r, uk ),ζ (ε)
�

,

where r = (ζ ,W , P r
adj
) and

µ
�

adj(r, u1 · · · uk , s , v)
�

=
�

yield′N (ζ ,∗)(r, u1) · · · (r, uk ), (s , v)
�

,

where r = (ζ ,W ,∗, P r
adj
), 3

• its goal node is the grammar’s start non-terminal, g = S,

2In this, they correspond to the derivation trees specified by Joshi and Schabes (1991, p. 7), which should not be
confused with derived trees, i.e., the trees generated by a ptig.

3Note that the conditions for u from the point above induce a canonical order for the tail nodes of a hyperedge:
there does not arise any ambiguity in the order of adjoining sites. However, we can distinguish between the
order of left- and right-adjoining on some site labeled both with L and R.
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• and edge weights are given as

p
�

subst
�

(ζ ,W , P r
adj), u

�

�

= P (r ) ·
∏

q∈set(u)

P r
adj(q) ·

∏

q∈W \set(u)

(1− P r
adj(q))

p
�

adj
�

(ζ ,W ,∗, P r
adj), u, s , v

�

�

= P (r ) ·
∏

q∈set(u)

P r
adj(q) ·

∏

q∈W \set(u)

(1− P r
adj(q))

with set(u) = {ui | i ∈ [k]} for u = u1 · · · uk .

Example 4.5. Let us illustrate this transformation into hypergraphs with the aid of the ptig
G = (N ,T , S,S ,A , P ) from Ex. 4.3. We receive a phg HG(G ) = (N ′, E ,µ, g , p) with

N ′ =
�

S,PP,
�

s1, (12, L)
�

,
�

s1, (222, L)
�	

,

where s1 and s2 are the respective substitution rules from the example. The hypergraph’s edges
comprise

E = { subst
�

s1,ε
�

, subst
�

s1, (12, L)
�

, subst
�

s1, (222, L)
�

, subst
�

s1, (12, L)(222, L)
�

,
adj
�

a,ε, s1, (12, L)
�

, adj
�

a,ε, s1, (222, L)
�

}

with head and tail nodes given by

µ
�

subst
�

s1,ε
��

=
�

PP,S
�

µ
�

subst
�

s1, (12, L)
��

=
�

PP (s1, (12, L)), S
�

µ
�

subst
�

s1, (222, L)
��

=
�

PP (s1, (222, L)), S
�

µ
�

subst
�

s1, (12, L) (222, L)
��

=
�

PP (s1, (12, L)) (s1, (222, L)), S
�

µ
�

adj(a,ε, s1, (12, L))
�

=
�

ε, (s1, (12, L))
�

µ
�

adj(a,ε, s1, (222, L))
�

=
�

ε, (s1, (222, L))
�

,

and their probabilities are

p
�

subst
�

s1,ε
��

= 0.35 p
�

subst
�

s1, (12, L)
��

= 0.35
p
�

subst
�

s1, (222, L)
��

= 0.15 p
�

subst
�

s1, (12, L) (222, L)
��

= 0.15
p
�

adj(a,ε, s1, (12, L))
�

= 1 p
�

adj(a,ε, s1, (222, L))
�

= 1.

Some of the generated graph’s hyperedges are displayed in Fig. 4.6 and Fig. 4.7. We can use
these edges to construct a derivation which describes the when and where of the substitution and
adjoining operations employed to construct a certain derived tree. For instance, the derivation

subst
�

s1, (12, L)
�

�

subst
�

s2,ε
���

, adj
�

a,ε, s1, (12, L)
���

�

∈DS
HG(G )

delineates the construction of a derived tree from our earlier example in Fig. 4.5. Step one from
there, i.e. the step where we started out with the start non-terminal S, is not directly represented,
but in the fact that the above derivation is one of S. The hyperedge subst(s1, (12, L)) denotes
the substitution performed in step two, and moreover it activates the adjoining site (12, L) for
later adjoining. This adjunction, conducted in step three, is signified by adj(a,ε, s1, (12, L)), and
the final substitution in step four with subst(s2,ε), now with no further activated adjoining
sites. Observe that the application order of the operations is not completely determined by the
hypergraph derivation.

45



S

subst
�

s1, (12, L)
�

PP
�

s1, (12, L)
�

0.35

S

subst
�

s1, (12, L)(222, L)
�

PP
�

s1, (12, L)
� �

s1, (222, L)
�

0.15

Figure 4.6: Two substitution hyperedges from Ex. 4.5

�

s1, (12, L)
�

adj
�

a,ε, s1, (12, L)
�

1.0

�

s1, (222, L)
�

adj
�

a,ε, s1, (222, L)
�

1.0

Figure 4.7: Adjoining hyperedges from Ex. 4.5

As stated above, the derivations of HG(G ) only describe what substitution and adjoining
operations are to be applied when and where—they do not immediately constitute the derived
trees! However, we can give a function parse, which “executes” the operations contained in a
hypergraph-derivation and returns the desired parse tree.

Since the foot nodes of auxiliary trees might change after them being adjoined into, we
also introduce a helper function parse′ which updates and returns the modified foot nodes
accordingly.

Definition 4.6. Suppose a ptig G = (N ,T , S,S ,A , P ), then we define

parse: D subst
HG(G )→UN (T )

parse
�

subst
�

(ζ ,W , P r
adj), (w1,ρ1) · · · (wk ,ρk )

��

Φ1, . . . ,Φn ,Ψ1, . . . ,Ψk
�

�

= χk
�

ζ [parse(Φ1), . . . , parse(Φn)]λ, w1 · · ·wk ,ξ1 · · ·ξk ,∗1 · · · ∗k
�

where for every i ∈ [k]: (ξi ,∗i ) = parse′(Ψi )

with n = |yieldN (ζ )| and λ = v1 · · ·vn the list of leaf positions from lvN (ζ ) = {v1, . . . vn},
ordered by the lexicographic order on N∗, i.e. v1 <∗ v2 <∗ · · ·<∗ vn . Moreover we define

parse′ : Dadj
HG(G )→UN (T )×N

∗

parse′
�

adj
�

(ζ ,W ,∗, P r
adj), (w1,ρ1) · · · (wk ,ρk ), s , v

��

Φ1, . . . ,Φm ,Ψ1, . . . ,Ψk
�

�

= χ ′k
�

ζ [parse(Φ1), . . . , parse(Φm)]λ,∗, w1 · · ·wk ,ξ1 · · ·ξk ,∗1 · · · ∗k
�

where for every i ∈ [k]: (ξi ,∗i ) = parse′(Ψi )
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with m = |yield′N (ζ ,∗)| and λ= v1 · · ·vm the list of non-foot leaf positions from lvN (ζ ) \ {∗}=
{v1, . . . vm}, again ordered by the lexicographic order on N∗. Here, the function domains
D subst

HG(G ) and Dadj
HG(G ) just signify that parse is to be applied to derivations with a subst-edge as

root, and parse′ to those with an adj-edge:

D subst
HG(G ) = {d ∈DHG(G ) | d (ε) = subst(x, y) for some x, y}

Dadj
HG(G ) = {d ∈DHG(G ) | d (ε) = adj(v, w, x, y) for some v, w, x, y}

The families of functions χ = (χk | k ∈N) and χ ′ = (χ ′k | k ∈N) do the brunt of the work
for adjoining, accomplishing in parallel all of the adjoining operations into the sites specified in
the according hyperedge, χ for adjoining into initial trees and χ ′ for adjoining into auxiliary
trees. Again, χ ′ has to manage potential modifications of the foot node of the auxiliary tree
adjoined into.

Definition 4.7. For every k ∈N, we define the functions

χk : UN (T )× (N
∗)k × (UN (T ))

k × (N∗)k →UN (T )
χ0(ζ ,ε,ε,ε) = ζ
χk (ζ , w1 · · ·wk ,ξ1 · · ·ξk ,∗1 · · · ∗k )
= χk−1

�

ζ [ξk[ζ |wk
]∗k
]wk

, w1 · · ·wk−1,ξ1 · · ·ξk−1,∗1 · · · ∗k−1
�

(k ≥ 1)

as well as

χ ′k : UN (T )×N
∗× (N∗)k × (UN (T ))

k × (N∗)k →UN (T )×N
∗

χ ′0(ζ ,∗,ε,ε,ε) = (ζ ,∗)
χ ′k (ζ ,∗, w1 · · ·wk ,ξ1 · · ·ξk ,∗1 · · · ∗k ) (k ≥ 1)

= χ ′k−1

�

ζ [ξk[ζ |wk
]∗k
]wk

,∗′, w1 · · ·wk−1,ξ1 · · ·ξk−1,∗1 · · · ∗k−1
�

where ∗′ =
(

wk ∗k x for ∗= wk x
∗ otherwise.

The arguments of a function χk , k ∈N, are the tree to adjoin into, and lists (each of length k)
of adjoining site positions, of trees which are to be adjoined and of their respective foot nodes.
A function χ ′k has, in addition to those, also an argument which accepts the supplied auxiliary
tree’s foot node. Each χk (or χ ′k ) performs only one adjoining operation and leaves the rest of
the work to χk−1, χk−2, . . . (resp. χ ′k−1

, χ ′k−2
, . . . ).

Note that the successive substitutions performed by the χk and χ ′k do not interfere with each
other because of the order of the adjoining positions w1, . . . , wk : adjunction is only performed
on a node after all adjoining operations in the subtree dominated by this node are completed.
Example 4.8. Let us continue Ex. 4.5 and show how the hypergraph derivation

subst
�

s1, (12, L)
�

�

subst
�

s2,ε
���

, adj
�

a,ε, s1, (12, L)
���

�

is turned into a derived tree. We have

parse
�

subst
�

s1, (12, L)
�

�

subst
�

s2,ε
���

, adj
�

a,ε, s1, (12, L)
���

��
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= χ1
�

ζ1
�

parse(subst(s2,ε)())
�

223, 12,φ,∗
�

(4.1)

with

(φ,∗) = parse′
�

adj(a,ε, s1, (12, L))()
�

= χ ′0(ξ , 2,ε,ε,ε)

= (ξ , 2),

so we can rewrite (4.1) as

χ1
�

ζ1
�

parse(subst(s2,ε)())
�

223, 12,ξ , 2
�

= χ1
�

ζ1
�

χ0(ζ2,ε,ε,ε)
�

223, 12,ξ , 2
�

= χ1
�

ζ1[ζ2]223, 12,ξ , 2
�

= χ0
�

ζ [ξ [ζ |12]2]12,ε,ε,ε
�

(with ζ = ζ1[ζ2]223)
= ζ [ξ [ζ |12]2]12.

The value of ζ = ζ1[ζ2]223 is

ζ = S
�

NP
�

DT(The),NN(dog)
�

,VP
�

VBZ(bites),NP(DT(the),NN(man)),PP
�

�

h

PP
�

IN(in),PRP$(his),NN(leg)
�

i

223

= S
�

NP
�

DT(The),NN(dog)
�

,VP
�

VBZ(bites),NP(DT(the),NN(man)),

PP(IN(in),PRP$(his),NN(leg))
�

�

,

so we obtain

ζ |12 =NN(dog),
ξ [ζ |12]2 =NN

�

JJ(angry),NN(dog)
�

,

and finally,

ζ [ξ [ζ |12]2]12 = S
�

NP
�

DT(The),NN
�

JJ(angry),NN(dog)
��

,

VP
�

VBZ(bites),NP(DT(the),NN(man)),

PP(IN(in),PRP$(his),NN(leg))
�

�

.

One can easily verify that this result corresponds to the derived tree at the bottom of Fig. 4.5.
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4.2 Training with the State-Split Algorithm
As we mentioned above, ptigs, in contrast to probabilistic context-free grammars, can not only
match one branch of a parse tree with a production rule, but several ones, enabling linguists to
assign higher probabilities to certain common phrase structures. Because of this, they can be
considered to be stochastically more powerful than pcfgs.

This higher expressivity comes at a price, however: For pcfgs, given a corpus of parse
trees, there is a simple method for generating the treebank grammar, whose rule probabilities
constitute a maximum-likelihood estimate for the supplied corpus, by reading off the used
rules into the grammar and deriving the probability of each production rule from its relative
frequency in the corpus, as more thoroughly described by Prescher (2005).

Since for ptigs we do not have such a simple correspondence between grammar rules and
branches in a parse tree, we expect the methods to read them off to be somewhat more intricate.
To simplify matters, we will not try to produce such a treebank grammar by ourselves, but
presuppose that we already have a ptig G which more or less grasps the structure of the
underlying corpus. This grammar may, e.g., have been generated by hand, or from an automated
extraction technique like the one described by Chen and Shanker (2004).

However, we can still hope to further refine the grammar by supplying its non-terminal
symbols with annotations. These annotations help model the phrasal structure of a supplied
treebank corpus by introducing several roles for non-terminal symbols. The non-terminal for
verb phrases, VP, may, e.g., be extended with a certain annotation for where it subsumes a
transitive verb (i.e. a verb with an object) and another one, where it expands to an intransitive
verb or a verb in infinitive form.

Such annotations might also be added manually by a linguist (compare the hand-generated
XTAG grammar by Doran, Egedi, Hockey, Srinivas, and Zaidel, 1994), however the State-Split
algorithm, first described by Petrov et al. (2006), allows this annotation process to be automated.
In each iteration of this algorithm, the present annotation symbols are split in two, while the
corresponding edge probabilities are normalized.

Afterwards, the Expectation-Maximization (see Prescher, 2005; Dempster et al., 1977), resp.
the Inside-Outside algorithm (see Lari and Young, 1991; Manning and Schütze, 1999, p. 398),
is applied, both facilitating maximum-likelihood estimates for probabilistic hypergraphs on
incomplete data. This allows learning probabilities for the newly split edges which model the
supplied corpora optimally in their statistical properties.

In this case, the incomplete data we proceed from consists of a corpus of annotated derivations
from the previous State-Split step, while the complete data is given by all corresponding
annotated derivations in the newly-split hypergraph. EM or the Inside-Outside algorithm then
allow us to infer probabilities for annotations that maximize the likelihood of the corpus.

As mentioned by Prescher (2005), the Inside-Outside algorithm can be viewed as a dynamic
programming instance of a more general EM algorithm. Since its approach may be easier to
grasp, we will first give a definition of the State-Split procedure using EM, and then give an
argument how the Inside-Outside algorithm can be seen as instantiating it in the case at hand.

Figure 4.8 shows the general idea of the State-Split algorithm: We start out with some
treebank, i.e. with a corpus containing incomplete data in the form of full-parse trees, and
with a grammar (in our case, this might be a ptig) whose likelihood is to be maximized for the
supplied corpus.

First of all, the grammar is transformed into a hypergraph representation, as given in Sec-
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Generate hyper-
graph G = HG(G )

Grammar GTreebank
t : T → R

Generate ε-labeled phg-
la G1 from G, i = 1

Generate induced
derivation bank fi

Split Gi into Gi+1 and
randomize weights

Apply EM algorithm
to maximize likeli-
hood of Gi+1 on fi

Merge annotations
in Gi+1 that do not
increase likelihood

i ≥ k?

Return
hypergraph Gi+1

yes

no

i = i + 1

Figure 4.8: Flow chart for the State-Split procedure
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tion 4.1 for ptigs. One should note that we will not revert this transformation: from now
on, we will only concern ourselves with probabilistic hypergraphs. Hence, the following
description of State-Split might also be applied to another grammar formalism, provided there
is a way to represent it by a probabilistic hypergraph. In this way, we can construe hypergraphs
as interfaces, which hide the concrete grammar formalism and allow unified access by this
abstraction.

In the next step, the resulting phg G is augmented with a singleton set of annotation symbols
H = {ε}, eventuating in an annotated hypergraph G1. Note this step is in so far technical as
it does not change the set of derivations of the hypergraph (up to isomorphism). However, it
allows us to make an abstraction in the following step, expecting some arbitrary annotated
hypergraph. This isomorphism, together with a parsing function mapping derivations to
full-parse trees, is also employed to generate a derivation bank f1, i.e. a corpus of derivations in
the phg-la G1, from the supplied treebank.

The next three steps comprise the actual brunt work of the State-Split procedure: We split
each annotation symbol of the supplied hypergraph Gi into two subsymbols, adjusting the
definitions of its edges and their probabilities, with the resulting graph Gi+1. Then the EM
algorithm is applied, generating edge probabilities for Gi+1 that maximize its likelihood on the
incomplete-data corpus fi .

Finally, we merge back together annotations which do not increase the graph’s likelihood
over a given threshold. On the one hand, this may constrain the exponential explosion of
annotation symbols caused by doubling their number in each step, on the other hand, it
prevents oversplitting, i.e. the case that phrasal categories are split without any linguistical
justification for this. We repeat the steps described above a preconfigured number of times and
then return the resulting split hypergraph.

4.2.1 Hypergraphs with latent annotations
In our endeavor to describe the State-Split algorithm, first of all, we will have to give a formal
notion of how to add annotations to our language models. The annotation is thereby performed
directly on the hypergraphs generated from ptigs, as described in Section 4.1 above. We hope
this leads to a more lucid and general formulation of the idea. So, to begin with, let us define
what we mean by hypergraphs with latent annotations.

Definition 4.9. Let H be a finite non-empty set. For a phg G = (N , E ,µ, g , p), we call

• N 〈H 〉=N ×H the set of complete nodes of G with annotations from H and

• E〈H 〉 = {(e , h) | e ∈ E , h = (x1 · · · xk , x0) ∈ H k × H , k = ar(e)} the set of complete
hyperedges of G with annotations from H .

For a complete node (a, x) ∈ N 〈H 〉, we will write a〈x〉 and analogously e〈h〉 for a complete
edge (e , h) ∈ E〈H 〉. If we have e〈(x1 · · · xk , x0)〉 ∈ E〈H 〉, we will omit the parentheses and just
write e〈x1 · · · xk , x0〉 for better readability.

The concepts of heads and tails can be lifted to complete hyperedges as follows: assume
e〈h〉 ∈ E〈H 〉withµ(e) = (b1 · · · bk ,a) and h = x1 · · · xk , x0, then hd(e〈h〉) = a〈x0〉 and tl(e〈h〉) =
b1〈x1〉 · · · bk〈xk〉. We also define µ(e〈h〉) = (tl(e〈h〉),hd(e〈h〉)).

Definition 4.10. A probabilistic hypergraph with latent annotations (phg-la) is a tuple G =
(N , E , H ,µ, g , p) where
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• H is a finite non-empty set, called the set of latent annotation symbols,

• the sets of nodes N , edges E and the function µ : E → N ∗ ×N are as in Def. 2.13 for
probabilistic hypergraphs,

• g ∈N 〈H 〉 is called the complete goal node and

• p : E〈H 〉→ [0,1] denotes complete hyperedge probabilities.

The class of all phg-las with annotations from a set H will be denoted by PHGLAH .

As we can see, a phg-la does not really differ that much from a phg—it can actually be
understood as a probabilistic hypergraph parameterized over H , giving rise to more or less
subdivisions of every node and hyperedge. Because of this, many function definitions for phgs
carry over naturally to phg-las. We will not redefine all these functions, instead a transformation
γ from phg-las to phgs shall be given, which will be assumed to be implicitly invoked if such a
function is applied to a phg-la.

Definition 4.11. For every phg-la G = (N , E , H ,µ, g , p), its induced hypergraph is defined
as γ (G) = (N 〈H 〉, E〈H 〉,µ′, g , p) with µ′(e〈x1 · · · xk , x0〉) = (b1〈x1〉 · · · bk〈xk〉,a〈x0〉), where
µ(e) = (b1 · · · bk ,a).

So, for any set A, function f : PHG→A, and phg-la G, we will introduce the abbreviaton
f (G) = f (γ (G)). We will also define how to annotate derivations. These will serve as complete
data later on.

Definition 4.12. Assuming a phg-la G = (N , E , H ,µ, g , p), and a complete node a〈x〉 ∈N 〈H 〉,
we define the set Aa〈x〉

G of annotated (or complete) derivations of this node as the smallest set A
with

A= {e〈h〉(d1, . . . , dk ) |e〈h〉 ∈ E〈H 〉,µ(e〈h〉) = (b1〈x1〉 · · · bk〈xk〉,a〈x0〉),

di ∈Abi 〈xi 〉
G for i ∈ [k]}.

Again, we can define the set of all annotated derivations of G as AG =
⋃

a〈x〉∈N 〈H 〉A
a〈x〉
G .4

Note that via the definition of the induced hypergraph of a phg-la G = (N , E , H ,µ, g , p) from
Def. 4.12 above, there arises naturally a probability distribution on Ag

G , denoted again by
P ( · |G).

Let us introduce the notions of treebanks and derivation banks, which will serve as the corpora
used in the learning of optimal edge probabilities later on. These depend on the definition
of full-parse trees, which can be thought of as the derived trees of the grammar formalism
underlying the respective hypergraph.

Definition 4.13. For a phg G = (N , E ,µ, g , p), we call a countable set T ⊆ UΣ(A) (for some
anonymous finite sets Σ, A) a set of full-parse trees (for G) if there is a function parse: D g

G→ T ,
called the parsing function.5

4The definition of AG for a phg-la G corresponds to the one for unannotated derivations, i.e. of DG′ for a phg
G′. The sole purpose behind the introduction of AG is the distinction between annotated and unannotated
derivations.

5Note that this is the case for the instance of phgs derived from ptigs, as defined in the previous Section 4.1,
together with the suggestively named function parse, restricted to the domain D g

G .
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Throughout the rest of this work, we will assume T to be a (no further specified) set
of full-parse trees for the hypergraph G (if mentioned at all), and parse the associated
function as above.

Definition 4.14. A corpus f : T → R of full-parse trees is called a treebank if it is finite and
non-empty. Similarly, presuming a phg-la G with goal node g , we call a corpus f : Ag

G→R of
annotated derivations in G a derivation bank for G, again under the requirement that it is finite
and non-empty.

4.2.2 Splitting and Merging

With the above definition for a phg-la, let us derive how to accomplish the steps of initialization,
splitting and merging displayed in Fig. 4.8. First of all, how can we transform a phg into a
phg-la with identical derivations (up to isomorphism)?

Definition 4.15. The function init lifts some phg into a phg-la with the empty word as the
only latent annotation symbol.

init: PHG→ PHGLA{ε}
init(N1, E1,µ1, g1, p1) = (N2, E2,{ε},µ2, g2, p2)

where

• N2 =N1, E2 = E1 and µ2 =µ1,

• g2 = g1〈ε〉 and

• p2(e〈h〉) = p1(e) (since we must have h = (ε| tl(e)|,ε)).

Next, presuming a phg-la with annotations from H , we can split those into H · {0,1}. This is
modeled by the function split. It distributes the probability mass of each hyperedge evenly to
its split edges and, by normalizing these weights, makes sure that the resulting phg-la is proper.

Definition 4.16. Assume a set of latent annotation symbols H . We define the function

split: PHGLAH → PHGLAH ·{0,1}

split(N1, E1, H ,µ1, g1, p1) = (N2, E2, H · {0,1},µ2, g2, p2)

where

• N2 =N1, E2 = E1 and µ2 =µ1,

• g2 = a〈x0〉 where g1 = a〈x〉 and

• p2(e〈h1x1 · · · hk xk , h0x0〉) =
p1(e〈h1 · · · hk , h0〉)

2k
for every e〈h1x1 · · · hk xk , h0x0〉 ∈ E2〈H2〉,

where hi ∈H1 and xi ∈ {0,1} for i ∈ {0, . . . , k}.
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As stated above, split preserves properness of its argument: we have, for x0 ∈ {0,1} and
e ∈ E ,

∑

x1,...,xk∈{0,1}
p2(e〈h1x1 · · · hk xk , h0x0〉)

=
∑

x1,...,xk∈{0,1}

p1(e〈h1 · · · hk , h0〉)

2k

= 2k ·
p1(e〈h1 · · · hk , h0〉)

2k

= p1(e〈h1 · · · hk , h0〉),

and hence, for every complete node a〈xi〉,
∑

e〈h〉∈E〈H ·{0,1}〉
hd(e〈h〉)=a〈xi〉

p2(e〈h〉) =
∑

e〈h〉∈E〈H 〉
hd(e〈h〉)=a〈x〉

p1(e〈h〉)

This sums up to one if the input hypergraph is already proper. Moreover, we need a function to
merge together complete nodes that do not increase likelihood. Say we want to merge back
together the two complete nodes a〈x0〉 and a〈x1〉. In order to accomplish that, the function
mergea〈x〉 sets the probabilities of hyperedges containing a〈x1〉 to zero. Those hyperedges
which only contain a〈x0〉 then receive the additional probability mass, so that the result is
again proper.

Definition 4.17. Assume a phg-la G = (N , E , H ,µ, g , p) and let a〈x0〉 ∈ N 〈H 〉 and a〈x1〉 ∈
N 〈H 〉 be the complete nodes that are to be merged. Then we define

mergea
x : PHGLAH → PHGLAH

mergea
x (N1, E1, H ,µ1, g1, p1) = (N2, E2, H ,µ2, g2, p2)

where

• again, N2 =N1, E2 = E1,µ2 =µ1, as well as g2 = g1 and

• for every e ∈ E with µ(e) = (a1 · · ·ak ,a0),

p2(e〈x1 · · · xk , x0〉) =







































































0
if there is an i ∈ {0, . . . , k}
with ai = a and xi = x1

∑

h ′∈subsa〈x〉(e〈x1···xk ,x0〉)

p1(e〈h ′〉)
2

if a0 = a and x0 = x0
and there is no i ∈ {0, . . . , k}
with ai = a and xi = x1

∑

h ′∈subsa〈x〉(e〈x1···xk ,x0〉)
p1(e〈h

′〉) otherwise.
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Figure 4.9: Functions, random elements and corpora appearing during State-Split

The set subsa〈x〉(e〈h〉) is defined for every e ∈ E with µ(e) = (a1 · · ·ak ,a0) by

subsa〈x〉(e〈x1 · · · xk , x0〉) = {(x
′
1 · · · x

′
k , x ′0) | for every i ∈ {0, . . . , k}, if xi = x0 and ai = a,

then x ′i ∈ {x} · {0,1}, else x ′i = xi}.

The rather complicated case distinction above accomplishes the following: all hyperedges
containing the complete node a〈x1〉 are set to probability zero (and might be pruned later),
while edges containing a〈x0〉 receive the additional probability mass of their counterparts with
a〈x1〉 instead of a〈x0〉. In the case that this complete node appears in the hyperedge’s head,
we have to normalize the resulting probability by dividing by two. Again, this is in order to
preserve properness of the hypergraph.

Because the probabilities of complete hyperedges are evenly distributed after splitting, we will
introduce a function to randomize the edge weights of a phg-la. This breaks the symmetry and
provides the EM algorithm with some kind of direction to develop the hyperedge probabilities
into. The maximum degree of the introduced randomness is set via a parameter θ.

Definition 4.18. For a given phg-la G, the function randomize returns the set of all phg-las
with edge probabilities close to the ones of G.

randomize: PHGLAH ×R→ 2PHGLAH

randomize(G,θ) = {G′ |G′ = (N , E , H ,µ, g , p ′),
G = (N , E , H ,µ, g , p),
0<

�

�p ′(e〈h〉)− p(e〈h〉)
�

�<θ for every e〈h〉 ∈ E〈H 〉,
G′ is consistent and proper}

In order to give a concise mathematical characterization of the State-Split procedure, we define
several more functions, compare Fig. 4.9.6 Let, for some initial phg G = (N , E , Hi ,µ, g , p),
G1 = init(G) be the phg-la which is effectively G, but with ε as only latent annotation symbol.
Assume G2, G3, . . . , are the phg-las produced at the end of each separate State-Split step. Their
components are designated as Gi = (N , E , Hi ,µ, gi , pi ) for i ≥ 1.

6Note that this diagram is not entirely commutative, e.g., we will certainly not have fi = fi−1 ◦ ∂i in every case.
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Definition 4.19. For these Gi ’s derivation sets, we define a sequence of partial strip functions
∂ = (∂i | i ∈N+) by

∂1 : AG1
→ T

∂1 = parse◦ι,

where ι is the obvious isomorphism between AG1
and DG , G1 = init(G). For j > 1, we first of

all define a function e∂ j on complete hyperedges:

e∂ j : E〈H j 〉→ E〈H j−1〉
e∂ j (e〈x1b1 · · · xk bk , x0b0〉) = e〈x1 · · · xk , x0〉

with b0, . . ., bk ∈ {0,1}. The function ∂ j is then the homomorphic lift of e∂ j to the set of
complete derivations:

∂ j : AG j
→AG j−1

∂ j (e〈h〉(d1, . . . , dk )) = e∂ j (e〈h〉)(∂ j (d1), . . . ,∂ j (dk )).

As the latter function is just a lifted version of the former, we will henceforth omit the tilde
from e∂ j and write ∂ j for both functions.7

The functions ∂i , i ≥ 1, project annotated derivations from a level of the split hierarchy
to the less annotated derivations in the level below they originated from, i.e., they strip off a
level of annotation. Thus, their inverses ∂ −1

i act as symbolic analyzers (as defined by Prescher,
2005) and will allow EM to distribute the probability masses of less-split derivations to their
annotated version.

Moreover, we assume a sequence of random elements X0,X1, . . . with X0 : Ω → T and
X j : Ω→A

g j

G j
for j > 0 and demand that, for every j ≥ 0,

X j = ∂ j+1 ◦X j+1.

Such a random element Xi will later allow quantification over annotated derivations created
in the i -th State-Split step. In the diagram, the functions fi : AGi

→ R, i ≥ 1 are derivation
banks on the sets of annotated derivations of the phg-las Gi , subsequently generated from their
predecessors in the State-Split procedure.

With these definitions, we can now display the State-Split procedure in pseudocode, as shown
in Alg. 4.1. In every iteration of State-Split’s main loop, we will have to compute a derivation
bank for the newly-split hypergraph, which will be used as input to the invocation of EM (or
Inside-Outside). It is computed from the derivation bank from the last step by distribution of
its values according to the probability distribution on complete derivations, conditioned on

7Mind that in Fig. 4.9, the domains and codomains of the functions ∂i , i > 1, have been implicitly restricted to
derivations of the goal nodes gi . This is due to the fact that the derivation banks fi have these sets as their
domains.
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the probabilities of their less-annotated originators.8 In the following, an iteration of the outer
while-loop of the State-Split algorithm will also be called a split-merge cycle.

The algorithm has as parameters a phg G and a treebank t on which State-Split is to be
performed. The integer k denotes the number of split-merge cycles intended, while the real
number θ gives a measure of how much to randomize edge probabilities in each step, and
η is passed on to EM (resp. Inside-Outside), indicating how much it should try to increase
the likelihood. Finally, c serves as a lower limit for the decrease in likelihood introduced by
merging two complete nodes: if the ratio between the likelihood after and before merging drops
below c, the merge is not carried through, else, it is. For a small example run of State-Split, you
may refer to Chapter 5.

Algorithm 4.1 The State-Split procedure for phg-las

Input: A phg G = (N , E ,µ, g , p), a treebank t : T →R and values k ∈N, θ,η ∈R, c ∈ [0,1[
Output: StateSplit(G, t , k ,θ,η,c)

f0 = t
i ← 1
G1← init(G) // Add the empty annotation symbol
H1←{ε}
while i ≤ k do

Compute fi : AG→R acc. to

fi (d ) =
¨

fi−1(d ) · P (Xi = d |Xi−1 = ∂i (d ),Gi ) if P (Xi−1 = ∂i (d ) |Gi )> 0
0 otherwise.

G′← split(Gi ) // Split each complete node into two
Hi+1←Hi · {0,1}
randomly choose one G′′ ∈ randomize(G′,θ)
Gi+1← EM(G′′, fi ,∂i+1,Xi+1,Xi ,η) // Try to find mle via EM

// Alternatively: Gi ← Inside-Outside(G′′, fi ,∂i+1,Xi+1,Xi ,η)
for all a ∈N , x ∈Hi do

if L
�

fi ; P ( · |mergea
x (Gi+1))

�

/L
�

fi ; P ( · |Gi+1)
�

> c then
Gi+1←mergea

x (Gi+1) // Merge together complete nodes with no benefit to likelihood
end if

end for
i ← i + 1

end while
return Gi

8As the definition of complete-data derivation banks fits thematically better to EM, compare Def. 4.20 in the
appropriate subsection.
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4.2.3 The Expectation-Maximization Algorithm

As shown in Fig. 4.8, in each split-merge cycle we apply the Expectation-Maximization (EM)
algorithm. This algorithm allows us to give a try at finding the parameters for the maximum-
likelihood estimate of some probability model on unbeknown complete data, possessing only
knowledge of incomplete data, which may, e.g., be comprised of partial information projected
from the complete data.

Note that this problem is inherently self-referential: if we knew the model parameters for
the maximum-likelihood estimate, it would be fairly easy to derive the unknown complete
data. Conversely, the knowledge of the actual complete data would make it trivial to devise
the according maximum-likelihood estimate. EM breaks this cyclic dependency by starting
with some random guess for the mle, then it alternatingly computes estimates for the induced
statistical distribution of the complete data (in the E-step) and turns these into new, statistically
fitting, probability distributions (the M-step), hopefully giving rise to better approximations
of the mle. The procedure stops the described loop when the step-to-step difference of the
likelihoods (or alternatively, the model parameters) falls beneath a certain threshold.

One should keep in mind that EM does not actually promise to find the real mle in every in-
stance, it may well be the case that the procedure stops at some local maximum of the likelihood
function, or even just at one of its saddle points. However, Dempster et al. (1977) have proved
that the sequences of generated probability distributions are monotonically nondecreasing in
their likelihoods, and combined with the practice of letting the algorithm run several times
with various initial guesses and taking the best generated guess, this suffices for most practical
cases, as remarked by Gupta and Chen (2011, p. 224).

In the scenario at hand, the probability modelMG , whose maximum-likelihood estimate
is sought, is induced by the hypergraph G underlying the initial phg-la in question, and its
parameters, which are to be optimized, are the corresponding edge probabilities. The complete
data is thought to be a corpus of fully annotated derivations, while the incomplete data,
which we can effectively observe in the input derivation (resp. tree) bank, comprises the
same derivations, but with the last level of annotations removed (resp., for the first step of the
State-Split algorithm, the full-parse trees in the treebank).

We will develop the notion of this algorithm in the following, trailed by the explanation of a
more efficient version of EM using dynamic programming, called the Inside-Outside algorithm.
For that, we will use the random elements X and Y , which, on the one hand, allow formally
well-defined probabilities, and, on the other hand, make the development more succinct. Here,
the random element X : Ω→Ag

G signifies complete data, and Y : Ω→ ∂ (Ag
G) with Y = ∂ ◦X ,

allows us to express statements over incomplete data. Thereby, the function ∂ will map
complete to incomplete data.

The random element X , as well as the function ∂ , will be plugged in with X1, X2, . . . , resp.
∂1, ∂2, . . . —and therefore Y with X0, X1, . . . —by the State-Split procedure, according to the
progress of its execution.

Definition 4.20. Supplied with a phg-la G with goal node g , random elements X : Ω→ Ag
G ,

Y : Ω → ∂ (Ag
G), the respective function ∂ : Ag

G → ∂ (Ag
G) stripping away the last level of

annotation from derivations of G, and a derivation bank f : ∂ (Ag
G) → R of incompletely

annotated derivations, we can compute the complete derivation bank fG expected by G, given
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by

fG : Ag
G→R

fG(d ) =
¨

f (∂ (d )) · P (X = d | Y = ∂ (d ),G) if P (Y = ∂ (d ) |G)> 0
0 otherwise.

Note that essentially, this definition serves no other purpose than distributing f ’s type fre-
quencies to the types of fG , according to G’s induced probability distribution on complete
data, i.e. on X, conditioned on the incomplete data indexed by Y. In the EM algorithm, this
computation will be called the E-step (expectation step). It deserves this name because fG denotes
our expectation of the complete corpus, given the incomplete corpus f and the parameters
induced by G.

Moreover, we can describe what we mean by a derivation bank hypergraph: presuming some
derivation bank f for a phg-la G, it is the hypergraph G, with new edge probabilities derived
from their statistic frequencies in f .

Definition 4.21. Assuming a derivation bank f : Ag
G→R for a phg-la G = (N , E , H ,µ, g , p),

the derivation bank hypergraph for f and G is defined by G f = (N , E , H ,µ, g , p f ) with

p f (e〈h〉) =

∑

d∈Ag
G

f (d ) · ζe〈h〉(d )
∑

d∈Ag
G

f (d ) · ζhd(e〈h〉)(d )
, (4.2)

assuming the fraction’s denominator is not zero, else

p f (e〈h〉) =
1

|{e ′〈h ′〉 ∈ E〈H 〉 | hd(e ′〈h ′〉) = hd(e〈h〉)}|
.

The assignment in the latter case is defined in this way to guarantee properness of the derivation
bank hypergraph. The functions ζe〈h〉 and ζa〈x〉 hereby give the counts of appearance of the
respective complete hyperedges or nodes in a derivation:

ζe〈h〉(d ) = |{w ∈ pos(d ) | d (w) = e〈h〉}|

for every complete hyperedge e〈h〉 ∈ E〈H 〉 and

ζa〈x〉(d ) = |{w ∈ pos(d ) | hd(d (w)) = a〈x〉}|

for every complete node a〈x〉 ∈N 〈H 〉.
So the definition in (4.2) assigns every hyperedge as probability the ratio between the number

of times they appeared in the derivation bank f (weighted by the values of f on the respective
derivation) and the number of times they could have appeared there, i.e. the count of appearance
of their head nodes (again weighted by f ). The derivation hypergraph is proper and consistent
(cf. Chi and Geman, 1998). It constitutes a maximum-likelihood estimate of G’s induced
probability model on the given derivation bank, compare the proof for treebanks and pcfgs by
Prescher (2005). This fact justifies the name M-step (Maximization-Step) for this computation in
the EM algorithm.
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Algorithm 4.2 The Expectation-Maximization algorithm for phg-las

Input: A phg-la G = (N , E , H ,µ, g , p), a corpus f : Ag
G → R, ∂ : AG → ∂ (AG), random

elements X : Ω→Ag
G and Y : Ω→ ∂ (Ag

G) and a value θ ∈R.
Output: EM(G, f ,∂ ,X ,Y,θ)

i ← 0
G0 = (N , E ,µ, g , p0)←G
repeat

i ← i + 1
E-step: Compute the derivation bank fi : AG→R defined by

fi (d ) =
¨

f (∂ (d )) · P (X = d | Y = ∂ (d ),Gi−1) if P (Y = ∂ (d ) |Gi−1)> 0
0 otherwise. // compare Def. 4.20

M-step: Gi ← (N , E , H ,µ, g , pi ) where for all e〈h〉 ∈ E〈H 〉
if
∑

d∈Ag
G

fi (d ) · ζhd(e〈h〉)(d ) 6= 0 then

pi (e〈h〉) =

∑

d∈Ag
G

fi (d ) · ζe〈h〉(d )
∑

d∈Ag
G

fi (d ) · ζhd(e〈h〉)(d )
// compare Def. 4.21

else
pi (e〈h〉) = 1/|{e ′〈h ′〉 ∈ E〈H 〉 | hd(e ′〈h ′〉) = hd(e〈h〉)}|

end if
until L

�

f ; P ( · |Gi )
�

− L
�

f ; P ( · |Gi−1)
�

<θ
return Gi

The EM algorithm can then be formulated as shown in Alg. 4.2. In each iteration of its outer
loop it refines the edge probabilities of the supplied hypergraph by consecutively applying the
E- and the M-step. As noted by Prescher (2005), the likelihood of the subsequently generated
phg-la’s probability distributions on the corpus is non-decreasing, i.e. we have

L ( f ; P ( · |G0))≤ L ( f ; P ( · |G1))≤ L ( f ; P ( · |G2))≤ · · ·

The algorithm is provided with a real-valued argument θ ∈R. When the increase in likelihood
between iterations falls beneath θ, the EM algorithm breaks and returns the lastly generated
phg-la.
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4.2.4 The Inside-Outside Algorithm
One should take note that the formulation of the EM procedure above does not promise the
greatest performace in real world applications: after all, in the fraction in Def. 4.21, we take a
sum over all annotated derivations d ∈AG . The problem in doing so lies not in the fact that AG
is infinite—after all, for a finite corpus f , we would just have to sum over those d ∈AG with
f (d ) > 0. However, we would still have to sum over all possible annotated versions of each
partially incomplete derivation d ∈ ∂ (AG). The more the hypergraph is split, the more this
summation carries into weight.

So it is clearly advisable to devise a means to get rid of the summation over completely
annotated derivations. The Inside-Outside algorithm (Lari and Young, 1991) accomplishes that
and can be seen as an instance of EM, as witnessed by the following equations, based on a
similar derivation of the Forward-Backward algorithm for hidden Markov models by Gupta
and Chen (2011).

Let us start out with the reestimation formula for the M-step as given in Alg. 4.2 (presuming
that the fraction’s denominator is not zero):

pi (e〈h〉) =

∑

d∈Ag
G

fi (d ) · ζe〈h〉(d )
∑

d∈Ag
G

fi (d ) · ζhd(e〈h〉)(d )
. (4.3)

We can rewrite the fraction’s numerator as follows:9
∑

d∈Ag
G

fi (d ) · ζe〈h〉(d )

=
∑

d∈Ag
G

P (Y=∂ (d )|Gi−1)>0

f (∂ (d )) · P (X = d | Y = ∂ (d ),Gi−1) · ζe〈h〉(d ) (by Def. 4.20)

=
∑

d ′∈∂ (Ag
G)

P (Y=d ′|Gi−1)>0

f (d ′) ·
∑

d∈∂ −1{d ′}

P (X = d | Y = d ′,Gi−1) · ζe〈h〉(d ) (by distributivity)

=
∑

d ′∈∂ (Ag
G)

P (Y=d ′|Gi−1)>0

f (d ′) ·
∑

d∈∂ −1{d ′}

P (X = d | Y = d ′,Gi−1) ·
∑

w∈pos(d )

δ(d (w), e〈h〉)

=
∑

d ′∈∂ (Ag
G)

P (Y=d ′|Gi−1)>0

f (d ′) ·
∑

w∈pos(d ′)

∑

d∈∂ −1{d ′}

�

P (X = d | Y = d ′,Gi−1) ·δ(d (w), e〈h〉)
�

(since pos(d ) = pos(d ′))
9We should formally describe what we mean by the notation X (w), which mimics the access of a node d (w) in a

derivation d and should, in this case, not be interpreted as application of the function X to w, but rather as
a new random element derived from the random element X . Define, for a phg-la G = (N , E , H ,µ, g , p), and
every w ∈N∗, a function νw : AG → E〈H 〉 ∪ {⊥} with

νw (d ) =

(

d (w) if w ∈ pos(d )
⊥ otherwise,

then X (w) : Ω→ E〈H 〉 ∪ {⊥} with X (w) = νw ◦X . The definition of hd must then also be extended by the
equation hd(⊥) =⊥, to allow access to the heads of hyperedges in a derivation indexed by X . Then, hd(X (w)) is
also a random element, with the type hd(X (w)) : Ω→N 〈H 〉 ∪ {⊥}.
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=
∑

d ′∈∂ (Ag
G)

P (Y=d ′|Gi−1)>0

f (d ′) ·
∑

w∈pos(d ′)

∑

d∈∂ −1{d ′}

P (X = d ,X (w) = e〈h〉 | Y = d ′,Gi−1)

=
∑

d ′∈∂ (Ag
G)

P (Y=d ′|Gi−1)>0

f (d ′) ·
∑

w∈pos(d ′)

P (X (w) = e〈h〉 | Y = d ′,Gi−1). (by Lem. 2.9)

By an analogous argument, we can reformulate the denominator of the above fraction as
∑

d ′∈∂ (Ag
G)

P (Y=d ′|Gi−1)>0

f (d ′) ·
∑

w∈pos(d ′)

P (hd(X (w)) = hd(e〈h〉) | Y = d ′,Gi−1).

We managed to remove the summation over completely annotated derivations! And moreover,
as the only used derivation bank is the incomplete f, coming from the last State-Split step, we
can also do away with the tedious computation of complete corpora in every iteration of EM.
But how to compute the probabilities in the second part? Let us define two recursive functions,
computing the inside and outside probabilities of a derivation at a given position, these will aid
us in this task.

Definition 4.22. Assume a phg-la G = (N , E , H ,µ, g , p) as from above (i.e., H = H ′ · {0,1}
for some H ′) and a derivation d ∈ ∂ (AG). The inside probability βw

d
(a〈x〉) of a complete node

a〈x〉 ∈N 〈H 〉 at a position w ∈ pos(d ) is given by

βw
d (a〈x〉 |G) =β

′
d |w
(a〈x〉 |G)

where β′
e ′〈h ′〉(d1,...,dk )

(a〈x〉 |G) =
∑

e〈h〉∈∂ −1{e ′〈h ′〉}
µ(e〈h〉)=(b1〈x1〉···bk 〈xk 〉,a〈x〉)

β′d1
(b1〈x1〉 |G) · · ·β

′
dk
(bk〈xk〉 |G) · p(e〈h〉),

while the outside probability αw
d
(a〈x〉 |G) of a〈x〉 ∈N 〈H 〉 at w ∈ pos(d ) can be computed as

follows:

αεd (a〈x〉 |G) =
(

1 if d ∈ ∂
�

Ag
G

�

and a〈x〉= g

0 otherwise

αwi
e ′〈h ′〉(d1,...dk )

(a〈x〉 |G) =
∑

e〈h〉∈∂ −1{e ′〈h ′〉}
µ(e〈h〉)=(b1〈x1〉···bk 〈xk 〉,b0〈x0〉)

bi 〈xi 〉=a〈x〉

αw
d (b0〈x0〉 |G) ·β

w1
d (b1〈x1〉 |G) · · ·β

w(i−1)
d

(bi−1〈xi−1〉 |G)

·βw(i+1)
d

(bi+1〈xi+1〉 |G) · · ·β
wk
d (bk〈xk〉 |G)

· p(e〈h〉).

Presuming a phg-la G annotated with H · {0,1}, and some derivation d annotated only with
annotations from H , the inside and outside probabilities over d allow the following (compare
Fig. 4.10): the inside probability βw

d
(a〈x〉 | G) in d at some position w is the sum over the

probabilities of all possible H · {0,1}-annotations of the subtree d |w that have at their root a
hyperedge with head a〈x〉. Similarly, the outside probability αw

d
(a〈x〉 |G) sums up over the

probabilities of all those possible annotations of the context enclosing the position w in d
which have a tail node a〈x〉 at the “gap” at their bottom.
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αw
d

βw
d

w

Figure 4.10: Inside and outside probabilities

With these definitions we have for every d ∈ ∂ (AG), w ∈ pos(d ), a〈x〉 ∈N 〈H 〉

αw
d (a〈x〉 |G) ·β

w
d (a〈x〉 |G) = P

�

hd(X (w)) = a〈x〉,Y = d |G
�

, (4.4)

presuming that P (Y = d |G)> 0, compare Manning and Schütze (1999, p. 399). This allows us
to compute one of the probabilities from above as

P (hd(X (w)) = hd(e〈h〉) | Y = d ,G)

=
P (hd(X (w)) = hd(e〈h〉),Y = d |G)

P (Y = d |G)
(by Def. 2.8)

=
αw

d
(hd(e〈h〉) |G) ·βw

d
(hd(e〈h〉) |G)

P (Y = d |G)
.

Note that this probability will necessarily be zero if hd(d (w)) 6= hd(∂ (e〈h〉)), i.e., we can
neglect summing over positions where this is the case, giving rise to a possible optimization.10

If we expand the definition of β in (4.4), we can deduce, again under the assumption that
P (Y = d |G)> 0, that

αw
d (a〈x0〉 |G) · p(e〈h〉) ·β

w1
d (b1〈x1〉 |G) · · ·β

wk
d (bk〈xk〉 |G)

= P
�

X (w) = e〈h〉,Y = d |G
�

for every d ∈ ∂ (AG), w ∈ pos(d ), e〈h〉 ∈ E〈H 〉 with µ(e〈h〉) = (b1〈x1〉 · · · bk〈xk〉,a〈x0〉),
which, by similar reasoning, results in

P (X (w) = e〈h〉 | Y = d ,G)

=
αw

d
(a〈x0〉 |G) · p(e〈h〉) ·βw1

d
(b1〈x1〉 |G) · · ·βwk

d
(bk〈xk〉 |G)

P (Y = d |G)
,

10As another optimization idea, one might compute the probability P (Y = d |G) not in G, but in the less-split
hypergraph G was produced from.
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under the premise that d (w) = ∂ (e〈h〉), else, P (X (w) = e〈h〉 | Y = d ,G) = 0. Contrary to
above, this requirement is necessary, because it allows to distinguish between two hyperedges e
and e ′ with the same head and tail nodes: Without the premise, if e appears at position w in d ,
we could still give a different complete hyperedge e ′〈h〉 a non-zero likelihood of appearing in
an annotated version of d . With these results, we can rewrite the fraction from (4.3) as

pi (e〈h〉) =

∑

d∈∂ (Ag
G)

P (Y=d |Gi−1)>0

f (d ) ·
∑

w∈pos(d )
d (w)=∂ (e〈h〉)

αw
d (a〈x0〉 |Gi−1) · pi−1(e〈h〉) ·β

w1
d (b1〈x1〉 |Gi−1)

· · ·βwk
d (bk〈xk〉 |Gi−1)/P (Y = d |Gi−1)

∑

d∈∂ (Ag
G)

P (Y=d |Gi−1)>0

f (d ) ·
∑

w∈pos(d )
hd(d (w))=hd(∂ (e〈h〉))

αw
d (a〈x0〉 |Gi−1) ·β

w
d (a〈x0〉 |Gi−1)/P (Y = d |Gi−1)

.

The Inside-Outside algorithm then uses this reestimation formula instead of the more general
one of EM, generating hypergraphs which capture more and more of the statistical properties
of the supplied treebank, as shown in Alg. 4.3.

As stated earlier, this transformation demonstrates how Inside-Outside can be seen as a
dynamic programming instance of EM: the computation of outside weights at a position wi of
a derivation d depends on the outside weight at position w, as well as the inside weights of the
sibling positions wk, k 6= i . Almost all of these values can be reused for the computation of the
outside weights of a sibling position w j , j 6= i . In dynamic programming terminology, this
property is referred to as overlapping subproblems, and calls for the memoization of their results.
This simply means that in an implementation of Inside-Outside, one might want to manage a
look-up table where the results of the functions α and β are stored indexed by their respective
arguments, allowing efficient reuse in later computations.

For more information on memoization techniques in the context of Computational Linguis-
tics, refer to Norvig (1991). Dynamic programming was first analyzed by Bellman (1954), with
applications to several stochastic and probabilistic problems. Another comparison between
EM and Inside-Outside was given by Prescher (2001).
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Algorithm 4.3 The Inside-Outside algorithm for phg-las

Input: A phg-la G = (N , E , H ,µ, g , p), a corpus f : Ag
G → R, ∂ : AG → ∂ (AG), random

elements X : Ω→Ag
G and Y : Ω→ ∂ (Ag

G) and a value θ ∈R.
Output: Inside-Outside(G, f ,∂ ,X ,Y,θ)

i ← 0
G0 = (N , E , H ,µ, g , p0)←G
repeat

i ← i + 1
Gi ← (N , E , H ,µ, g , pi ),

where for every e〈h〉 ∈ E〈H 〉 with µ(e) = (b1〈x1〉 · · · bk〈xk〉,a〈x0〉):
if
∑

d∈∂ (Ag
G)

P (Y=d |Gi−1)>0

f (d ) ·
∑

w∈pos(d )
hd(d (w))=∂ (a〈x0〉)

αw
d (a〈x0〉 |Gi−1) ·β

w
d (a〈x0〉 |Gi−1)/P (Y = d |Gi−1) 6= 0 then

pi (e〈h〉) =

∑

d∈∂ (Ag
G)

P (Y=d |Gi−1)>0

f (d ) ·
∑

w∈pos(d )
d (w)=∂ (e〈h〉)

αw
d (a〈x0〉 |Gi−1) · pi−1(e〈h〉) ·β

w1
d (b1〈x1〉 |Gi−1)

· · ·βwk
d (bk〈xk〉 |Gi−1)/P (Y = d |Gi−1)

∑

d∈∂ (Ag
G)

P (Y=d |Gi−1)>0

f (d ) ·
∑

w∈pos(d )
hd(d (w))=∂ (a〈x0〉)

αw
d (a〈x0〉 |Gi−1) ·β

w
d (a〈x0〉 |Gi−1)/P (Y = d |Gi−1)

,

else
pi (e〈h〉) = 1/|{e ′〈h ′〉 ∈ E〈H 〉 | hd(e ′〈h ′〉) = hd(e〈h〉)}|

end if
until L

�

f ; P ( · |Gi )
�

− L
�

f ; P ( · |Gi−1)
�

<θ
return Gi
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5 Discussion: Induction of Heuristics

As described in Chapter 3, the KA* algorithm requires an external heuristic function, which
is admissible and consistent, for its correct execution. One main aim of this work was to
describe the method given by Pauls and Klein (2009b), in which they employ the hierarchy
of probabilistic hypergraphs with latent annotations,1 created during a run of the State-Split
algorithm, to induce heuristics on the most-split hypergraph.

Let us first give an overview of the proposed method. Assume G1, . . . , Gn are the probabilistic
hypergraphs with latent annotations successively created during a run of State-Split. They are,
w.l.o.g., presumed to be of the form Gi = (N , E , Hi ,µ, gi , pi ) for i ∈ [n]. The argumentation
of Pauls and Klein is then based on the statement that Gi is a relaxed projection of Gi+1, for
i ∈ [n− 1], which means that a split hyperedge’s probability in Gi+1 is never higher than the
probability of the hyperedge in Gi it originated from:

pi
�

e〈x1 · · · xk , x0〉
�

≥ pi+1
�

e〈x1 j1 · · · xk jk , x0 j0〉
�

, (5.1)

for every hyperedge e ∈ E , j0, . . . , jk ∈ {0,1}, and x0, . . . , xk ∈ {0,1}i−1. With (5.1) and some
straightforward induction proofs, this would then naturally lead to the fact that Viterbi outside
scores of less-split nodes are higher than those of more-split ones emerging from them,

α∗Gi
(a〈x〉)≥ α∗Gi+1

(a〈x j 〉), (5.2)

for i ∈ [n− 1], j ∈ {0,1}, which would allow us to define a heuristic function hi by

hi : N 〈Hn〉→ [0,1]
hi (a〈xw〉) = α∗Gi

(a〈x〉).

for every i ∈ [n−1], x ∈ {0,1}i−1 and w ∈ {0,1}n−i . It immediately follows from (5.2) that the
hi would be admissible, and the proof for their consistency would also arise to be quite trivial.

However, what did turn out to be not trivial at all, was the proof for (5.1), and this with
good reason: at last, after a series of failed proof attempts, we decided to put it to the test using
the in-house-developed Vanda project. Its implementation of State-Split was executed on a
small fragment of the German language treebank NEGRA, with just one split-merge cycle.
In the resulting two hypergraphs G1 and G2, there were already several hyperedges whose
probabilities violate (5.1). Let us have a look at a minimal example distilled from this situation.
Assume a treebank f : T →R≥0 with only one type T = {t},

t =
�

a
�

b (c , c), b (d )
�	

,

1Actually, in their work, Pauls and Klein work directly on probabilistic context-free grammars, but since in the
work at hand the definition for State-Split is based on hypergraphs, and pcfgs and phgs do not show differences
regarding the following discussion, we will stick with the terminology introduced in Section 4.2.
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b 〈ε〉
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d 〈ε〉

δ〈ε,ε〉
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1.0

(a) G1

a〈0〉

α〈10,0〉

b 〈1〉 b 〈0〉

β2〈00,1〉

c〈0〉

γ 〈ε, 0〉

β1〈0,0〉

d 〈0〉

δ〈ε, 0〉

1.0

1.0

1.0

1.0

1.0

(b) G2

Figure 5.1: The phg-las G1 and G2 from the counterexample

and f (t ) = 1.2 The Vanda system reads off a probabilistic hypergraph with latent annotations3

G1 = (N , E , H1,µ,a〈ε〉, p1) from this corpus, with nodes, hyperedges and annotation symbols

N = {a, b , c , d}, E = {α,β1,β2,γ ,δ}, H1 = {ε},

hyperedge connectivity given by

µ(α) = (b b ,a)
µ(γ ) = (ε, c) µ(δ) = (ε, d )
µ(β1) = (d , b ) µ(β2) = (c c , b ),

and probabilities, arising from relative frequency estimation, as

p1(α〈εε,ε〉) = 1
p1(γ 〈ε〉) = 1 p1(δ〈ε〉) = 1
p1(β1〈ε,ε〉) = 0.5 p1(β2〈εε,ε〉) = 0.5.

The phg-la G1 is displayed in Fig. 5.1a. Running G1 through a split-merge cycle of Vanda,
the resulting phg-la is G2 = (N , E , H2,µ,a〈0〉, p2) where H2 = {0,1} and the new complete
hyperedge probabilities are

p2(α〈10,0〉) = 1
p2(γ 〈ε, 0〉) = 1 p2(δ〈ε, 0〉) = 1

2One might think of b as a constituent that can expand either to a composite phrase or a single utterance. Actually,
this was the case in the NEGRA parse tree the example was distilled from, there b was labeled CVP (coordinated
verb phrase) and could expand into “VP” or “VP and VP”.

3Using the notation for phg-las established in the work at hand, instead of the one internally employed by Vanda
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p2(β1〈0,0〉) = 1 p2(β2〈00,1〉) = 1,

and for all other complete hyperedges, their differences from zero are marginal. G2 is shown in
Fig. 5.1b, where nodes with negligible inside probabilities and edges with close-to-zero edge
probabilities have been omitted. The juxtaposed hypergraphs are really quite instructive of the
proceeding of the State-Split method: during the split-merge step, the two different “roles” the
node b 〈ε〉 takes—once it dominates d , and once two nodes labeled with c in the treebank—were
separated into distinct complete nodes b 〈0〉 and b 〈1〉, each now with only one ingoing (relevant)
hyperedge, and each of those with a probability of one. Obviously, this split drastically increases
the likelihood of f allocated by the hypergraphs’ induced probability distributions (from 0.25
to 1.0), and hence it was not merged back together during the procedure. The other splits were
merged back, however, and this makes sense, too, since they already perfectly grasped the single
parse tree in the corpus’s set of types.

By all means, G2’s edge probabilities are clearly in violation of (5.1), after all the hyperedges
they were created from had both a probability of 0.5! This seriously impairs our hopes for the
straightforward method described by Pauls and Klein to produce heuristics that are actually
admissible and consistent. There are two possible explanations for the disagreement between
(5.1) being stated as true by Pauls and Klein, and our counterexample.

First of all, one might think that the phenomenon does not carry weight for corpora larger
than in this small example, with the cross-dependencies between trees ruling out such splits as
for b 〈0〉 and b 〈1〉. But, at least at the level of lexical splits, the phenomenon should arise again,
and in fact, this is witnessed by the experimental data written down by Petrov et al. (2006).
There, phrasal categories are shown with the subcategories they were split into, along various
semantic and syntactical characteristics. For example, the part-of-speech tag NNP (for singular
proper nouns) exhibits sixteen subcategories after four split-merge cycles, with categories for
names of months, of political leaders, and so on.

This strongly suggests that the probability of a hyperedge with, say, head “NNP-14”4 and
tail “December” is higher than of a hyperedge from “December” to “NNP” in the original
hypergraph, after all there are more relevant ingoing hyperedges to NNP over which to
“distribute” the total probability mass of one.

There might of course be another explanation for the discrepancy. Since the State-Split
procedure was not formally defined by Petrov et al. in their paper, there is always the possibility
that their concrete implementation differs from the formalization presented in the paper at hand.
So, for an alternative version of State-Split, (5.1) might indeed hold. However, unfortunately,
we were not able to extrapolate such an alternative version from the condensed presentation in
their publication.

Therefore, the question of how to extrapolate consistent and admissible heuristics for KA*
remains unanswered in the work at hand.

4In their paper, annotations are integers instead of words over {0,1}.
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6 Summary

In Chapter 3 of the work at hand, we detailed the lazy version of the KA* algorithm for efficient
heuristic-based k-best search in a probabilistic hypergraph. The basic monotony property this
laziness relies on was illustrated, and the construction of ranked assignments with backpointers
was given in the form of hyperedges of a search graph, similar to non-lazy KA*. After that, an
implementation of KA* in the functional programming language Haskell was documented.

Chapter 4 concerned itself with grammars and hypergraphs: In Section 4.1, we gave a
definition for probabilistic tree insertion grammars and showed how these can be transformed
into probabilistic hypergraphs, such that derivations in the latter correspond to those of the
grammar. Section 4.2 contained a description of the State-Split procedure for learning annotated
phgs from a treebank, gave a short illustration of the Expectation-Maximization algorithm, and
showed how the Inside-Outside algorithm can be seen as an instance of EM.

Finally, in Chapter 5, we considered a technique described by Pauls and Klein (2009b) to
derive consistent and admissible heuristics for KA* from the hierarchy of hypergraphs generated
by the State-Split procedure. Unfortunately, the property this technique rests on and which
is stated as true by the authors, does not hold generally, at least for the case in the work at
hand. We gave a counter-example for this property and concluded with a discussion of possible
reasons for this, somewhat disappointing, result.
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