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Abstract
Discontinuous constituent structures and non-projective de-
pendency structures are common in natural language. In this
work we consider hybrid trees and hybrid grammars to repre-
sent either kind of syntax structure. We formally describe and
experimentally evaluate a method for learning a hybrid gram-
mar consisting of a linear context-free rewriting system and
a simple definite clause program from a corpus of constituent
structures or a corpus of dependency structures.
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1 Introduction
In linguistics and natural language processing (NLP) the syntactic structure of a sentence is often
regarded as a tree. It is common in natural language that a sentence’s surface form, i.e., the words of a
sentence in the order they are spoken or written, can deviate from the yield of the sentence’s syntax tree,
i.e., the sequence of leaves taken from left to right [MS08]. As an example we consider the constituent
tree below, which is taken from the German NEGRA treebank [Sku+98]. Its left-most leaf muss is the
second word in the surface form.

Darüber muss nachgedacht werden

S

VMFIN

VP

VP

PROAV VVPP

VP

VAINF

Each constituent tree of this kind, i.e., each constituent tree whose surface form and yield mismatch, is
called discontinuous.

For linguistic analysis and automated language processing it is desirable to find a finite formal model
that describes every plausible syntax tree of a natural language. Hence, such a model should be capable
of representing discontinuous trees. At the same time, the practical use in NLP demands that the model
allows for efficient parsing, i.e., the generation of a syntax tree given some surface form shall cause low
computational costs.

In this work we explore syntax models based on hybrid trees and hybrid grammars [NV14]. In a hybrid
tree the representation of the syntactic structure is separated from the representation of the surface form.
This is achieved by describing the former as a tree and the latter as a string where every symbol in the
string is injectively linked with a node of the tree. By means of this double perspective discontinuous
structures can be represented. A hybrid grammar is a finite device that generates hybrid trees. Given a
corpus of constituent structures such as the NEGRA treebank, a hybrid grammar that generalizes this
corpus can be learned automatically [NV14]. Our extension of [NV14] is twofold: firstly, we describe in
more detail how a hybrid grammar can be learned from a corpus of constituent structures. Secondly,
we transfer this learning method to an alternative view on syntax called dependency structures. The
following outlines how this thesis is organized.

• Machine learning tasks with natural language require domain specific knowledge. Hence, we
provide a brief introduction to syntax of natural languages in Chapter 2. We identify requirements
a formal model of syntax should fulfill and point out inherent limitations of certain design decisions
and of a syntax-based approach to NLP in general.

• In Section 3.1 we explain the idea of hybrid trees and demonstrate why they are suited for an
adequate representation of both constituent structures and dependency structures. In the remainder
of Chapter 3 we formally define hybrid grammars based on simple definite clause programs (sDCPs)
and linear context-free rewriting systems (LCFRSs) and how they generate languages of hybrid
trees.
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• Afterwards, in Chapter 4, we explore techniques to induce (or learn) a hybrid grammar from a
corpus of hybrid trees. Grammar induction is parameterized by a recursive partitioning strategy
that determines the string grammar and its parsing complexity: a regular grammar, a context-free
grammar, or an LCFRS with an adjustable maximal fanout is obtained. Thus, we can learn a
hybrid grammar suitable for efficient syntax tree generation. Further, we consider the approaches
strict labeling and child labeling [NV14] to improve the generalization of the induced grammar.

• In Chapter 5 we describe our prototypical implementation of hybrid trees, hybrid grammars,
grammar induction, and parsing. We test it by conducting experiments for dependency parsing
on the TIGER [Bra+02], NEGRA, METU-Sabanci [Ofl+03], and SDT [De+06] treebank. Also,
we report new results for constituent parsing using a larger part of TIGER than in [NV14]. We
analyze the results and compare our implementation to previous approaches using the labeled
attachment score [BM06] and the PARSEVAL [Bla+91] metric.

• We give an overview on the common transition-based [NHN06] and graph-based [McD+05]
dependency parsers and the LCFRS-based method of [Kuh13; MK10] in Chapter 6. Also, we
list techniques [Cha00; KM03; MMT05; Pet+06] that have turned out beneficial for constituent
parsing. How these insights into existing systems might be used to improve the hybrid grammar
approach is discussed in Chapter 7.

Note that we focus on studying hybrid grammars from a practical viewpoint. Thus, we specify the
grammar formalism, the grammar induction, our implementation, and the evaluation setup in a formally
precise manner. However, the formal properties of hybrid grammars as well as proving the correctness
of our constructions are outside the scope of this thesis.
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2 Syntax of natural languages
Linguists study the language that is spoken by human beings: the sounds in use (phonology), how these
sounds combine to syllables and words (morphology), how words are grouped to sentences (syntax), what
the meaning of a sentence is (semantics), and how sentences are used to achieve communicative goals
(pragmatics). Besides this, linguists compare different languages and examine the change of languages
throughout history no less than their interplay with culture and society. In this thesis we analyze a
fairly new theoretic model to represent the syntax of human language. Since the author’s background is
computer science rather than linguistics – the same might hold for the reader – this chapter shall give a
brief introduction to the essential notions as well as the potential and limitations of a syntactic view
on human language. The presented material is a summary of the first three chapters of [SWB03] and
selected sections of [Ben13] that was extended with additional content especially relevant for this work.

Summed up in one sentence, syntax is the difference between an arbitrary sequence of words and an
acceptable sequence. Where this line should be drawn has been studied since the antiquity. For a long
time the only approach to syntax was a prescriptive one, i.e., the objective was to frame rules on how to
speak and write well:

A preposition is not a good word to end a sentence with. [Fow26]

Since the late 18th century there were comparative studies of languages and only from the beginning of
the 20th century the subject of research became the description of languages of the day. In the 1950s
Noam Chomsky developed the concept of generative grammars [Cho65]: a formal rule-based system
should be used to generate all acceptable sentences of a language. In this way precise hypotheses of
language structure can be formulated and tested against examples. Chomsky supplemented his ideas
with a variety of theoretic results of the expressiveness of such systems [Cho56; Cho59; CS63] and in
doing so established the area of formal language theory. His work has not only shaped linguistics to this
day but also influenced computer science.

2.1 Why does syntax matter?
Above, we have listed various levels of language – why should the syntactic level be chosen for natural
language processing tasks? A key aspect of human languages is its compositional nature which [Sza12]
summarizes as follows: The meaning of a complex expression is determined by its structure and the
meaning of its constituents. In other words, to understand a sentence we only have to analyze its
structure (syntax) and relate this structure to the lexical semantics of the sentence’s words. This principle
of compositionality allows humans to process unknown sentences: they can quickly communicate new
topics or known topics with new sentences.

Due to the principle of compositionality, syntax should play a central role in automated processing
of natural language. If we modularize the processing, we end up with a chain similar to the one in
Figure 2.1. Assuming that our input is text (rather than audio samples) syntactic parsing will be a
prerequisite of semantic evaluation. Syntax also restricts text synthesis. Likewise, machine translation
can be done at the syntactic level as [Vau68] pointed out.

2.2 Part-of-Speech
A modest way to analyze a language syntactically could be based on categorizing words and finding
common building patterns based on these categories. One option for the categorization of words is
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speech phonemes text text + POS syntax
trees

formal knowledge
representation

phonology morphology syntax semantics

speech recognition syntactic parsing

POS-tagging

semantic parsing

speech synthesis text synthesis

yield syntax-based
translation

Figure 2.1: Abstract processing chain of a modular NLP system.

according to their function in the sentence which is also called Part-of-Speech (POS). There are four
major POS that can be found in many languages: verbs (which act as predicates), nouns (which are
arguments of the predicates), adverbs (which characterize verbs), and adjectives (which characterize
nouns). Not every lexical element has a unique POS, e.g., the English word round could be a verb, an
adjective, an adverb, a preposition or a noun.

Usually it is assumed that different languages or language families require their specific set of POS-
tags [Ben13, p. 59]. Still, in recent years there has been effort to establish sets of universal (coarse-grained)
POS-tags [PDM12] to foster the development of cross-lingual NLP applications. A frequently used set of
POS-tags for German is the Stuttgart-Tübingen-tag set [Sch+99] which distinguishes 54 POS like finite
auxiliary verb (VAFIN), infinitive main verb (VVINF), or irreflexive personal pronoun (PPER). One can
also include morphological analysis like genus, time, casus, person, and number into the POS-tag, as it is
done by the tool SMOR [SFH04] for German. However, as in many supervised machine learning contexts
there is a trade-off between rich analysis and data sparseness: given a finite data set a fine-grained
analysis will result in fewer samples per class than a coarse-grained one.

2.3 Constituents

One perception of the structure of some sentence is that of a constituent tree. A constituent is a group
of words that relates as a unit to other words or constituents of the sentence. The constituents form a
hierarchical structure, i.e., a tree, whose leaves are the words of the sentence.1 Each complex constituent,
i.e., a constituent consisting of more than one word, belongs to some syntactic category. Syntactic
categories are often abbreviated with sequences of capital letters. For instance, some identifiers used
in the German TIGER treebank [Bra+02] are sentence (S), noun phrase (NP), verb phrase (VP), and
adverbial phrase (AVP). The constituent structures of a sentence may be obtained from a context-free
grammar whose nonterminals are syntactic categories and POS-tags: each parse tree of the sentence is a
constituent tree of this sentence.

In Figure 2.2 such a context-free grammar is depicted, where we used noun (N), verb (V), adverb
(ADV), determiner (DET), and the syntactic categories and POS-tags mentioned above as nonterminals.
The sentences my dog barks and I see the dog have the following parse trees in this grammar:

1An alternative name for constituent and constituent structure is phrase and phrase structure, respectively. In this work
we use the former terms.
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S → NP VP N → dog
NP → DET N | PPER PPER → I
VP → V [ADV] [NP] V → see | barks | disappear

DET → my | the

Figure 2.2: Productions of a context-free grammar where a vertical bar denotes an alternative and square
brackets indicate optionality.

(1)

S

NP

DET

my

N

dog

VP

V

barks

(2)

S

NP

PPER

I

VP

V

see

NP

DET

the

N

dog

Unfortunately, our grammar is too simple: the following parse trees are also generated by our grammar,
but usually they are not considered to be grammatically correct.

(3)

S

NP

PPER

I

VP

V

barks

(4)

S

NP

PPER

I

VP

V

disappear

NP

DET

the

N

dog

In (3), the subject-verb-agreement is violated: a 1st person singular pronoun requires a different
conjugation of the verb than a 3rd person subject. One solution to this problem could be the introduction
of a special syntactic category and thus the introduction of a nonterminal and special productions for
each combination of person and number. This technique is called subcategorization [Cho65]. In (4)
we exchanged the transitive verb see by the intransitive verb disappear: see accepts a direct object
whereas disappear does not. There are even bitransitive verbs like buy, also accepting an indirect
object:

I buy you a beer.

To capture this phenomenon, which is called valence of the verb, we could split the V-nonterminals
again but this time into three. Since this split is orthogonal to the one for subject-verb-agreement, we
have a distinct V-nonterminal for each combination of number, person, and valence. However, it seems
desirable to describe orthogonal phenomena isolated from one another since otherwise the grammar
is rather large and redundant. Also, if the grammar shall be learned from examples instead of being
hand-written by a linguist, then joining orthogonal concepts will require a training example for each
possible combination. Thus, for practical application one needs to balance granularity of nonterminals
with the size of the training material.2

A second phenomenon is of special interest in this thesis. It often occurs in languages with free word
order like Latin, German, Dutch, and Czech but one can also give examples for English [McC82]. The

2To avoid frequent subcategorization [SWB03] describe a device called headed phrase structure grammars: nonterminals
are equipped with features like number or transitivity on which productions may enforce constraints.
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former kind of languages have a high degree of freedom in how words are arranged in the surface form,
i.e., the words of a sentence in the order they are written or spoken. Consider the German sentence Er
kann nicht programmieren. (he cannot program) and its constituent structure:

S

NP

PPER

Er

VP

VMFIN

kann

NEG

nicht

VC

VVINF

programmieren

Assume that we exchange the verb complement (VC) spanning programmieren by sich das Auto
leisten (afford (himself) the car):

VC

NP

PRF

sich

NP

ART

das

NN

Auto

VVINF

leisten

Now the word order in the German sentence needs to be adjusted, resulting in one of the following
degenerated trees:

S

NP

PPER

Er

VP

VMFIN

kann

VC

NP

PRF

sich

NP

ART

das

NN

Auto

VVINF

leisten

NEG

nicht

S

VP

VC

NP

ART

Das

NN

Auto

NP

PRF

sich

VVINF

leisten

VMFIN

kann

NEG

nicht

NP

PPER

er

We still have a tree-shaped hierarchy of constituents, however some constituents no longer correspond
to a continuous part of the sentence, e.g., VP and VC. Hence, we call such a constituent structure
discontinuous. Obviously, these structures cannot be parse trees of a context-free grammar.

Note that the children of S in the left tree are NP and VP whereas the children of S in the right tree
are VP and NP. This is due to NP containing the first word of the sentence in the left tree and VP
containing the first word of the sentence in the right tree. But is this really a structural difference or
should one decouple the syntactic hierarchy from word order? At least for languages with free word
order the latter might be advantageous [Ofl+03].

We summarize this section by a (non-exhaustive) list of choices that the linguist has to make during
the design of a grammar or during the creation of a constituent treebank.

• The granularity of the POS-tags and the number of syntactic categories needs to be chosen.
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S

NP

PPER

Sie

VP

VVFIN

[isst]

ADV

auch

NP

ART

[ein

NN

Eis]

S

NP

PPER

Sie

ADV

auch

Figure 2.3: Er isst ein Eis. Sie auch. (He eats ice cream. She too.) Two possible constituent
structures for the second sentence are depicted above.

SIMPX

An der Oder wurde er dann verwundet
(Then he was injured at the Oder,

, ein Wadendurchschuss .

NX

a through and through bul-
let wound at the calf.)

Figure 2.4: A simplified constituent structure from TüBa-D/Z that consists of four disconnected syntax
trees: the first and the third tree are nontrivial hierarchies whereas the second and the fourth
one consist of the comma and the period, respectively.

• Shall additional information like labeled edges or morphological tags for every word be included?

• What is the correct position for attachment of certain constituents? For instance, should the
predicate of a German sentence be attached to the root symbol or to some intermediate verb
phrase node?

• Especially in spoken word but also in text, words can be missing (un-)intentionally, a phenomenon
called ellipsis. Shall the constituent structure include an empty category [Fea01] in this case? Two
possible constituent structures for an elliptical sentence are depicted in Figure 2.3.

• Discontinuity can be avoided completely by attaching every child that causes it at a higher node.
For instance, this strategy is used in the German TüBa-D/Z [Hin+04].

• What constitutes a syntactic unit? Typically, this is one sentence from the text source. In some
annotation schemes certain subclauses are not considered to be syntactically connected to the
main clause. In this case we have a sequence of syntax trees instead of a single syntax tree as the
example in Figure 2.4 from TüBa-D/Z illustrates.

Typically, each treebank is equipped with annotation guidelines that makes the used methodology
transparent to the users of the treebank. Since our aim is to learn a grammar from a treebank, we
should make sure that our model is capable of representing all the above phenomena.

2.4 Dependencies
An alternative view on the syntactic structure of a sentence is that of dependencies [Tes59]. This theory
postulates a governor-depend-relation on the words of a sentence which is directed and acyclic.
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sah

Jan

nsubj

helfen

Peter

nsubj

lesen

Marie
nsubj

dobj

dobj

Jan Peter Marie sahhelfenlesen(Ich dachte dass)

(I though that) (saw)(help)(read)

Figure 2.5: A part of the projective dependency structure of the German sentence Ich dachte dass
Jan Peter Marie lesen helfen sah.

zag

Jan

nsubj

helpen

Piet

nsubj

lezen

Marie

nsubj

dobj

dobj

Jan Piet Marie zag helpen lezen(Ik dacht dat)

(saw) (help) (read)(I though that)

Figure 2.6: A part of the non-projective dependency structure of the Dutch sentence Ik dacht dat Jan
Piet Marie zag helpen lezen.

Dependency structures have a close relation to constituent structures: in each constituent there is
a syntactic head (or head) which identifies the central word of the constituent, e.g., the head of a
constituent consisting of a noun, an adjective, and a denominator is the noun. The remaining words of
the constituent are direct or transitive dependents of the head. There are two types of direct dependents:
arguments are required by the head to complete its meaning whereas optional adjuncts refine the meaning.

The natural head of a sentence is its predicate, i.e., a verb. The verb can command arguments like
subject, direct object, and indirect object. As pointed out in the previous section, this depends on the
valence of the verb. The verb may also be equipped with an adverb which would be an adjunct.

The dependency structures of a German and a Dutch sentence (from [Kuh13, Figure 1]) are depicted
in Figure 2.5 and Figure 2.6, respectively. Both sentences may be translated with I thought that Jan
saw Peter helping Mary reading. In both dependencies structures each arc from some head to a
dependent is annotated with a label that specifies the syntactic function of the dependent w.r.t. the
head. This label is also called dependency relation (DEPREL). In both examples we used Universal
Standford Dependencies [Mar+14].3

3The edge labels were annotated by the author and shall only serve as an example. Be aware that these labels are
linguistically questionable since an infinite verb form cannot command a subject. Thus, the depicted dependencies
are rather semantic than syntactic. The author thanks Thomas Groß for pointing this out (http://linguistics.
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Observe that in the German dependency structure the dashed lines do not cross the solid edges of the
tree whereas this phenomenon occurs in the Dutch one. The property the German dependency structure
has is called projectivity: a dependency structure is projective if for every word m of the sentence, it holds
that if a word n is a descendant of m and a word w occurs between m and n in the surface form, then w
is also a descendant of m. Otherwise, the dependency structure is called non-projective. Every subtree
of a dependency structure can be seen as one constituent of the sentence. In this sense the notions of
non-projectivity and discontinuity coincide. Thus, also non-projective dependency structures cannot
be represented by context-free grammars, whereas the construction of [Kuh13] yields a context-free
grammar for a projective one.

Dependency structures are used in NLP applications such as relation extraction [CS04], machine
translation [DP05], and lexical resource augmentation [SJN05]. They contain most of a sentence’s
predicate-argument information but are flatter than constituent structures since every word in the
sentence corresponds only to one tree node. Their smaller size makes them easier to learn and to
parse [McD+05]. Also, the order of a word’s dependents in the dependency structure is normally not
considered. To this end, dependency structures have been argued to be more natural for languages with
free word order [Ofl+03] than constituent structures where one typically attaches importance to this
order.

Most of the phenomena and annotation decisions listed for constituent structures apply as well for
dependency structures. Thus, we should make sure that our model of dependency structures has the
flexibility to represent them.

2.5 Limitations of purely syntactic approaches
We argued earlier that the syntax-component should play a key role in our natural language processing
chain, cf. Figure 2.1. In practice it is complicated or impossible to decompose the processes since the
levels of language are interwoven: Syntax is closely connected to morphology, at least in highly inflected
languages, i.e., languages with an elaborated declension and conjugation system. Moreover, we saw that
the POS but also properties like transitivity of verbs depend strongly on lexical information.

On the other hand, we are faced with ambiguity on syntactic level:

The astronomer saw a student with a telescope.

There are two distinct meanings of this sentence each with its own syntax tree. The first is that the
astronomer was looking through a telescope and saw a student. The second is that the student that was
seen by the astronomer had a telescope. Given only the sentence both interpretations are equally good.
Although many sentences in human communication are syntactically ambiguous, humans are able to use
language quite effectively since the brain is good in filtering unlikely meaning. Humans decide for the
most likely syntax of a sentence by including frequency biases and semantic aspects like the textual,
local, and temporal context in which the sentence appears [SWB03, p.13]. To exemplify the robustness
of the human brain we consider the next example.

She found the book on the atom. [SWB03]
She found the book on the table.

Although both sentences are almost identically, in fact both correspond to the same sequence of POS-
tags, the human brain easily assigns different syntactic structures. We know that an atom is not a good
location to find a book and that a table is more likely to be the location than the topic of a book.
One way to deal with this uncertainty in an automated setting is adding weights to the formal grammar
that represents the language’s syntax. Ideally, one would need to readjust these weights according
to the domain or topic of the text. Thereby, one should also consider shifts of the topic and thus
weight-adjustments within the processing of a single text.

Furthermore, there are certain phenomena that seem to require semantic parsing. If we translate
from a language where tenses have aspect semantics, e.g., the Continuous tenses in English which can
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express displeasure, into languages without it, then we are likely to lose information in a mere syntax-
based system. Also, there are exceptions to the principle of compositionality: in case of idioms one
must not decompose a phrase in order to understand its meaning. Moreover, if the addressee of a text
is supposed to know certain information, then required arguments might be missing. Lastly, irony
contradicts compositionality since some opposite of the literal meaning is expressed. Instead of the
syntax the semantic context of the expression as well as the tone of the speaker, i.e., phonology, is
helpful to discover it.

We conclude that there are clear limitations in what we can expect from a syntax-based model of
natural language, i.e., we cannot expect perfect accuracy. Despite these drawbacks good syntax models
are very useful.

• Syntax helps to filter out obviously wrong meaning.
The cat bites the dog.
The dog bites the cat.

Both sentences consist of the same words. Since in English the word order prescribes a word’s
function, both sentences have a different syntactic structure. Also, the semantics of cat differs
from the semantics of dog. Thus, the sentences do not have the same semantics.

• Compositionality remains an important feature of human language that determines the semantic
especially in complex expressions.

• Although the interpretation of a sentence or the resolving of its syntactic ambiguities often requires
semantic context, it is important to note that one language shares the same syntax across domains.
Recently, [Ben+15] argued that one should separate sole syntactic meaning (sentence meaning)
from additional layers of interpretation during semantic corpus annotation. One of the advantages
is that this distinction allows for reuse of the syntactic part in other domains.

• In the last years syntax-based approaches to statistical machine translation have improved signifi-
cantly and started to outperform phrase-based methods. We confer to the results in the translation
task of the latest Workshop on Statistical Machine Translation [Boj+14].

• We may combine a good syntax model with other components of the natural language processing
chain. Of course we could pipeline a single result from stage to stage. However, if each stage
is weighted, then it might be possible to give a product construction to choose the overall best
decisions [Büc15].
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3 Hybrid trees and hybrid grammars
In this chapter we present how discontinuous phrase structures and non-projective dependency structures
can be modeled with hybrid trees and hybrid grammars [NV14]. We start by giving an intuition for
hybrid trees and exemplify why they are well-suited for the representation of both foregoing views on
syntax. Also, we explain how a careful choice of certain parameters allows us to account for other
syntactic phenomena outlined in the previous chapter. Afterwards, we recall some mathematical notions
and fix a model for trees and strings before giving a formal definition of hybrid trees and LCFRS/sDCP-
hybrid grammars.

3.1 Separating syntactic hierarchy from surface form
The problem that arises if a discontinuous constituent structure or a non-projective dependency structure
shall be represented with a usual tree is that at least one subtree does not correspond to a continuous
part of the surface form. The idea of a hybrid tree is to represent the syntactic hierarchy t and the
surface form s of the sentence separately from another. To this end, a hybrid tree has two components:
firstly, it consists of a sequence of unranked trees t. We assume that t has a finite domain of positions
in the spirit of [Gor67]. The hybrid tree’s second component is a linear order ≤t on a subset of the
positions of t: this is the order of the lexical elements in the surface form of the sentence. Obviously, the
linear order ≤t corresponds to a string over positions from t. If each position in this string is replaced
with the symbol at this position in t, then the surface form s of the sentence is obtained.

Let Γ and Σ be alphabets of symbols such that Σ ⊆ Γ. To account for some natural properties we
require that t is a sequence of unranked trees over Γ and that ≤t is a linear order over the set of positions
of t that are labeled with an element of Σ.

Example 3.1. Let Γ = {α, β, γ, δ, σ} and Σ = {α, β, γ} be alphabets. Below we depicted three hybrid
trees over (Σ, Γ). Each of them is depicted as a pair of a sequence of trees t and a string s. At every
node of t the Gorn address of this node is annotated in superscript. Since t is a sequence of trees, the
root of the i-th tree in this sequence has the address i. Each dashed line associates a position in t that
is labeled by a symbol from Σ with an occurrence of the same symbol in the string s. In this way the
linear order ≤t is specified.

α β γ

σ1

β11

δ111 α112

γ12

α β β γ

σ1

β11

δ111 β112

δ1121 α1122

γ12

α β β γ

σ1

β11

δ111 α112

γ12

σ2

β21

For instance, the linear order is 112 <t 11 <t 12 in the first hybrid tree, 1122 <t 112 <t 11 <t 12 in the
second one, and 112 <t 11 <t 21 <t 12 in the third one. �

In most of the subsequent examples we indicate ≤t with such dashed lines pointing to a string.
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Figure 3.1: Hybrid trees for a discontinuous and an elliptic constituent structure.

3.1.1 Constituent structures
How can a constituent structure be understood as a hybrid tree? Let Γ be the alphabet containing
syntactic categories and lexical elements and Σ be the alphabet of lexical elements. Let (t,≤t) be a
hybrid tree such that every node labeled by an element of Σ is a leaf node. We depicted two constituent
structures as hybrid trees in Figure 3.1. The hybrid tree on the left illustrates that we can represent
discontinuous constituent structures by amending the order on the leaves labeled with Σ given by the
usual tree yield. Also, since we do not require that every leaf node is labeled with an element from Σ we
allow for empty categories, however, we cannot specify where (w.r.t. ≤t) the ellipsis is located. The
hybrid tree on the right in Figure 3.1 illustrates this. Furthermore, it is not hard to see that we can
incorporate constituent structures with disconnected substructures as the one in Figure 2.4 into our
model since t is a sequence of trees.

3.1.2 Dependency structures
Hybrid trees are also capable of representing dependency structures. For this we identify both alphabets
Γ and Σ, i.e., every node in t is in the linear order. If we want to incorporate dependency labels, then
we choose our alphabet to contain pairs of lexical items and dependency labels. In Figure 3.2 we depict
a non-projective part of the dependency structure in Figure 2.6 in two ways as hybrid tree, where the
upper one does not contain dependency labels but the lower one does. Also, dependency structures with
disconnected substructures can be represented. For instance, the dependency structure in Figure 5.1d
on page 46 consists of five disconnected substructures.

Since we assume Gorn addresses on the tree structure, the order of subtrees is explicit in a hybrid
tree. As we mentioned above, this might be disadvantageous for modeling languages with free word
order. Though one could fix a canonical order (e.g., the lexicographical order of the lexical elements) on
sibling nodes to harmonize and thus conceal the subtree order, we do not investigate this option in this
thesis. Possibly, distinguishing the order of subtrees might have advantages in itself as it allows us to
distinguish certain building patterns.

3.1.3 Hybrid grammars
Since natural languages permit an infinite number of sentences [SWB03, Chapter 2], we aim to define
finite devices that indicate whether a sentence is acceptable or not. Thus, in the hybrid tree setting we
have to find a way to describe languages of hybrid trees.

The tree component of a hybrid tree may be generated by a tree grammar. Recall that the linear order
of a hybrid tree defines a string. Thus, we use a string grammar to describe it. In order to establish
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helpen

Piet lezen

Marie

Piet Marie helpen lezen. . . . . .

(helpen, dobj)

(Piet, nsubj) (lezen, dobj)

(Marie, nsubj)

(Piet, nsubj) (Marie, nsubj) (helpen, dobj) (lezen, dobj). . . . . .

Figure 3.2: A dependency structure with and without dependency labels modeled as a hybrid tree.

a connection between string and tree we combine both grammars to a hybrid grammar. A hybrid
grammar contains a finite set of hybrid productions. Each hybrid production is a pair of a string grammar
production and a tree grammar production whose derivational nonterminals are linked similarly as in
synchronous grammars [SS90; SP05]. Additionally, we injectively map each occurrence of a terminal in
the string grammar production to a terminal occurrence in the tree grammar production.
Example 3.2. We give a grammar that generates (among others) the first two hybrid trees of Example 3.1.
It consists of a regular string grammar with nonterminals 0, 1, and 2, terminal alphabet Σ, and start
symbol 0. The tree grammar is a monadic context-free tree grammar [Rou69; ES77]. It has the same
nonterminals and start symbol as the string grammar but the terminal alphabet is Γ. The set of hybrid
productions is provided as follows, where the tree grammar production is denoted at the top and the
string grammar production is denoted at the bottom. A link between two terminals or two nonterminals
is indicated by a dashed line.

0 → 1 ( α )

0 → α 1

1 (x) → 2 ( β (δ, x) )

1 → β 2

2 (x) → 2 ( β (δ, x))

2 → β 2

2 (x) → σ (x, γ )

2 → γ

This is the derivation of the second tree depicted in Example 3.1, where the above productions were
applied in the order from left to right.

0 1 ( α )

⇒

0 α 1

2 ( β ( δ, α ))

⇒

α β 2

2 ( β (δ, β (δ, α )))

⇒

α β β 2

σ( β (δ, β (δ, α )), γ )

⇒

α β β γ �

The language of the string grammar in the above example is {α βn γ | n > 0}. Since it is regular, it is
very efficient to parse. Synchronously, the tree grammar generates a tree that is richer than the string
grammar’s parse tree. This illustrates the key advantage of hybrid grammars: by explicitly modeling the
discontinuous structure to be part of the grammar’s language – instead of being one of its parse trees –
we enjoy great freedom in how we generate this structure. We can combine a simple string grammar
with an expressive tree grammar and thereby decouple parsing complexity from the expressiveness of
the hybrid grammar, i.e., the degree of discontinuity [Kuh13] the grammar allows for.
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3.2 Mathematical foundations
Let A and B be sets. We denote the cardinality of A by |A|, the cartesian product of A and B by
A×B, the power set of A by P(A), and the free monoid over A by A∗. We refer to the empty word
by ε and denote A∗ \ {ε} by A+. We define projections π1 and π2 such that, for every (a, b) ∈ A×B,
we have that π1((a, b)) = a and π2((a, b)) = b. Let ϕ : A → B be a mapping. We refer by ϕ(A) to the
set {b ∈ B | ∃a ∈ A : ϕ(a) = b}. The set of nonnegative integers including 0 is denoted by N and the
set of positive integers by N . Let n ∈ N. We abbreviate a1, . . . , an by a1,n. For every n ∈ N, we let
[n] = {1, 2, . . . , n} and [n]0 = {0, 1, 2, . . . , n}. Let X = {x(i)

j | i ∈ N∪ {♠}, j ∈ N } be the set of variables
and, for every I ⊆ (N ∪ {♠}) × N , let XI = {x(i)

j ∈ X | (i, j) ∈ I}. For every j ∈ N , we abbreviate
x

(♠)
j by xj and, for every n ∈ N, we let Xn = X{♠}×[n]. Note that X0 = ∅ = X∅.
Let A be a set and ϑ be a binary relation on A, i.e., ϑ ⊆ A×A. We denote the transitive closure of ϑ

by ϑ+ and the reflexive, transitive closure of ϑ by ϑ∗. We say that ϑ is a strict order if ϑ is irreflexive
and transitive. Moreover, ϑ is a total order if ϑ is a strict order and, for each a, b ∈ A such that a 6= b,
we have that (a, b) ∈ ϑ or (b, a) ∈ ϑ. If ϑ is a strict order, then we denote its reflexive closure by ϑ, i.e.,
ϑ is the partial order (reflexive, transitive, antisymmetric) corresponding to ϑ. Likewise, if ϑ is a partial
order, then the corresponding strict order is denoted by ϑ. If ϑ is a binary relation, then we denote
(a, b) ∈ ϑ also by aϑ b.

3.3 Alphabets and s-terms.
A ranked set is a tuple (Σ, rkΣ) where Σ is a set of symbols and rkΣ : Σ → N assigns a nonnegative
integer, called rank, to each symbol. For every k ∈ N, we let Σ(k) = {a ∈ Σ | rkΣ(a) = k}. Whenever
convenient we identify Σ and (Σ, rkΣ). If Σ is finite and nonempty, then we call Σ ranked alphabet. If
also Σ = Σ(0), then we say that Σ is an alphabet and if Σ = Σ(1) ∪ Σ(0), then we say that Σ is a monadic
alphabet. If (Σ, rkΣ) and (∆, rk∆) are ranked sets such that Σ ∩ ∆ = ∅, then we denote the ranked set
Γ = (Σ ∪ ∆, rkΓ) by Σ ∪ ∆ where rkΓ(γ) is rkΣ(γ) if γ ∈ Σ, and rk∆(γ) otherwise. If (Σ, rkΣ) and (Γ, rkΓ)
are ranked sets such that Σ ⊆ Γ and, for every σ ∈ Σ, it holds that rkΣ(σ) = rkΓ(σ), then we denote
the ranked set (Σ, rkΣ) also by (Σ, rkΓ).

In order to represent unranked trees, sequences of trees, and strings we use a notion of sequence terms
inspired by [SK08]. We constraint the underlying ranked set to be monadic as it suffices for our purpose.

Definition 3.3. Let Σ be a monadic ranked set and U be a set such that Σ ∩ U = ∅. We define the
set of terms over Σ indexed by U , denoted by TΣ(U), and the set of sequence terms (s-terms) over Σ
indexed by U , denoted by T∗

Σ(U), simultaneously as follows:

(i) U ∪ Σ(0) ⊆ TΣ(U),

(ii) if σ ∈ Σ(1) and s1 ∈ T∗
Σ(U), then σ(s1) ∈ TΣ(U), and

(iii) if n ∈ N and t1, . . . , tn ∈ TΣ(U), then (t1, . . . , tn) ∈ T∗
Σ(U). �

Given a monadic ranked set Σ we conceive of an unranked tree as a term over Σ and regard a sequence
of unranked trees as an s-term over Σ. If Σ is an alphabet, then an s-term over Σ can be seen as a string.

Definition 3.4. Let Σ be a monadic ranked set and U be a set disjoint from Σ. Let s1 = (t1, . . . , tn)
and s2 = (tn+1, . . . , tn+m) be s-terms where n,m ∈ N and t1, . . . , tn+m ∈ TΣ(U). The concatenation of s1
and s2, denoted by s1 �s2, is the s-term (t1, . . . , tn+m). Note that � is associative. Let s ∈ T∗

Σ(U)∪TΣ(U)
and ∆ ⊆ Σ ∪ U . The set of ∆-positions of s, denoted by pos∆(s), is the subset of P(N ∗) defined
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s =

σ 1

α 11 x 12
1 σ 13

α 131 α 132

x 14
2

σ 2

α 21 s[x1/t1, x2/t2] =

σ 1

α 11 α 12 σ 13 α 14 σ 15

α 151 α 152

σ 2

α 21

Figure 3.3: The s-term s before and after substitution of variables by s-terms, where t1 = (α, σ(()), α),
t2 = (), and positions are annotated in superscript to each node.

inductively as follows:

pos∆(s) =



{ε} if s ∈ (U ∪ Σ(0)) ∩ ∆,

∅ if s ∈ (U ∪ Σ(0)) \ ∆,

{ε} ∪ pos∆(s1) if s = σ(s1) ∈ TΣ(U) and σ ∈ ∆,

pos∆(s1) if s = σ(s1) ∈ TΣ(U) and σ /∈ ∆,

{ip | i ∈ [n], p ∈ pos∆(ti)} if s = (t1, . . . , tn) ∈ T∗
Σ(U).

We abbreviate T∗
Σ(∅) by T∗

Σ, TΣ(∅) by TΣ, and posΣ∪U (s) by pos(s). Let now p ∈ pos(s). The symbol
of s at p, denoted by s(p), is defined inductively as follows:

s(p) =


σ if p = ε and s = σ(s′) ∈ TΣ(U),
s if p = ε and s ∈ Σ(0) ∪ U,

s′(p) if p 6= ε and s = σ(s′) ∈ TΣ(U),
ti(p′) if p = ip′ and s = (t1, . . . , tn) ∈ T∗

Σ(U).

Let Σ be a monadic alphabet and let I and J be finite subsets of (N ∪ {♠}) × N . For every (i, j) ∈ I,
let t(i)

j ∈ T∗
Σ(XJ). We define inductively the substitution of x(i)

j by t
(i)
j for each (i, j) ∈ I to be the

function · [x(i)
j /t

(i)
j | (i, j) ∈ I] : T∗

Σ(XI) ∪ TΣ(XI) → T∗
Σ(XJ):

s 7→


t
(i)
j if s = x

(i)
j ∈ XI ,

(s) if s ∈ Σ(0),

(σ(s1[x(i)
j /t

(i)
j | (i, j) ∈ I])) if s = σ(s1) ∈ TΣ(XI),

· [x(i)
j /t

(i)
j | (i, j) ∈ I](s1) � · · · � · [x(i)

j /t
(i)
j | (i, j) ∈ I](sk) if s = (s1, . . . , sk) ∈ T∗

Σ(XI).

We denote · [x(i)
j /t

(i)
j | (i, j) ∈ I](s) also by s[x(i)

j /t
(i)
j | (i, j) ∈ I]. �

Note that each variable, i.e., a term, is substituted by an s-term. The consequence is that positions in s
may disappear or get shifted after substitution.

Example 3.5. Let Σ be a monadic alphabet where Σ(1) = {σ} and Σ(0) = {α}. Consider the s-
terms s = (σ((α, x1, σ((α, α)), x2)), σ((α))), t1 = (α, σ(()), α), and t2 = () and observe that pos(s) =
{1, 11, 12, 13, 131, 132, 14, 2, 21}. If s′ = s[x1/t1, x2/t2], then s′ = (σ(α, α, σ(()), α, σ((α, α))), σ((α)))
and pos(s′) = {1, 11, 12, 13, 14, 15, 151, 151, 2, 21}. A visualization of s and s′ is given in Figure 3.3.
Note how the positions 13, 131, and 132 in s correspond to 15, 151, and 152 in s′, respectively. This
is an example for shifted positions. Also, the position 14 in s has no correspondence in s′ since it was
substituted by an empty s-term. Here a position disappears. �

Definition 3.6. We denote the lexicographical order on N∗ by <`. We define the sibling order on N ∗,
denoted by <sib, as follows. Let p ∈ N ∗ and i, j ∈ N . Then pi <sib pj if i < j. Also, let the child
relation (or prefix relation) on N ∗ be χ, where pχ q if there exists i ∈ N such that pi = q. �
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We may use the reflexive, transitive closure of χ to refer to an arbitrary descendant of some position.

Definition 3.7. Let Σ be a monadic alphabet, U a finite set such that U ∩ Σ = ∅, s ∈ T∗
Σ(U) ∪ TΣ(U),

n ∈ N , and p1, . . . , pn ∈ pos(s). Then p1 · · · pn is a sequence of consecutive sibling positions if n = 1 or
if there exist p′ ∈ N ∗ and i ∈ N such that, for every j ∈ [n], it holds that pj = p′(i + j). For every
sequence of consecutive sibling positions p1 · · · pn where n ∈ N and p1, . . . , pn ∈ pos(s), we define the
sub-s-term of s at the positions p1 · · · pn, denoted by s|p1···pn , as follows:

s|p1···pn
=



(s) if n = 1, p1 = ε and s ∈ TΣ(U),
(si+1, . . . , si+n) if s = (s1, . . . , sm) ∈ T∗

Σ(U) and ∃i ∈ [m− 1]0 : ∀j ∈ [n] : pj = i+ j,

s1|p1···pn
if ∀j ∈ [n] : pj 6= ε, and s = σ(s1) ∈ TΣ(U),

si|p′
1···p′

n
if s = (s1, . . . , sm) ∈ T∗

Σ(U)
and ∃i ∈ [m] : ∀j ∈ [n] : ∃p′

j ∈ N ∗ : pj = ip′
j .

We extend χ to sequences of consecutive sibling positions: let u = p(i + 1) · · · p(i + n) and w =
p′(i′ + 1) · · · p′(i′ + n′) for some p, p′ ∈ N ∗, i, i′ ∈ N, and n, n′ ∈ N . Then uχw if there exists l ∈ [n]
such that p(i + l) = p′. Moreover, w is a strict subsequence of u, denoted by u ∝ w, if p = p′, i ≤ i′,
n′ < n, and n′ + i′ ≤ n+ i.

Let now s ∈ T∗
Σ(U) and let u,w ∈ pos(s)+ be sequences of consecutive sibling positions such that

(u,w) ∈ χ∗ ∪ ∝ where u = p(i + 1) · · · p(i + n) and w = p′(i′ + 1) · · · p′(i′ + n′) for some p, p′ ∈ N +,
i, i′ ∈ N, and n, n′ ∈ N . We define the relative position of w to u, denoted by w ↓ u, as follows. If u = w,
then w ↓ u = 1 · · ·n. If u ∝ w, then w ↓ u = (i′ − i+ 1) · · · (i′ − i+ n′). If uχ+ w where p′ = p(i+ l)v
for some l ∈ [n] and v ∈ N ∗, then w ↓ u = lv(i′ + 1) · · · lv(i′ + n′). �

Example 3.8. Recall s′ from Example 3.5. For u = 13 14 15 and w = 14 15 it holds that u ∝ w. Then
w ↓ u = 2 3 and we have that

s′|w =



σ 1

α 11 α 12 σ 13 α 14 σ 15

α 151 α 152

σ 2

α 21



∣∣∣∣∣∣∣∣∣∣∣∣∣
14 15

=
α 1 σ 2

α 21 α 22

=


σ 1 α 2 σ 3

α 31 α 32


∣∣∣∣∣∣∣∣
2 3

= (s′|13 14 15)|14 15↓13 14 15 = (s′|u)|w↓u

�

The above equation holds for every s-term s′ and sequences of consecutive sibling positions w and u
satisfying a certain precondition. This can be proven by case analysis and induction on the length of the
common prefix in u and w.

Lemma 3.9. Let Σ be a monadic alphabet, U a set disjoint from Σ, s ∈ T∗
Σ(U) ∪ TΣ(U), and

u,w ∈ pos(s)+ consecutive sibling positions such that (u,w) ∈ χ∗ ∪ ∝. Then

s|w = (s|u)|w↓u.

Definition 3.10. Let Σ be monadic alphabet, U a set disjoint of Σ, s ∈ T∗
Σ(U) ∪ TΣ(U), w ∈ pos(s)+

a sequence of consecutive sibling positions, and t ∈ T∗
Σ(U). We define the substitution of the sub-s-term
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at the positions w by t to be the function ·[t]w : T∗
Σ(U) ∪ TΣ(U) → T∗

Σ(U) such that

s 7→



t if w = ε and s ∈ TΣ(U),
(s1, . . . , si) � t � (si+n+1, . . . , sm) if s = (s1, . . . , sm) ∈ T∗

Σ(U) and ∃i ∈ [m− 1]0 :
∃n ∈ [m− i] : w = (i+ 1) · · · (i+ n),

(σ([t]w1···wn
(s1))) if s = σ(s1) ∈ TΣ(U) and ∃n ∈ N :

∃w1, . . . , wn ∈ pos(s1) : w = w1 · · ·wn

(s1, . . . , si−1) � [t]w1···wn
(si) � (si+1, . . . , sm) if s = (s1, . . . , sm) ∈ T∗

Σ(U) and ∃i ∈ [m] :
∃n ∈ N : ∃w1, . . . , wn ∈ pos(si) : w = iw1 · · · iwn.

We denote ·[t]w(s) also by s[t]w. �

Similarly to substitution of variables, substitution at a position sequence w may lead to shifts or
disappearances of positions. However, only positions that are descendants of some position in w or
descendants of some sibling position to the right of w can be affected. Thus, assuming sequences of
consecutive sibling position w(1), . . . , w(k) that are pairwise not in χ+ and non-overlapping, one can
substitute at w(1) by t(1), . . . , at w(k) by t(k) in parallel by proceeding stepwise in lexicographically
descending order of the w(i)s, substituting at w(i) by t(i) in each step.

3.4 Hybrid trees and relevant restrictions for linguistics
Now that we have defined s-term for the representation of trees and strings, we can supplement Section 3.1
by a formal definition of hybrid trees, constituent structures, and (labeled) dependency structures.

Definition 3.11. Let (Σ, rkΣ) be an alphabet and (Γ, rkΓ) be a monadic alphabet such Σ ⊆ Γ. A
hybrid tree h over (Σ, Γ) is a pair (s,≤s) such that s ∈ T ∗

Γ and <s is a total order on posΣ(s). Now ≤s

defines an s-term in T∗
Σ, denoted by str(h), as follows: let posΣ(s) = {p1, . . . , pn} where pi ≤ pi+1 holds

for each i ∈ [n− 1]. Then str(h) = (s(p1), . . . , s(pn)). We denote the set of all hybrid trees over (Σ, Γ)
by HT(Σ, Γ). �

Definition 3.12. Let (Γ, rkΓ) be a monadic alphabet. A phrase structure or constituent structure is a
hybrid tree over ((Γ(0), rkΓ), Γ). Naturally, we assume Γ(1) to contain the syntactic categories and Γ(0)

to contain the word forms. �

Definition 3.13. Let Γ = Γ(1) be a ranked alphabet and (Σ, rkΣ) an alphabet such that Σ = Γ. A
dependency structure is a hybrid tree over (Σ, Γ). Here Γ contains word forms. �

Definition 3.14. Let Γ = Γ(1) be a ranked alphabet, where Γ = Γ1 × Γ2, Γ1 is set containing word
forms and Γ2 is a set containing dependency relations. Let (Σ, rkΣ) be an alphabet such that Σ = Γ. A
labeled dependency structure is a hybrid tree over (Σ, Γ). �

3.5 Linear context-free rewriting systems
In this section we present a grammar formalism that is capable of generating mildly context-sensitive
string languages [Kal10]. It was first defined as linear context-free rewriting system (LCFRS) by [VWJ87],
but equivalent formalism like multiple context-free grammars [Sek+91; SK08] or range concatenation
grammars [Bou05] have been used and studied as well. Our notion is close to [VWJ87]. A probabilistic
variant of LCFRSs was addressed by [KSK06].

The central idea of LCFRSs is to generalize context-free grammars such that each nonterminal may
generate multiple strings, i.e., tuples of strings. The arity of this tuple is called fanout of the nonterminal.
Each LCFRS production consists of the context-free nonterminal backbone A0 → A1 · · ·An and a word-
tuple function. The word-tuple function prescribes how the strings in the input tuples, i.e., the tuples
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that are generated by the nonterminals on the right-hand side, combine to a tuple of strings for the
nonterminal on the left-hand side. Not every function with this signature is a word-tuple function: the
result may be obtained only by concatenation of terminal symbols and the components of the input
tuples. Also, it is required that each component of an input tuple is used exactly once, a property also
called single syntactic use requirement [Gie88]. Formally, we define a word-tuple function to be a tuple
of s-terms over an alphabet indexed with variables. The latter represent the components of the input
tuples.

Definition 3.15. Let Σ be an alphabet, n ∈ N, and k0, . . . , kn ∈ N . The set of word-tuple functions
over Σ with signature k1 · · · kn, k0, denoted by FLCFRS(Σ)

k1···kn,k0
, is defined as follows. For every i ∈ [n], we

let mi =
∑i

j=1 kj . Also, we let s1, . . . , sk0 ∈ T∗
Σ(Xmn). Then 〈s1, . . . , sk0〉 ∈ FLCFRS(Σ)

k1···kn,k0
if for every

j ∈ [mn], it holds that xj occurs exactly once in s1 � · · · � sk0 . �

Definition 3.16. A linear context-free rewriting system (LCFRS) is a tuple G = (N,S,Σ, ϕ, P ) where

• N is a finite and nonempty set of nonterminals,

• ϕ : N → N specifies the fanout of a nonterminal,

• Σ is an alphabet of terminals such that N ∩ Σ = ∅,

• S ∈ N is the start symbol and ϕ(S) = 1, and

• P is a finite set of productions p of the form

A0(s1, . . . , sϕ(A0)) → A1(x1, . . . , xm1) · · ·An(xmn−1+1, . . . , xmn
), (1)

where n ∈ N, A0, . . . , An ∈ N , mi =
∑i

j=1 ϕ(Aj) for every i ∈ [n] ,
and 〈s1, . . . , sϕ(A0)〉 ∈ FLCFRS(Σ)

ϕ(A1)···ϕ(An),ϕ(A0). The rank of p, denoted by rank(p), is n.

The derivation relation of G, denoted by ⇒G, is defined as follows. Let u, v ∈ (N ∪ Σ ∪ {(, ), comma})∗,
where comma stands for “,”. Then u ⇒G v if there are

• w,w′ ∈ (N ∪ Σ ∪ {(, ), comma})∗,

• a production p ∈ P of form (1), and

• ŝ1, . . . , ŝmn
∈ T∗

Σ

such that

u = w A0(s1[xi/ŝi | i ∈ [mn]], . . . , sϕ(A0)[xi/ŝi | i ∈ [mn]]) w′ and
v = w A1(ŝ1, . . . , ŝm1) · · ·An(ŝmn−1+1, . . . , ŝmn) w′.

The language of G is defined as the set L(G) = {w ∈ T∗
Σ | S(w) ⇒∗

G ε}. �

Example 3.17. Let G = (N,S,Σ, ϕ, S) be an LCFRS, where N = {S,A,B,C,D}, Σ = {P,M,h, l},
ϕ is such that

ϕ(S) = ϕ(B) = ϕ(D) = 1 and ϕ(A) = ϕ(C) = 2,

and P contains the following productions:

S ((x1, x3, x2, x4)) → A (x1, x2) C (x3, x4)
A ((x1), (h)) → B (x1)
B ((P)) → ε
C ((x1), (l)) → D (x1)
D ((M)) → ε.
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Observe that 〈(x1, x3, x2, x4)〉 is in FLCFRS(Σ)
2 2,1 , 〈(x1), (h)〉 and 〈(x1), (l)〉 are in FLCFRS(Σ)

1,2 , and 〈(P)〉
and 〈(M)〉 are in FLCFRS(Σ)

ε,0 . A successful derivation of G is

S((P,M,h, l)) ⇒G A((P), (h)) C((M), (l))
⇒G B((P)) C((M), (l))
⇒G C((M), (l))
⇒G D((M))
⇒G ε,

where the above productions were applied in the order from top to bottom. Note that the accepted
s-term corresponds to the surface form of the upper dependency structure in Figure 3.2 where each word
is abbreviated by its first letter. �

Let G = (N,S,Σ, ϕ, P ) be an LCFRS. The fanout of G, denoted by ϕ(G), is maxA∈N ϕ(N). The
rank of G is maxp∈P rank(p). Given a word w of length n the time-complexity of solving w ∈ L(G)? is
in O(n(rank(G)+1)·ϕ(G) · |G|) [Sek+91; Gil10]. Note that an LCFRS with fanout 1 and rank 2 is a binary
context-free grammar. Its parsing complexity according to the foregoing formula is O(n3 · |G|) and
coincides with the time-complexity of the [CS70; You67; Kas65]-algorithm.

3.6 Simple definite clause programs
We consider a class of tree grammars called simple definite clause programs (sDCPs) [NV14] that
generalizes context-free grammars by associating each nonterminal with a fixed number of inherited and
synthesized arguments similar as attribute grammars [Knu68]. In its inherited attributes a nonterminal
receives input data from its parents and siblings in the derivation tree. Likewise, a nonterminal provides
data in its synthesized attributes to its parent and siblings that was computed bottom up using the
input data. In sDCPs the domain of both types of attributes are s-terms. In each production the flow
and the computation of information is specified with semantic functions that are annotated to the
context-free nonterminal backbone A0 → A1 · · ·An. To this end, the inherited attribute of A0 and the
synthesized attributes of A1, . . . , An are represented by variables. The synthesized arguments of A0 and
the inherited arguments of A1, . . . , An are supplied with s-terms over a monadic alphabet indexed by the
former variables. Similarly as in LCFRSs we impose a single syntactic use requirement on all variables
in one production.

Definition 3.18. Let ∆ be a monadic alphabet, n ∈ N, ι0, . . . , ιn ∈ N, σ0, . . . , σn ∈ N , and s̃ =
(ι1, σ1) · · · (ιn, σn), (ι0, σ0). We define the set of sDCP functions over ∆ with signature s̃, denoted by
F sDCP(∆)

s̃ , as follows.

1. We set the variable indices of s̃ to

V(s̃) = {(0, j) | j ∈ [ι0]} ∪ {(i, j) | i ∈ [n], j ∈ [σi]}

and the s-term indices of s̃ to

S(s̃) = {(0, j) | j ∈ [σ0]} ∪ {(i, j) | i ∈ [n], j ∈ [ιi]}.

2. For every (i, j) ∈ S(s̃), we let s(i)
j ∈ T∗

∆(XV(s̃)) such that every variable in XV(s̃) occurs exactly
once in s

(0)
1,σ0

, s
(1)
1,ι1

, . . . , s
(n)
1,ιn

together.

3. Then 〈s(0)
1,σ0

, s
(1)
1,ι1

, . . . , s
(n)
1,ιn

〉 ∈ F sDCP(∆)
(ι1,σ1)···(ιn,σn),(ι0,σ0). �

Example 3.19. Consider the nonterminal backbone A0 → A1A2A3 and let the number of inherited
arguments ιi and synthesized arguments σi of Ai for every i ∈ [3]0 be as follows:
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A0

A1 A2 A3

(x(3)
1 )x

(0)
2x

(0)
1 (x(2)

1 )

(x(0)
1 ) x

(1)
1 x

(1)
2 (x(0)

1 , x
(1)
2 ) x

(2)
1 x

(2)
2 (x(1)

1 , x
(2)
2 ) x

(3)
1

Figure 3.4: Information flow of the sDCP function in Example 3.19.

Ai A0 A1 A2 A3

ιi 2 1 1 1
σi 2 2 2 1

The signature that fits this nonterminal-backbone is s̃ = (1, 2)(1, 2)(1, 1), (2, 2). For every (i, j) ∈ S(s̃) =
{(0, 1), (0, 2), (1, 1), (2, 1), (3, 1)}, we have to define an s-term s

(i)
j , i.e., there is an s-term for every

synthesized argument of A0 and every inherited argument of some Ai where 0 < i ≤ 3. Likewise, for
every (i, j) ∈ V(s̃) = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1)}, i.e., every inherited attribute of A0

and every synthesized attribute of Ai where i > 0, the variable x(i)
j has to occur in exactly one of the

above s-terms. An sDCP function in F sDCP(Σ)
s̃ that does not contain any additional terminal symbols is

〈s(0)
1 , s

(0)
2 , s

(1)
1 , s

(2)
1 , s

(3)
1 〉 = 〈(x(3)

1 ), (x(2)
1 ), (x(0)

1 ), (x(0)
1 , x

(1)
2 ), (x(1)

1 , x
(2)
2 )〉.

It corresponds to the graph in Figure 3.4, where the nonterminal backbone is depicted as a tree. The
inherited and synthesized attributes are denoted in boxes to the left and the right of a nonterminal,
respectively. The dashed arrows represent the flow of information. �

Definition 3.20. A simple definite clause program (sDCP) is a tuple G = (N,Z,∆, ι, σ, C) where

• N is a finite set of nonterminals,

• ∆ is a monadic alphabet such that ∆ ∩N = ∅,

• ι : N → N and σ : N → N are functions assigning the number of inherited attributes and the
number of synthesized attributes, respectively, to each nonterminal,

• Z ∈ N such that ι(Z) = 0 and σ(Z) = 1, and

• C is a finite set of clauses of the form

A0(x(0)
1,ι0

, s
(0)
1,σ0

) → A1(s(1)
1,ι1

, x
(1)
1,σ1

) · · ·An(s(n)
1,ιn

, x
(n)
1,σn

) (2)

where n ∈ N, A0, . . . , An ∈ N , ιi = ι(Ai) and σi = σ(Ai) for every i ∈ [n]0, and
〈s(0)

1,σ0
, s

(1)
1,ι1

, . . . , s
(n)
1,ιn

〉 ∈ F sDCP(∆)
s̃ for s̃ = (ι1, σ1) · · · (ιn, σn), (ι0, σ0).

The derivation relation of G, denoted by ⇒G, is defined as follows. Let u, v ∈ (N ∪ ∆ ∪ {(, ), comma})∗.
Then u ⇒G v if there are

• w,w′ ∈ (N ∪ ∆ ∪ {(, ), comma})∗,

• a clause c ∈ C of the form (2), and

• s-terms t(0)
1,ι0

, t
(1)
1,σ1

, . . . , t
(n)
1,σn

in T∗
∆
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such that

u = w A0(t(0)
1,ι0

, s
(0)
1,σ0

[x(i)
j /t

(i)
j | (i, j) ∈ V(s̃)]) w′ and

v = w A1(s(1)
1,ι1)[x

(i)
j /t

(i)
j | (i, j) ∈ V(s̃)], t(1)

1,σ1
) · · ·An(s(n)

1,ιn
[x(i)

j /t
(i)
j | (i, j) ∈ V(s̃)], t(n)

1,σn
) w′.

The language generated by G is the set L(G) = {s ∈ T∗
∆ | Z(s) ⇒∗

G ε}. �

Example 3.21. Let G = (N,S,∆, ι, σ, C) be an sDCP, where N = {S,A,B,C,D}, ∆ = ∆(1) =
{P,M,h, l}, ι is such that

ι(S) = ι(B) = ι(C) = ι(D) = 0 and ι(A) = 1,

σ is such that
σ(S) = σ(A) = σ(B) = σ(C) = σ(D) = 1,

and C contains the following clauses:

S
(
(x(1)

1 )
)

→ A((x(2)
1 ), x(1)

1 ) C(x(2)
1 )

A
(
x

(0)
1 , (h((x(1)

1 , x
(0)
1 )))

)
→ B(x(1)

1 )
B

(
(P(()))

)
→ ε

C
(
(l((x(1)

1 )))
)

→ D(x(1)
1 )

D
(
(M(()))

)
→ ε.

We depicted the information flow of the first, second and fourth clause in Figure 3.5, where for ease of
readability s-terms are visualized as graphs. Below we give a successful derivation of G, where the above
clauses were applied in the order from top to bottom. Observe how the assignment for the variable x(2)

1
is guessed in the first step. Later it is checked that this guess was correct.

S




h

P l

M


 ⇒G A


 l

M

 ,


h

P l

M


 C

 l

M



⇒G B
((

P(())
) )

C

 l

M


⇒G C

 l

M


⇒G D

(
(M(()))

)
⇒G ε

S

A C

(x(1)
1 )

x
(1)
1(x(2)

1 ) x
(2)
1

A

B

 h

x
(1)
1 x

(0)
1

x
(0)
1

x
(1)
1

C

D

 l

x
(1)
1



x
(1)
1

Figure 3.5: Information flow in three of the sDCP clauses of Example 3.21.
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Note that G accepts the s-term t of the upper dependency structure h = (t,≤t) depicted in Figure 3.2
where each word is abbreviated by its first letter. �

The main difference between sDCPs and attribute grammars with s-terms as value domain is that
in an attribute grammar there is a unique set of semantic functions for each nonterminal backbone
A → A1 · · ·An, whereas in sDCPs there can be several clauses with the same the nonterminal backbone
but different sDCP functions.

Note also that each LCFRS (N,S,∆, ϕ, P ) generates the same language as the sDCP (N,S,∆, ι, ϕ, C)
where we have ι(A) = 0 for every A ∈ N . Furthermore, C is obtained from P by appropriate renaming
of the variables in each production of form (1): for every j ∈ [n] and i ∈ {mj−1 +1, . . . ,mj}, the variable
xi is replaced by x(j)

i−mj−1
.

3.7 Hybrid grammars
We will combine an LCFRS and an sDCP to a hybrid grammar that generates hybrid trees over (Σ, Γ).
As mentioned earlier, the sDCP generates the s-terms t and the LCFRS accounts for the linear order
≤t on posΣ(t). Obviously, an LCFRS cannot directly generate a string over positions of some s-term.
Instead, we annotate indices to the symbols in Σ where the same index at two terminal occurrences is
regarded as a semantic link. Formally, we introduce the notion of an indexed-extension of ranked sets.

Definition 3.22. Let Ω be a ranked alphabet and A a set. We define the A-indexed extension of Ω to
be the ranked set I(A,Ω) = {ω a | a ∈ A,ω ∈ Ω} where rk(ω a ) = rk(ω).

Let Γ be a ranked alphabet disjoint from I(A,Ω). We define I∗
A,Ω,Γ(X) such that, for every

s ∈ T∗
I(A,Ω)∪Γ(X), it holds that s ∈ I∗

A,Ω,Γ(X) if every index a ∈ A occurs at most once in s.
Let A and B be sets of indices. A reindexing function R extends some injective mapping r : A → B

to I(A,Ω) → I(B,Ω) such that, for every a ∈ A and w ∈ Ω, we have that w a 7→ w r(a) . If A is
finite, |A| = n, A = {a1, . . . , an}, and, for every i ∈ [n], it holds that r(ai) = bi, then we denote
R also by {a1 7→ b1, . . . , an 7→ bn} and say that R is a finite reindexing. The deindexing function
D : I(A,Ω) → A : w a 7→ w removes indices. We lift R and D to s-terms, lists of s-terms, LCFRS
productions, and sDCP productions in the obvious way, where R relabels only those symbols in I(A,Ω)
and D removes the indices from any indexed sub-alphabet the s-term was build over. �

We can regard a hybrid tree h = (ξ,≤ξ) over (Σ, Γ) also as a pair [s, t] of s-terms over adequate
indexed-extensions of Σ and Γ.

Definition 3.23. Let (Γ, rkΓ) be a monadic alphabet, (Σ, rkΣ) an alphabet such that Σ ⊆ Γ, ∆ = Γ \ Σ,
and n ∈ N. Let s ∈ I∗

[n],Σ,∅ and t ∈ I∗
[n],(Σ,rkΓ),(∆,rkΓ) such that

• | pos(s)| = n = | posΣ(t)|,

• for every p ∈ pos(s), there exist i ∈ N and σ ∈ Σ such that s(p) = σ i and p = i · ε,1 and

• for every σ ∈ Σ and i ∈ [n], it holds that σ i occurs in s iff σ i occurs in t.

Then [s, t] is called canonically indexed over (Σ, Γ). There is a one-to-one correspondence between the
canonically indexed pairs of terms over (Σ, Γ) and the hybrid trees over (Σ, Γ). A pair [s, t] corresponds
to the hybrid tree h constructed as follows. We define the total order ≤t on posI(N ,Σ)(t) such that for
every u1, u2 ∈ posI(N ,Σ)(t) it holds that

u1 ≤t u2 iff ∃σ1, σ2 ∈ Σ : ∃i1, i2 ∈ [n] : t(u1) = σ
i1

1 , t(u2) = σ
i2

2 , and i1 ≤ i2.

Then h = (D(t),≤t). �

1 The appending of ε to i expresses a type conversion from N to N ∗.
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Example 3.24. Below we depict s-terms s and t and a hybrid tree h = (t′,≤t′) where [s, t] is canonically
indexed and corresponds to h.

t =


h 3

P 1 l 4

M 2


s = (P 1

,M 2
,h 3

, l 4 )

t′ =


h

P l

M



11 <t′ 121 <t′ 1 <t′ 12 �

Now we combine an LCFRS and an sDCP to a hybrid grammar which accepts canonically indexed
pairs of s-terms over (Σ, Γ). Thus, we can use a hybrid grammar to specify a language of hybrid trees
over (Σ, Γ). An LCFRS/sDCP-hybrid grammar synchronizes the derivation of an LCFRS and an sDCP
by coupling an LCFRS production with an sDCP clause to a hybrid production. This coupling is twofold:
firstly, there is a one-to-one correspondence between nonterminals in the LCFRS component and those
in the sDCP component of a hybrid production. Secondly, each terminal in the LCFRS component of a
hybrid production is indexed and there must be a unique corresponding occurrence of the same symbol
in the sDCP component of the hybrid production.

Since both grammar devices only consume terminals during a derivation, we do not need to introduce
additional indices for terminals once the derivation has started. However, we need to reindex the indexed
terminals in a hybrid production to make it applicable to a sentential form.

The nonterminals in the derivation of a hybrid grammar are indexed by element from N ∗ where the
start symbol is indexed by ε. In each production suffixes are annotated at the nonterminals where the
left-hand side nonterminal has the suffix ε and the right-hand side nonterminals have suffixes 1 to n in
ascending order. Consequently, we impose the restriction that the i-th nonterminal on the right-hand
side of the LCFRS component is synchronized with the i-th nonterminal on the right-hand side of the
sDCP component.2 If a production is applied, then the new nonterminals inherit the prefix of the
replaced one and append their respective suffix. Thus, in a derivation every nonterminal is indexed by
its Gorn address in the derivation tree.

Definition 3.25. An LCFRS/sDCP-hybrid grammar is a triple H = ((N1, S1,Σ, ϕ), (N2, S2, Γ, ι, σ), P )
where

• (N1, S1,Σ, ϕ, ∅) is an LCFRS,

• (N2, S2, Γ, ι, σ, ∅) is an sDCP,

• Σ ⊆ Γ and ∆ = Γ \ Σ, and

• P is a finite set of hybrid productions [r1, r2] of the form[
A

ε

0 (s1,k0) → A
1

1 (x1,m1) · · ·A n

n (xmn−1+1,mn
)

, B
ε

0 (x(0)
1,ι0

, ξ
(0)
1,σ0

) → B
1

1 (ξ(1)
1,ι1

, x
(1)
1,σ1

) · · ·B n

n (ξ(n)
1,ιn

, x
(n)
1,σn

)
]

(3)

where n ∈ N and, for every i ∈ [n]0, it holds that Ai ∈ N1, Bi ∈ N2, ki = ϕ(Ai), ιi = ι(Bi), and
σi = σ(Bi). Also, there exists q ∈ N such that s1,k0 ∈ I∗

[q],Σ,∅(X), mi =
∑i

j=1 kj for every i ∈ [n],
and ξ

(0)
1,σ1

, ξ
(1)
1,ι1

, . . . , ξ
(n)
1,ιn

∈ I∗
[q],(Σ,rkΓ),(∆,rkΓ)(X). Further, for every p ∈ [q], there is exactly one

symbol σ ∈ Σ such that σ p occurs in the production.3 We require that σ p occurs exactly once in
r1 and exactly once in r2.

2It can be seen that this syntactic restriction does not affect the expressiveness of LCFRS/sDCP-hybrid grammars.
3For labeled dependency parsing we will loosen this restriction and allow for different symbols in the LCFRS component

and sDCP component of a production to be synchronized.
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We demand that H1 = (N1, S1,Σ, ϕ,D(π1(P ))) is an LCFRS and that H2 = (N2, S2, Γ, ι, σ,D(π2(P )))
is an sDCP.4 We refer to H1 as string component and to H2 as tree component of H.

Given a hybrid production [r1, r2] of form (3), w ∈ N ∗, and a reindexing function R : I([q],Σ) →
I([p],Σ), where q ∈ N, we define the derivation relation of H given [r1, r2], w, and R, denoted by
R[r1, r2], w

H, as follows. Let u1, v1 ∈ (I(N ∗, N1) ∪ I([p],Σ) ∪ {(, ), comma})∗ and u2, v2 ∈ (I(N ∗, N2) ∪
I([p],Σ) ∪ ∆ ∪ {(, ), comma})∗ where comma stands for ,. Then

[u1, v1] R[r1, r2], w
H [u2, v2]

if there are

• w1, w
′
1 ∈ (I(N ∗, N1) ∪ I([p],Σ) ∪ {(, ), comma})∗,

• w2, w
′
2 ∈ (I(N ∗, N2) ∪ I([p],Σ) ∪ ∆ ∪ {(, ), comma})∗,

• ŝ1, . . . , ŝmn
∈ I∗

[p],Σ,∅, and

• s-terms t(0)
1,ι0

, t
(1)
1,σ1

, . . . , t
(n)
1,σn

in I∗
[p],(Σ,rkΓ),(∆,rkΓ)

such that

u1 = w1 A
w

0 (R(s1)[xi/ŝi | i ∈ [mn]], . . . ,R(sϕ(A0))[xi/ŝi | i ∈ [mn]]) w′
1

u2 = w1 A
w1

1 (ŝ1, . . . , ŝm1) · · ·A wn

n (ŝmn−1+1, . . . , ŝmn
) w′

1

and, abbreviating ((ι1, σ1) · · · (ιn, σn), (ι0, σ0)) by s̃,

v1 = w2 B
w

0 (t(0)
1,ι0

,R(ξ(0)
1,σ0

)[x(i)
j /t

(i)
j | (i, j) ∈ V(s̃)]) w′

2

v2 = w2 B
w1

1 (R(ξ(1)
1,ι1

)[x(i)
j /t

(i)
j | (i, j) ∈ V(s̃)], t(1)

1,σ1
)

· · ·B wn

n (R(ξ(n)
1,ιn

)[x(i)
j /t

(i)
j | (i, j) ∈ V(s̃)], t(n)

1,σn
) w′

2.

We set
=⇒H =

⋃
[r1,r2]∈P, w∈N ∗, R reindexing function

R[r1, r2], w
H

and define the hybrid language generated by H to be

[H] = {[s, t] canonically indexed over (Σ, Γ) | [S ε

1 (s), S ε

2 (t)] =⇒∗
H [ε, ε]}.

The set of hybrid trees generated by H, denoted by L(H), is the set of all hybrid trees over (Σ, Γ) that
correspond to some [s, t] ∈ [H]. We define PR = PR

(1) = {([r, r′],R′) | [r, r′] ∈ P, R′ finite reindexing}
to be a monadic indexed set. Let h be a hybrid tree over (Σ, Γ). We define the set of derivation
trees of h, denoted by DH(h), to be the smallest subset of TPR satisfying the following condition. Let
[s, t] ∈ [H] correspond to h and let n ∈ N , R1, . . . ,Rn reindexing functions, w1, . . . , wn ∈ N ∗, and
[r1, r

′
1], . . . , [rn, r

′
n] ∈ P such that

[S ε

1 (s), S ε

2 (t)] R1[r1, r′
1], w1

H . . .
Rn[rn, r′

n], wn

H[ε, ε].

Then ξ ∈ DH(h), if ξ ∈ TPR , pos(ξ) = {w1, . . . , wn}, and ξ(wi) = ([ri, r
′
i],Ri) for every i ∈ [n]. �

4Thus, we impose restrictions on the variable domain and the single syntactic use requirement of LCFRS productions
and sDCP productions also for a hybrid production.
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Example 3.26. Let G = ((N,S,Σ, ϕ), (N,S, Γ, ι, σ), P ) be an LCFRS/sDCP-hybrid grammar, where
N = {S,A,B,C,D}, σ, ι, and σ are such that

x S A B C D

ϕ(x) 1 2 1 2 1
ι(x) 0 1 0 0 0
σ(x) 1 1 1 1 1

and P contains the hybrid productions depicted in Figure 3.6. Observe that the restriction of G to the
first and second component results in the grammars given in Example 3.17 and Example 3.21. Note also
that in a hybrid production the same index can occur at a pair of terminals and a pair of nonterminals.
Still, by the definition of the derivation semantics of G this does not imply a semantic link between a
terminal and a nonterminal. A derivation of G and the corresponding derivation tree is depicted in
Figure 3.7. �

In order to represent the ambiguity of natural language we also define a probabilistic version of
LCFRS/sDCP-hybrid grammars.

Definition 3.27. A probabilistic LCFRS/sDCP-hybrid grammar is given by a quadruple

H = ((N1, S1,Σ, ϕ), (N2, S2, Γ, ι, σ), P, p)

such that H ′ = ((N1, S1,Σ, ϕ), (N2, S2, Γ, ι, σ), P ) is a hybrid grammar and p : P → [0, 1]. We require
that H is proper, i.e., for every (A,B) ∈ N1 ×N2 where there exist [r1, r2] ∈ P and w ∈ N ∗ such that
A w occurs in r1 and B w occurs in r2, it holds that

1 =
∑

[r1,r2]∈P : A ε occurs in r1, B ε occurs in r2

p([r1, r2]).

Let h be a hybrid tree over (Σ, Γ). The probability of h w.r.t. H is

JHK (h) = max
ξ∈DH′ (h)

∏
u∈pos(ξ)

p(π1(ξ(u))).

�

Strictly speaking, one should not call H probabilistic but weighted with the Viterbi semiring, since
in general it does not induce a probability distribution over HT(Σ, Γ). We do not require H to be
consistent, i.e., the weights of all derivation trees do not need to sum up to one. Moreover, we use the
weight of the best derivation tree of some hybrid tree h as an approximation for the sum of all derivation
trees of h.
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S
ε ((x(1)

1 )) → A
1 ((x(2)

1 ), x(1)
1 ) C 2 (x(2)

1 )
[r1, r

′
1] =

S
ε ((x1, x3, x2, x4)) → A

1 (x1, x2) C
2 (x3, x4)

A
ε

x(0)
1 ,

 h 1

x
(1)
1 x

(0)
1

 → B
1 (x(1)

1 )

[r2, r
′
2] =

A
ε ((x1), (h 1 )) → B

1 (x1)

B
ε ((P 1 (()))) → ε

[r3, r
′
3] =

B
ε ((P 1 )) → ε

C
ε

 l 1

x
(1)
1

 → D
1 (x(1)

1 )

[r4, r
′
4] =

C
ε ((x1), (l 1 )) → D

1 (x1)

D
ε ((M 1 (()))) → ε

[r5, r
′
5] =

D
ε ((M 1 )) → ε

Figure 3.6: Five LCFRS/sDCP-hybrid productions where the string component of each production is
depicted at the bottom and the tree component of each production is depicted at the top.
The dashed lines additionally highlight linked nonterminals and terminals.
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(
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(
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5], 21
G

ε

([r1, r
′
1], {})

([r2, r
′
2], {1 7→ 3})

([r3, r
′
3], {1 7→ 1})

([r4, r
′
4], {1 7→ 4})

([r5, r
′
5], {1 7→ 2})

Figure 3.7: A derivation of the LCFRS/sDCP-hybrid grammar in Example 3.26 and the corresponding
derivation tree.
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4 Induction of hybrid grammars
In this chapter we describe how a probabilistic LCFRS/sDCP-hybrid grammars can be induced from a
corpus of constituent structures or a corpus of (labeled) dependency structures. In each scenario first a
hybrid grammar Gh,π is induced from a single hybrid tree h such that L(Gh,π) = {h}. To construct Gh,π

we partition the hybrid tree h according to a recursive partitioning π. For each resulting part, we will
define a word-tuple function and an sDCP function that generate this part and combine both functions
to a hybrid production. The hybrid productions of Gh,π will license one derivation that disassembles the
hybrid tree in exactly these parts. Afterwards, we discuss methods to combine the hybrid grammars
induced for each hybrid tree of some corpus to a single probabilistic LCFRS/sDCP-hybrid grammar.

4.1 Recursive partitionings
In this section we present a method to partition a hybrid tree h = (s,≤s) ∈ HT(Σ, Γ) by recursively
dividing posΣ(s). The resulting recursive partitioning of posΣ(s) is a term π over P(posΣ(s)). Later π
will also determine the fanout and the rank of the LCFRS component of the induced hybrid grammar.
Since both parameters affect the parsing complexity of the LCFRS, we present a method to transform π
in order to adjust these parameters.

Definition 4.1. Let A be a finite set. We define the ranked alphabet Σ = Σ(1) = P(A). A term π ∈ TΣ

is a recursive partitioning of A, if

i) π(ε) = A,

ii) for every p ∈ pos(π), it holds that
a) if |π(p)| ≤ 1, then p1 /∈ pos(π), and
b) if |π(p)| > 1, then there exists n ≥ 2 such that

• pn ∈ pos(π) and p(n+ 1) /∈ pos(π),
• for every i ∈ [n], it holds that π(pi) 6= ∅,
• π(p) =

⋃n
i=1 π(pi), and

• for every i, j ∈ [n] where i 6= j, it holds that π(pi) ∩ π(pj) = ∅. �

For every finite, totally ordered set we define two simple recursive partitionings.

Definition 4.2. Let n ∈ N and A = {a1, . . . , an} be a totally ordered set such that a1 < · · · < an.
The left-branching recursive partitioning of A is the recursive partitioning π of A such that, for every
p ∈ pos(π), there exists i ∈ [n] such that

• π(p) = {ai}, or

• π(p) = {a1, . . . , ai}, π(p1) = {a1, . . . , ai−1}, π(p2) = {ai}, and p3 /∈ pos(π).

Likewise, the right-branching recursive partitioning of A is the recursive partitioning π of A where, for
every p ∈ pos(π), there exists i ∈ [n] such that

• π(p) = {ai}, or

• π(p) = {ai, . . . , an}, π(p1) = {ai+1, . . . , an}, π(p2) = {ai}, and p3 /∈ pos(π). �
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h1

P11 l12

M121

11 < 121 < 1 < 12

{11, 121, 1, 12}

{11} {121, 12}

{121} {12}

{1}

ϕ
VP1

V11

ist111 gelaufen112

ADV12

schnell121

111 < 121 < 112

{111, 112, 121}

{111, 112}

{111} {112}

{121}

ϕ

Figure 4.1: The recursive partitioning directly extracted from a dependency structure and from a
constituent structure, respectively.

Example 4.3. Let A = [4] be ordered with the usual order < on N. The left-branching and right-
branching recursive partitioning of A are depicted below:

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{1, 2, 3, 4}

{1} {2, 3, 4}

{2} {3, 4}

{3} {4} �

We may directly extract a recursive partitioning of posΣ(s) from a hybrid tree h = (s,≤s) ∈ HT(Σ, Γ).

Definition 4.4. Let h = (s,≤s) ∈ HT(Σ, Γ). The recursive partitioning directly extracted from h is
the smallest recursive partitioning π of posΣ(s) (small w.r.t. the cardinality of pos(π)) satisfying the
following condition. For every p ∈ pos(s), let U(p) = {q ∈ posΣ(s) | pχ∗ q}. We require a mapping
ϕ : pos(s) → pos(π) such that, for each p ∈ pos(s) where U(p) 6= ∅, it holds that ϕ(p) = U(p). Further,
if p, q ∈ pos(π), then min<s

(π(p)) <s min<s
(π(q)) implies p <` q. �

The above definition is sound. We construct π such that it contains

• posΣ(s) as root,

• the node U(p) for every p ∈ pos(s) such that U(p) 6= ∅, and

• the node {q} for every q ∈ posΣ(s).

Observe that these nodes can be arranged to meet the requirements of a recursive partitioning, and that
the last sentence of Definition 4.4 specifies the order of siblings uniquely. None of the above nodes can
be left out, i.e., π is the smallest recursive partitioning that satisfies these conditions. We depicted the
recursive partitionings directly extracted from a dependency structure and from a constituent structure
in Figure 4.1. In the former case we need the nodes {1} and {12} in addition to those contained in
the image of ϕ. In the latter case every node in π is reached by ϕ. Observe the structural similarities
between s and π, if π is restricted to the image of ϕ.

Transformation of recursive partitionings
We conclude this section with presenting a method for the transformation of a recursive partitioning
of a finite, totally ordered set. Let A be a set, < a total order on A, and π a recursive partitioning of
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A. Also, let J be a node of π, i.e., a subset of A. We can determine a sequence over elements from J
that is consecutive in the sense that there is no element in A that can be inserted at an intermediate
position. We also want this sequence to be maximal, i.e., it cannot be extended with an element from J .
There is a finite number k of maximal consecutive sequences of J . The transformation of the recursive
partitioning shall alter π into π′ such that, for each node J in π′, we have that the number of maximal
consecutive sequences of J is below some target value `. The method shall be such that π′ is binarized
but still structurally similar to π in a certain sense.

Definition 4.5. Let A be a finite set, J ⊆ A, and < a total order on A. Furthermore, let k ∈ N and
b1, . . . , bk ∈ J . We say that b1 · · · bk is a maximal <-consecutive sequence of J , if

• b1 < b2 < · · · < bk,

• for every i ∈ [k − 1], there does not exist a ∈ A such that bi < a < bi+1,

• for every b ∈ J such that b < b1, there exists a ∈ A such that b < a < b1, and

• for every b ∈ J such that bk < b, there exists a ∈ A such that bk < a < b.

We denote the set of all maximal <-consecutive sequences of J by mseq<(J). �

Next, we construct a vector that contains all maximal <-consecutive sequences of J in a canonical
order.

Definition 4.6. Let A be a finite set and < a total order on A. For each J ⊆ A, we define the vector
of maximal <-consecutive sequences of J , denoted by vmseq<(J), as

〈b(1)
1 · · · b(1)

k1
, . . . , b

(n)
1 · · · b(n)

kn
〉,

where n = | mseq<(J)|, b(i)
1 · · · b(i)

ki
∈ mseq<(J) for every i ∈ [n], and b

(i)
ki

< b
(i+1)
1 holds for every

i ∈ [n− 1]. �

Example 4.7. Consider the set [7], the set J = {1, 2, 5, 7}, and the usual order < on the integers. Then
mseq<(J) = {5, 1 2, 7} and vmseq<(J) = 〈1 2, 5, 7〉. �

Now we provide an algorithm for the transformation of a recursive partitioning.

transform(`, B((B1(s1), . . . , Bn(sn)))) [assertion | mseq<(B)| ≤ `]

1. if n = 0 then return B(())

2. for every i ∈ [n], let ti = Bi(si).

3. choose a sub-term C(s′) of (t1, . . . , tn) such that | mseq<(C)| ≤ ` and | mseq<(B \ C)| ≤ `

4. let (t′) = filter(C,B((t1, . . . , tn)))

5. return B((transform(`, C(s′)), transform(`, t′)))

where

filter(C,B((t1, . . . , tn)) =


(B((t1, . . . , tn))) if B ∩ C = ∅,
((B \ C)(filter(C, t1) � · · · � filter(C, tn))) if |B \ C| > 1,
((B \ C)()) if |B \ C| = 1, and
() if |B \ C| = 0.

Note that, for every recursive partitioning π, it holds that | mseq<(π(ε))| ≤ 1. Thus, the assertion for
the initial call of transform is fulfilled. Pertaining to 3, observe that one can always choose C to be the
leaf that just contains the smallest or largest element of some sequence in mseq<(B). Such a node must
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exist since π is a recursive partitioning. Often, there is some degree of freedom in the choice of C which
influences how the resulting recursive partitioning differs from π. For instance, one can use a strategy
that selects the largest or smallest set possible or perform a simple breath-first or depth-first search
on B((t1, . . . , tn)). For our implementation (cf. Chapter 5) we use breath-first search where nodes are
visited from right to left at each level. This favors left-branching structures which turned out to be
beneficial, cf. Section 5.5.

Example 4.8. We depict the transformation of the recursive partitioning directly extracted from the
dependency structure in Figure 4.1 with threshold ` = 1. We highlight each node in gray whose choice
would violate the condition imposed in step 3 of the algorithm. The chosen sub-term C(s′) is indicated
by a dashed box.

transform

1,

{11, 121, 1, 12}

{11} {121, 12}

{121} {12}

{1}

 =

{11, 121, 1, 12}

{11} transform

1,

{121, 1, 12}

{121, 12}

{121} {12}

{1}



=

{11, 121, 1, 12}

{11} {121, 1, 12}

{121} transform

1,
{1, 12}

{12} {1}


=

{11, 121, 1, 12}

{11} {121, 1, 12}

{121} {1,12}

{12} {1}

Incidentally, the result is the right-branching recursive of posΣ(s). �

4.2 Induction of a hybrid grammar from a single hybrid tree
Throughout this section let h = (s,≤s) be a hybrid tree over (Σ, Γ) and π a recursive partitioning of
posΣ(s). We induce an LCFRS/sDCP-hybrid grammar Gh,π whose language is {h}. Each node of π
is a nonterminal of Gh,π. Moreover, π will be isomorphic to the only derivation tree of Gh,π for h.
Thus, each node J in π and its children J1, . . . , Jn constitute the nonterminal backbone of some hybrid
production, where J is the nonterminal on the left-hand side and J1, . . . , Jn occur on the right-hand side
in this order. We have the same nonterminals in the string grammar and the tree grammar and also
synchronize only the same nonterminals. We dedicate single subsections to the construction of word-
tuple functions, which is the same in the constituent and the dependency scenario, and the construction
of sDCP functions, where both scenarios differ. We specify the values of the functions fanout (ϕ),
number of inherited arguments (ι), and number of synthesized arguments (σ) for the nonterminals J
and J1, . . . , Jn in the applicable subsection. In a final step the nonterminal backbone and both kinds of
functions are assembled to Gh,π.

4.2.1 Construction of the word-tuple functions
In the LCFRS component of the hybrid grammar every nonterminal J in π shall generate maximal
substrings of str(h) that correspond to the positions in J . Technically speaking, J generates in its
i-th component the string corresponding to the i-th component of vmseq<s

(J). Now assume that J ’s
children J1, . . . , Jn generate substrings s(1)

1,k1
, . . . , s

(n)
1,kn

of str(h). Since π is a recursive partition, each
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string s(i)
j is a substring of one of the strings generated by J . Also, given distinct pairs (i, j) and (i′, j′),

the sequences of positions corresponding to s(i)
j and s(i′)

j′ are non-overlapping. Thus, we can construct a
word-tuple function that composes s(1)

1,k1
, . . . , s

(n)
1,kn

to the strings generated by J .
Formally, for every q ∈ posΣ(π) and J = π(q), we construct a word-tuple function fS

J as follows.

1. If |J | = 0, then we set fS
J = 〈()〉 = str(h).1 Observe that fS

J ∈ FLCFRS(I([0],Σ))
ε,1 .

2. If |J | = 1, i.e., J = {p} for some p ∈ pos(s), then we set fS
J = 〈(s(p) 1 )〉. Observe that

fS
J ∈ FLCFRS(I([1],Σ))

ε,1 .

3. Otherwise, if |J | > 1, then there exists n ≥ 2 such that qn ∈ pos(π) and q(n + 1) /∈ pos(π).
Let now 〈τ (0)

1 , . . . , τ
(0)
k0

〉 = vmseq<s
(J). Furthermore, for each i ∈ [n], we let Ji = π(qi) and

〈τ (i)
1 , . . . , τ

(i)
ki

〉 = vmseq<s
(Ji). We define mi =

∑i
j=1 ki for each i ∈ [n]0. We let

〈τ1, . . . , τmn
〉 = 〈τ (1)

1,k1
, . . . , τ

(n)
1,kn

〉

and set
fS

J = 〈s1, . . . , sk0〉

where, for every i ∈ [k0], we set si = (xj1 , . . . , xjk
) if τ (0)

i = τj1 · · · τjk
for some k ∈ N and

j1, . . . , jk ∈ {1, . . . ,mn}. Observe that k and j1, . . . , jk are unique and that fS
J ∈ FLCFRS(I([0],Σ))

k1···kn,k0
.

We set ϕ(J) = | mseq<s
(J)|, i.e., ϕ(J) = 1 in cases 1 and 2, and ϕ(J) = k0 in case 3.

Example 4.9. Recall the dependency structure (s,≤) in Figure 4.1 (on the left) with its directly
extracted recursive partitioning π. By the above method we extract the following word-tuple functions.

1. For the singleton sets in π we apply case 2 and obtain the following word-tuple functions:

J {1} {11} {12} {121}

fS
J 〈(h 1 )〉 〈(P 1 )〉 〈(l 1 )〉 〈(M 1 )〉

2. For J = {121, 12} we construct a word-tuple function according to case 3. Then J1 = {121},
J2 = {12}, vmseq<(J1) = 〈121〉 = 〈τ1〉, and vmseq<(J2) = 〈12〉 = 〈τ2〉. Since vmseq<(J) =
〈121, 12〉 = 〈τ (0)

1 , τ
(0)
2 〉, we have that s1 = (x1) and s2 = (x2). Thus, fS

J = 〈(x1), (x2)〉.

3. Also, for J = {11, 121, 1, 12} we apply case 3. The following table lists the assignments for τ1, . . . , τ4
and, for each i ∈ [3], the values of Ji and vmseq<

<(Ji).

i Ji vmseq<(Ji) = 〈τmi−1+1, . . . , τmi
〉

1 {11} 〈11〉 〈τ1〉
2 {121, 12} 〈121, 12〉 〈τ2, τ3〉
3 {1} 〈1〉 〈τ4〉

Note that vmseq<(J) = 〈11 121 1 12〉 which corresponds to 〈τ1 τ2 τ4 τ3〉. Thus, we have that
fS

J = 〈(x1, x2, x4, x3)〉.

Observe that the dimension of vmseq<(J) determines the fanout of fT
J . In Figure 4.2 it is depicted how

the induced word-tuple functions (and those that we would obtain for the right-branching recursive
partitioning of posΣ(s)) interact. �

1This case applies only if posΣ(s) = ∅.
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{11, 121, 1, 12}

{11} {121, 12}

{121} {12}

{1}

M 1 l 1

h 1(x1) (x2)P 1

(x1,x2,x4,x3)

{11, 121, 1, 12}

{11} {121, 1, 12}

{121} {1,12}

{1} {12}

M 1

l 1h 1

(x1,x2)

(x1,x2)P 1

(x1,x2)

Figure 4.2: Information flow of the induced word-tuple functions for the directly extracted and the
right-branching recursive partitioning.

1

2

3

1

2 3

in J
in >(J)

. . .i i-th component in >max(J)
in ⊥(J)

. . .i i-th component in ⊥max(J)

Figure 4.3: The schematic representation of an s-term, a set of nodes J , >(J), >max(J), ⊥(J), and
⊥max(J).

Recall that the maximal fanout of some nonterminal and the maximal rank of a production determine
the parsing complexity of an LCFRS. Thus, if π is a binarized structure and, for every node J of π,
we have that | vmseq<s

(J)| is below some threshold `, then parsing with the string component of the
induced hybrid grammar will be more efficient. Moreover, choosing the left-branching or the right-
branching recursive partitioning of posΣ(s) constraints the LCFRS such that its language is regular, i.e.,
a sentence can even be parsed in linear time.

4.2.2 Top and bottom positions
For the induction of sDCP functions, we first have to partition the s-terms s and later recompose the
resulting parts. This process is slightly more involved than the construction of word-tuple functions
since not only substrings are concatenated but a hierarchical structure is built. For this composition
we need to refer to the top-positions of some subset J of pos(s), i.e., the positions in J whose parents
are not in J . It is only logical to define also bottom-positions that have their parent in J but are not J
by themselves: these are the positions where an sDCP function will later insert the sub-s-term at the
top-positions of another set J ′. Next, we formally define both concepts as well as vectors of maximal
consecutive sequences of top-positions and bottom-positions.

Let s be an s-term. For every set J ⊆ pos(s), we define

>(J) = {p ∈ J | @p′ ∈ J : p′ χp}

to be the set of top-positions of J . Likewise, we let

⊥(J) = {p ∈ pos(s) \ J | ∃p′ ∈ J : p′ χp}

be the set of bottom-positions of J . Now we form maximal sequences of consecutive sibling positions
in >(J) and ⊥(J) and order these sequences lexicographically by their first member. Let k ∈ N and
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w1, . . . , wk ∈ (>(J))+ such that, for every i ∈ [k], we have that wi is a sequence of consecutive sibling
positions and there exists no p ∈ >(J) such that wip or pwi is a sequence of consecutive sibling positions.
Also, for every p ∈ >(J), there shall exist i ∈ [k] such that p occurs in wi. For every i ∈ [k], let pi be the
first element in wi. We require that, for every i ∈ [k− 1], it holds that pi <` pi+1. Then we set >max(J)
to 〈w1, . . . , wk〉. We define ⊥max(J) analogously. A visualization of this concept is given in Figure 4.3.

4.2.3 Construction of sDCP functions for dependency structures
For a dependency structure it holds that Σ(0) = Σ = Γ = Γ(1), i.e., each position of s is in the total
order <s. Every nonterminal J shall generate the s-terms s(0)

1 , . . . , s
(0)
σ0 at the positions in >max(J). To

this end, we construct an sDCP function that composes the s-terms generated by J ’s children J1, . . . , Jn.
However, there might be a position p which is not in J (and thus also not in J1, . . . , Jn) but below some
position in J . There will be another nonterminal that contains p which has to account for this sub-term
of s. Note that there is a position q such that q’s parent is in J , q χ∗ p, and every position on the path
from q to p is not in J . Obviously, q must be in ⊥(J) and the sub-term of s at position q contains the
sub-term at position p. We equip J with an inherited attribute that stands for q. More precise, J has
an inherited attribute for each component of ⊥max(J) and we rely on J ’s parent or siblings to provide
the missing sub-s-terms.

Formally, for every q ∈ pos(π) and J = π(q), let

〈τ1,ι0〉 = ⊥max(J) and 〈τι0+1,ι0+σ0〉 = >max(J)

Also, set ι(J) = ι0 and σ(J) = σ0, i.e., to the dimension of ⊥max(J) and >max(J), respectively. We
construct the sDCP function fT

J as follows.

1. If |J | = ∅, then we set fT
J = 〈()〉 = 〈s〉. Observe that fT

J ∈ F sDCP(I([0],Γ))
ε,(0,1) .

2. If |J | = 1, i.e., J = {p} for some p ∈ pos(s), there are two cases.
i) If ⊥max(J) = 〈〉, i.e., p is a leaf in s, then we set fT

J = 〈(s(p) 1 (()))〉. Observe that
fT

J ∈ F sDCP(I([1],Γ))
ε,(0,1) .

ii) If ⊥max(J) = 〈τ1〉, i.e., p has the child positions τ1 in s, then we set fT
J = 〈(s(p) 1 ((x(0)

1 )))〉.
Observe that fT

J ∈ F sDCP(I([1],Γ))
ε,(1,1) .

3. Otherwise, if |J | > 1, then there exists n ≥ 2 such that qn ∈ pos(π) and q(n+ 1) /∈ pos(π). We let

〈%(0)
1,σ0

〉 = >max(J) and 〈τ (0)
1,ι0

〉 = ⊥max(J).

For every i ∈ [n], we let Ji = π(qi),

〈%(i)
1,ι0

〉 = ⊥max(Ji), and 〈τ (i)
1,σ0

〉 = >max(Ji).

We define
fT

J = 〈s(0)
1,σ0

, s
(1)
1,ι1

, . . . , s
(n)
1,ιn

〉

where, for every (i, j) ∈ S((ι1, σ1) · · · (ιn, σn), (ι0, σ0)), we set s(i)
j = (x(i1)

j1
, . . . , x

(ik)
jk

)
if %(i)

j = τ
(i1)
j1

. . . τ
(ik)
jk

.

It can be proven by case analysis that in case 3 it holds that fT
J ∈ F sDCP(I([0],Γ))

(ι1,σ1)···(ιn,σn),(ι0,σ0).

Example 4.10. Recall the dependency structure in Figure 4.1 and the recursive partitioning π directly
extracted from it. Below, we annotated ⊥max(J) and >max(J) in gray boxes to the left and to the right
of each node J in π, respectively.

35



{11, 121, 1, 12}

{11} {121, 12}

{121} {12}

{1}

〈121〉〈 〉 〈12〉〈121〉

〈1〉〈11 12〉〈12〉〈 〉〈11〉〈 〉

〈1〉〈 〉

We construct sDCP functions as follows.

1. For each singleton set J , we construct an sDCP function according to case 2.i or 2.ii depending on
the dimension of ⊥max(J):

J {11} {121} {12} {1}

fT
J 〈(P 1 )(())〉 〈(M 1 (()))〉 〈(l 1 ((x(0)

1 )))〉 〈h 1 ((x(0)
1 ))〉

2. Consider J = {121, 12}, J1 = {121} and J2 = {12}. Since >max(J) has dimension one, J has only
one synthesized attribute, i.e., only s(0)

1 needs to be specified. Likewise, ⊥max(J1) has dimension 0,
i.e., J1 has no inherited attribute. Contrarily, ⊥max(J2) has dimension 1 and we need specify s(2)

1 .
Observe that

>max(J) = 〈%(0)
1 〉 = 〈12〉 = 〈τ (2)

1 〉 = >max(J2), i.e., s(0)
1 = (x(2)

1 ),

and that

⊥max(J2) = 〈%(2)
1 〉 = 〈121〉 = 〈τ (1)

1 〉 = >max(J1), i.e., s(2)
1 = (x(1)

1 ).

Thus, we obtain that
fT

J = 〈s(0)
1 , s

(2)
1 〉 = 〈(x(2)

1 ), (x(1)
1 )〉.

3. For J = {11, 121, 1, 12}, J1 = {11}, J2 = {121, 12}, and J3 = {1}, we have to construct s(0)
1 and

s
(3)
1 .

>max(J) = 〈%(0)
1 〉 = 〈1〉 = 〈τ (3)

1 〉 = >max(J2), i.e., s(0)
1 = (x(3)

1 ),

and that

⊥max(J3) = 〈%(3)
1 〉 = 〈11 12〉 = 〈τ (1)

1 τ
(2)
2 〉 i.e., s(3)

1 = (x(1)
1 , x

(2)
1 ).

The interaction of the constructed sDCP functions is illustrated in Figure 4.4. �

4.2.4 Construction of sDCP functions for constituent structures
If h is a constituent structure, then Σ = Γ(0), i.e., every node in the linear order ≤s is a leaf and s
might contain nodes that are not in ≤s. Thus, in contrary to dependency structures, each nonterminal
J generates not only the symbols at the positions in J but also the symbols (constituents) at internal
positions over those leaf positions in J . More precisely, J accounts for an internal position p if every
descendant of p labeled with a symbol from Σ is in J and if there exists at least one such descendant.
The nodes for which J accounts are grouped to maximal disjoint sub-s-terms. These sub-s-terms are
composed from those generated by J ’s children. Since the nodes in J are leaves, we do not need to equip
J with inherited attributes.

Formally, for every p ∈ pos(π) and J = π(p), we define the set of constituents of J , denoted by C(J),
as follows:

C(J) = {p ∈ pos(s) | ∀q ∈ posΣ(s) : pχ∗ q implies q ∈ J and ∃q ∈ J : pχ∗ q}.
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{11, 121, 1, 12}

{11} {121, 12}

{121} {12}

{1}

(M 1 (())) (l 1 ((x(0)
1 )))(x(1)

1 )

(h 1 ((x(0)
1 )))(x(1)

1 ,x
(2)
1 )(x(2)

1 )(P 1 (()))

(x(3)
1 )

Figure 4.4: The interaction of the sDCP functions constructed in Example 4.10.

If s contains ε-constituents, i.e., nodes that are not above any position in ≤s, then we have to enrich
this set. Let E = {p ∈ pos(s) | @q ∈ posΣ(s) : pχ∗ q}. Let C = pos(s) \ E . We define the set of ε-siblings
of constituents of J by

ES(J) =

e ∈ E

∣∣∣∣∣∣
∃p ∈ C(J) : p <sib e ∨ e <sib p and
∀p ∈ C : (p <sib e ∧ (@q ∈ C : p <sib q <sib e) =⇒ p ∈ C(J)) and

(p >sib e ∧ (@q ∈ C : p >sib q >sib e) =⇒ p ∈ C(J))


and the set of ε-constituents of J by

E(J) = {e ∈ E | ∃p ∈ ES(J) : pχ∗ e}.

Intuitively, E(J) contains every ε-constituent, where the closest non-ε-siblings in either direction are in
C(J), or, if no non-ε-sibling exists, there is an ancestor that satisfies this criterion. The nodes over J are
O(J) = C(J) ∪ E(J). Obviously, if E = ∅, then O(J) = C(J).

Example 4.11. Consider the following constituent structure h = (s,≤s) over the monadic alphabet
Γ, where Γ(0) = {α, β, γ, δ}, Γ(1) = {A,B, . . . , F} and the Gorn address is annotated in superscript at
each node in s.

α β γ δ

S1

A11

α111

B12

β121 δ122

C13

F 131

D14

γ141

E15

G151

Note that C = {1, 11, 12, 121, 122, 14, 141} and E = {13, 131, 15, 151}. In the following table we list the
sets C(J), ES(J), E(J), and O(J) for several subsets J of posΣ(s). In row (a) only 121 is contained in

J C(J) ES(J) E(J) O(J)
(a) {121} {121} ∅ ∅ {121}
(b) {141} {141, 14} {15} {15, 151} {141, 14, 15, 151}
(c) {121, 122} {121, 122, 12} ∅ ∅ {121, 122, 12}
(d) {111, 141} {111, 141, 11, 14} {15} {15, 151} C(J) ∪ E(J)
(e) {121, 122, 141} {121, 122, 12, 141, 14} {13, 15} {13, 131, 15, 151} C(J) ∪ E(J)
(f) posΣ(s) C {13, 15} E pos(s)

C(J) whereas 12 is not since 12χ 122 and 122 /∈ J . The nodes highlighted with the checkerboard pattern
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correspond to O(J) in (b) and those highlighted in gray correspond to O(J) in (c). Row (d) indicates
that O(J) does not need to consist only of the positions of a single sub-s-term. Further, for the dotted
positions to be E(J), it is required that both nearest constituent nodes of 13 are in C(J), i.e., 12 and 14.
Thus, the positions surrounded by dotes are included in O(J) of (e) but not in O(J) of (b) or (c). If all
positions in posΣ are in J , then all positions of s are in O(J) as (f) illustrates. �

Let now p ∈ pos(π) and J = π(p).

1. If |J | = 0, then p = ε. We define fT
J = 〈s〉. Observe that fT

J ∈ F sDCP(I([0],(Σ,rkΓ)∪(Γ\Σ,rkΓ))
ε,(0,1) .

2. If |J | = 1, then there is exactly one position q in O(J) ∩ posΣ(s). We let 〈τ〉 = >max(O(J)) and
fT

J = 〈(s[s(q) 1 ]q)|τ 〉. Observe that fT
J ∈ F sDCP(I([1],(Σ,rkΓ)∪(Γ\Σ,rkΓ))

ε,(0,1) .

3. If |J | ≥ 2, then there exists n ≥ 2 such that pn ∈ pos(π) and p(n+ 1) /∈ pos(π). For i ∈ [n] we let
Ji = π(pi). Also, we let O′(J) =

⋃n
i=1 O(Ji). We set

〈τ (0)
1 , . . . , τ (0)

σ0
〉 = >max(O(J))

and, for every i ∈ [n], we set
〈τ (i)

1 , . . . , τ (i)
σi

〉 = >max(O(Ji)).

For each j ∈ [σ0], we define ζj as follows.

• Let 〈β1, . . . , βκ〉 = >max({p ∈ O′(J) | (τ (0)
j , p ε) ∈ (χ∗ ∪ ∝)}).2

• For every k ∈ [κ], we let %k = (x(i1)
j1

, . . . , x
(il)
jl

) if βk = τ
(i1)
j1

· · · τ (il)
jl

where l ∈ N and, for
every m ∈ [l], we have that im ∈ [n] and jm ∈ [σim ]. Note that l, i1, . . . , il, and j1, . . . , jl

exist and are unique.
• For each k ∈ [κ], we set β′

k to βk ↓ τ (0)
j .

• Now we define ζj as
(

· · ·
(

(s|
τ

(0)
j

)[%κ]β′
κ

)
[%κ−1]β′

κ−1
· · ·

)
[%1]β′

1
.

We set
fT

J = 〈ζ1, . . . , ζσ0〉.

Observe that fT
J ∈ F sDCP(I([0],(Σ,rkΓ))∪(Γ\Σ,rkΓ))

(0,σ1)···(0,σn),(0,σ0) .

We set ι(J) to 0 and σ(J) to the arity of >max(J).
Example 4.12. We show some sDCP functions that can be extracted from the constituent structure
h = (s,≤s) in example 4.11.

1. Since posΣ(s) is nonempty, case 1 does not apply.

2. For case 2 consider J = {141}. The only position in O(J) ∩ posΣ(s) is 141. Also, >max(O(J)) =
〈14 15〉. Thus,

fT
J = 〈(D((γ 1 )), E((G)))〉,

which corresponds to the checkerboard highlighted sub-s-term where γ was indexed.

3. For case 3 let J = {121, 122}, J1 = {121}, and Jn = J2 = {122}. This production accounts for
the sub-s-term of s that is highlighted in gray where the sub-s-terms at the position 121 and the
position 122 are provided by J1 and J2, respectively. Now O′(J) = {121, 122}, >max(O(J)) = 〈12〉,
and >max({p ∈ O′(J) | (12, p ε) ∈ (χ∗∪ ∝)}) = >max({121, 122}) = 〈121 122〉. Obviously,
〈121〉 = >max(O(J1)) and 〈122〉 = >max(O(J2)). Thus, for j = 1 = σ0 we have that β1 =
121 122 = τ

(1)
1 τ

(2)
1 and β′

1 = β1 ↓ 12 = 11 12. Hence, %1 = (x(1)
1 , x

(2)
1 ). Then ζ1 = (s|12)[%1]β′

1
=

(B((β, δ)))[(x(1)
1 , x

(2)
1 )]11 12 = (B((x(1)

1 , x
(2)
1 ))) and thus

fT
J = 〈(B((x(1)

1 , x
(2)
1 )))〉.

2Here we write p ε to convert p from N ∗ to a sequence p of length one in (N ∗)+.
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4. The induced sDCP function of case 3 may account also for multiple sub-s-terms. Let J = {121, 141},
J1 = {121} and J2 = {141}. We have that O(J) = {121, 141, 14, 15, 151}, >max(O(J)) =
〈121, 14 15〉, and >max(O′(J)) = 〈121, 14 15〉 = >max(O(J1)) · >max(O(J2)). Thus

fT
J = 〈(x(1)

1 ), (x(2)
1 )〉,

i.e., this function just passes on the values from the left-hand side nonterminals.

5. The next sDCP function is responsible for the sub-s-term in the gray, dotted, and checkerboard
highlighted positions and uses the result from the previous function. Let J = {121, 122, 141}, J1 =
{121, 141} and J2 = {122}. Note that >max(O(J)) = 〈12 13 14 15〉, >max(O′(J)) = 〈τ (0)

1 , τ
(0)
2 〉 =

〈121 122, 14 15〉, >max(O(J1)) = 〈τ (1)
1 , τ

(1)
2 〉 = 〈121, 14 15〉, and >max(O(J2)) = 〈τ (2)

1 〉 = 〈122〉.
Thus,

fT
J = 〈( B︸︷︷︸

12

((x(1)
1︸︷︷︸

121

x
(2)
1︸︷︷︸

122

)), C︸︷︷︸
13

(( F︸︷︷︸
131

)), x(1)
2︸︷︷︸

14 15

)〉.

Below, we depict the complete information flow obtained for h and some recursive partitioning. Note
that the sDCP functions constructed in 2, 4, and 5 are contained in it.

{111, 121, 122, 141}

{111} {121, 122, 141}

{121, 141}

{121} {141}

{122}

(β 1 ) (D((γ 1 )), E((G)))

(A((α 1 )))

(x(1)
1 ) (x(2)

1 ) (δ 1 )

(B((x(1)
1 ,x

(2)
1 )), C((F )),x(1)

2 )

(S((x(1)
1 ,x

(2)
1 )))

�

4.2.5 Assembly of the nonterminal backbone, the word-tuple functions and the
sDCP functions to an LCFRS/sDCP-hybrid grammar

Let N = {J ⊆ posΣ(s) | ∃p ∈ pos(π) : π(p) = J}. For every J ∈ N , let ϕ(J), ι(J), and σ(J) as defined
in the foregoing sections. For every p ∈ pos(π), we let J = π(p) and J1 = π(p1), . . . , Jn = π(pn). Also,
let P contain the hybrid production

%J =[J ε (s1,k0) → J
1

1 (x1,m1) · · · J n

n (xmn−1+1,mn
)

, J
ε (x(0)

1,ι0
, ξ

(0)
1,σ0

) → J
1

1 (ξ(1)
1,ι1

, x
(1)
1,σ1

) . . . J n

n (ξ(n)
1,ιn

, x
(n)
1,σn

)] (4)

such that 〈s1,k0〉 = fS
J , 〈ξ(0)

1,σ0
, ξ

(1)
1,ι0

, . . . ξ
(n)
1,ιn

〉 = fT
J , ι0 = ι(J), and, for every i ∈ [n], it holds that

mi =
∑i

j=1 ϕ(Ji) and σi = σ(Ji). This constitutes the hybrid grammar

Gh,π = ((N, posΣ(s),Σ, ϕ), (N, posΣ(s), Γ, ι, σ), P ).

Observation 4.13. L(Gh,π) = {h}.

4.3 Induction of a hybrid grammar form a corpus of hybrid trees
4.3.1 Labeling nonterminals
The language of the grammar Gh,π constructed so far contains exactly one hybrid tree. Given a corpus
H of hybrid trees over (Σ, Γ), i.e., H ⊆ HT(Σ, Γ), and a recursive partitioning π for each h ∈ H, we
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can employ the above procedure to induce Gh,π = ((Nh, Sh,Σ, ϕh), (Nh, Sh, Γ, ιh, σh), Ph) for each
h = (sh,≤sh) ∈ H. Let N = {Ah | h ∈ H,A ∈ Nh} be the disjoint union of nonterminals of all
grammars Gh,π. Define the functions ϕN : N → N , ιN : N → N, and σN : N → N such that, for every
ψ ∈ {ϕ, ι, σ}, it holds that ψN : Ah 7→ ψh(A). Moreover, let M be a finite set and assume functions
ϕM : M → N , ιM : M → N, and σM : M → N . A nonterminal labeling strategy is a function ` : N → M
such that, for every A ∈ N and ψ ∈ {ϕ, ι, σ}, it holds that ψN (A) = ψM (A).

We define the LCFRS/sDCP-hybrid grammar

G = ((M,S,Σ, ϕM ), (M,S, Γ, ιM , σM ), P )

where S ∈ M \ `(N) and P contains every production obtained as follows.

• Let h ∈ H and let π be the chosen recursive partitioning of posΣ(sh).

• For each hybrid production %J in Ph of the form (4), we let P contain the hybrid production

`(%J) = [`(Jh)
ε

(s1,k0) → `(Jh
1 )

1
(x1,m1) · · · `(Jh

n )
n

(xmn−1+1,mn)

, `(Jh)
ε

(x(0)
1,ι0

, ξ
(0)
1,σ0

) → `(Jh
1 )

1
(ξ(1)

1,ι1
, x

(1)
1,σ1

) . . . `(Jh
n )

n

(ξ(n)
1,ιn

, x
(n)
1,σn

)]. (5)

• Also, P contains the production

[S(x1) → `(Sh)(x1), S(x(1)
1 ) → `(Sh)(x(1)

1 )]. (6)

Observe that L(G) ⊇
⋃

h∈H L(Gh,π).

4.3.2 The disjoint union labeling
In the easiest scenario we choose M = N ∪ {S} and define ` to be the identity mapping, i.e., we set G to
be the disjoint union of the individual grammars Gh,π. Then L(G) =

⋃
h∈H L(Gh,π) = H. The objective

of machine learning is generalization, i.e., to learn a grammar that also generates the dependency
structures of sentences that are not in the training corpus. This is obviously not achieved by disjoint
union of the grammars Gh,π. The problem is that every nonterminal in N gets mapped injectively
to some element of M . Thus, each nonterminal (except for the start symbol) occurs in exactly one
successful derivation of G. Next, we explore methods to define labeling strategies that are hopefully not
injective and thus yield a grammar G that allows for versatile combinations of productions. Obviously,
mapping arbitrary nonterminals to the same element is unlikely to yield a grammar that is sensible
from a linguistic viewpoint. Hence, we map each nonterminal A in N to some string that encodes which
terminals are generated by A and similarly to Markovization described in [KM03] in which context
these terminals occur.

4.3.3 Strict nonterminal labeling
For every s = (k, ι, σ) ∈ N × N × N , we let M ′ contain each string B of the form 〈w1, . . . , wι+σ〉 s,
where wi ∈ Γ+ for every i ∈ [ι+ σ] and ϕM (B) = k, ιM (B) = ι, and σM (B) = σ. We define ` : N → M ′

such that

Ah 7→

{
`′(⊥max(A) · >max(A)) (ϕN (Ah), ιN (Ah), σN (Ah)) if h is a dependency structure and
`′(>max(O(A))) (ϕN (Ah), ιN (Ah), σN (Ah)) if h is a constituent structure,

where >max and ⊥max are w.r.t. the hybrid tree h = (t,≤t) and `′ is defined as follows:

`′(τ) =
{

〈`′(τ1), . . . , `′(τn)〉 if τ = 〈τ1, . . . , τn〉,
t(pi) · · · t(p(i+ k)) if τ = pi p(i+ 1) · · · p(i+ k) ∈ pos(t)+.

Afterwards, we set M = {S} ∪ {B ∈ M ′ | ∃A ∈ N : `(A) = B} in order to obtain a finite set of
nonterminals. We call ` the strict nonterminal labeling strategy.
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4.3.4 Child nonterminal labeling
With child nonterminal labeling [NV14] proposed a modification of strict nonterminal labeling with the
intention of decreasing the number of nonterminals even more. Each sequence of consecutive sibling
positions in ⊥max(A) · >max(A) that is of length greater than 1 is collapsed and replaced with the
common parent. Formally, for every s = (ϕ, ι, σ) ∈ N × N × N , we let M ′ contain each string B of
the form 〈w1, . . . , wι+σ〉 s, where wi ∈ Γ ∪ {children-of(γ) | γ ∈ Γ} ∪ {children-of(ROOT)} for every
i ∈ [ι + σ] and ROOT is a new symbol not occurring in Γ. Also, for each B of this form, we set
ϕM (B) = k, ιM (B) = ι, and σM (B) = σ. We define ` : N → M ′ such that

Ah 7→

{
`′(⊥max(A) · >max(A)) (ϕN (Ah), ιN (Ah), σN (Ah)) if h is a dependency structure and
`′(>max(O(A))) (ϕN (Ah), ιN (Ah), σN (Ah)) if h is a constituent structure,

where >max and ⊥max are w.r.t. the hybrid tree h = (t,≤t) and `′ is defined as follows:

`′(τ) =


〈`′(τ1), . . . , `′(τn)〉 if τ = 〈τ1, . . . , τn〉,
t(pi) if τ = pi where pi ∈ pos(t),
children-of(t(p)) if τ = pi p(i+ 1) · · · p(i+ k), k > 1, and p ∈ pos(t),
children-of(ROOT) if τ = i (i+ 1) · · · (i+ k) and k > 1.

Note that the last case applies only if h has disconnected substructures. Again, let M = {S} ∪ {B ∈
M ′ | ∃A ∈ N : `(A) = B}.

Example 4.14. We applied strict labeling to the nonterminals of the directly extracted and right-
branching recursive partitioning of the dependency structure in Figure 4.1:

〈h〉(1, 0, 1)

〈P〉(1, 0, 1) 〈l〉(2, 0, 1)

〈M〉(1, 0, 1) 〈M, l〉(1, 1, 1)

〈P l,h〉(1, 1, 1)

〈h〉(1, 0, 1)

〈P〉(1, 0, 1) 〈P,h〉(1, 1, 1)

〈M〉(1, 0, 1) 〈P, M, h〉(1,2,1)

〈P l,h〉(1,1,1) 〈M, l〉(2,0,1)

With child labeling P l is contracted to children-of(h):

〈h〉(1, 0, 1)

〈P〉(1, 0, 1) 〈l〉(2, 0, 1)

〈M〉(1, 0, 1) 〈M, l〉(1, 1, 1)

〈children-of(h),h〉(1, 1, 1)

�

4.3.5 Enforcing non-circularity
The use of sDCPs causes a complication in the dependency scenario: since we make use of inherited
attributes we may combine productions such that information flows in a circular way.
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Example 4.15. Consider the corpus of dependency structures H and the left-branching recursive
partitioning π:

H =

 γ β γ

γ

γ

β ,

β γ γ

γ

γ

β


.

Grammar induction in combination with an appropriate labeling strategy (e.g., every nonterminal
is labeled with the multi set of terminals it generates) yields a hybrid grammar with the following
productions, where %1, %3, %5, and %6 were obtained from the first depicted hybrid tree and %2, %4, %5,
and %6 were obtained from the second one.

%1 =
S ((x(1)

1 )) → A ((x(2)
1 ), x(1)

1 , x
(1)
2 ) C ((x(1)

2 ), x(2)
1 )

S ((x1, x2)) → A (x1) C (x2)

%2 =
S ((x(1)

2 )) → A ((x(2)
1 ), x(1)

1 , x
(1)
2 ) C ((x(1)

1 ), x(2)
1 )

S ((x1, x2)) → A (x1) C (x2)

%3 =
A (x(0)

1 , (x(1)
1 ), (x(2)

1 )) → C ((x(0)
1 ), x(1)

1 ) B (x(2)
1 )

A ((x1, x2)) → C (x1) B (x2)

%4 =
A (x(0)

1 , (x(1)
1 ), (x(2)

1 )) → B (x(1)
1 ) C ((x(0)

1 ), x(2)
1 )

A ((x1, x2)) → B (x2) C (x1)

%5 =
C (x(0)

1 , ( γ ((x(0)
1 )))) → ε

C (( γ )) → ε

%6 =
B (( β (()))) → ε

B (( β )) → ε

Combining %1 with %4 or %2 with %3 leads to circular flow of information:

42



S

A

B C

C

%1

%4

%6 %5

%5

S

A

C B

C

%2

%3

%6%5

%5

�

The way we defined the derivation semantics of sDCPs implies that such constellations do normally
not occur in successful derivations.3 However, we want to use the induced hybrid grammar to determine
the constituent structure or dependency structure of some sentence. Thus, we want to reconstruct a
hybrid tree for every successful parse of the string component of the hybrid grammar. If the grammar
is non-circular, then we can always evaluate the sDCP derivation that corresponds to the successful
LCFRS derivation.4

To enforce non-circularity we have to make the dependencies between inherited and synthesized
attributes explicit. Every nonterminal of the sDCP is assigned some is-dependency signature that
constraints how its attributes are used in a production. Although such notions can be formally
incorporated into the definition of sDCPs,5 we will only append this signature to the strings generated
by the labeling strategies.

The is-dependency signature is basically a strict order ≺ on [n] where n is the number of inherited
and synthesized arguments. Here, i ≺ j shall express that the i-th argument contributes to the j-th one
which is the case if the top-positions or bottom-positions that correspond to the i-th argument are below
those of the j-th one. Thus, we do not only take local dependencies, i.e., those in one production, into
account, but also consider information flow through the whole derivation tree. If in every production the
sDCP function adheres the is-dependency signatures of the nonterminal backbone, then the strictness of
≺ prevents cycles. Since we enforce the single syntactic use requirement in sDCPs, we know that every
argument has at most one direct ≺-successor. Thus, we can find a compact representation of ≺ as an
s-term of size linear in the number of inherited and synthesized attributes.

Definition 4.16. Let n ∈ N . We define the set of n-ary is-dependencies, denoted by DEP(n), to
contain every strict order ≺ on [n] that satisfies the following. Let i, j, k ∈ [n]. We require that

(i ≺ j and i ≺ k) implies (j � k or k � j).

We represent ≺ as an s-term s≺ over the monadic alphabet [n] = [n](1) such that

• every i ∈ [n] occurs exactly once in s≺,

• i ≺ j iff the position of j in s≺ is a strict prefix of the position of i in s≺, and

• for every p ∈ N ∗ and i ∈ N such that pi, p(i+ 1) ∈ pos(s), we have that s(pi) < s(p(i+ 1)), where
< is the usual order on N.

In the following we identify ≺ and s≺. �

Let J be the node of a recursive partitioning and 〈τ1,ι, τι+1,ι+σ〉 = ⊥max(J) · >max(J). We set the
is-dependency signature of J to δ(J) = d ∈ DEP(ι+ σ) such that, for every i, j ∈ [ι+ σ], it holds that
(i, j) ∈ d iff τj χ

+ τi.
3There are marginal instances of sDCPs where cyclic information flow occurs in successful derivations.
4We describe an evaluation algorithm in Section 5.4.8 that is only correct if the derivation does not contain cycles.
5This would amount to defining a subclass of sDCPs similar to strongly non-circular attribute grammars [Jou84].
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Example 4.17. The nonterminal A of example 4.15 has different is-dependency signature in the
productions %1 and %3 than in %2 and %4. In the former case δ(A) = 2(1(3)) since the first synthesized
argument 2 is built using the first inherited argument 1. Also, 1 depends on the second synthesized
argument 3. In the latter case δ(A) = 3(1(2)) since the roles of the two synthesized arguments of A
are swapped. Annotating the label A with δ(A) prohibits both circular combinations of productions
depicted in example 4.15. �

Observation 4.18. The grammar Gh,π induced from a hybrid tree h and a recursive partitioning π is
always non-circular. Thus, also grammar induction from a corpus of hybrid trees yields a non-circular
grammar if is-dependencies are annotated to nonterminals.

4.3.6 Weighting the hybrid grammar
We weight the LCFRS/sDCP-hybrid grammar G = ((M,S,Σ, ϕM ), (M,S, Γ, ιM , σM ), P ) induced from
H by relative frequency estimation. Let the count of some hybrid production % ∈ P denote how often
% was induced. Formally, let Gh,π = ((Nh, Sh,Σ, ϕh), (Nh, Sh, Γ, ιh, σh), Ph) the induced grammar for
every h ∈ H where π is the chosen recursive partitioning for h. For every % ∈ P of type (5), we let

count(%) =
∑
h∈H

∑
q∈pos(π)

δ(%, `(%J)) where J = π(q), δ(%, %′) =
{

1 if % = %′

0 otherwise

and %J and `(%J) are as in (4) and (5), respectively. For productions % ∈ P of type (6) with the form
[S ε (x1) → A 1 (x1), S ε (x(1)

1 ) → A 1 (x(1)
1 )] we let

count(%) =
∑
h∈H

δ(`(Sh), A).

Further, for every A ∈ M , let PA be the subset of P in which every hybrid production has the left-hand
side nonterminal A ε . Then, for every A ∈ M and % ∈ PA, we set

p(%) = count(%)∑
%′∈PA

count(%′) .

The induced probabilistic LCFRS/sDCP-hybrid grammar is G′ = ((M,S,Σ, ϕM ), (M,S, Γ, ιM , σM ), P, p).
Note that relative frequency estimation guarantees the properness of G′.
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5 Experimental evaluation of hybrid grammars
In this chapter we describe the implementation and evaluation of hybrid grammars and grammar
induction. We give a high-level description of the experimental setup before explaining the used corpora
and metrics. Afterwards, we describe the algorithms for LCFRS parsing and sDCP evaluation and the
implementation of our system in Python. Finally, the results of applying this implementation to the
corpora are reported, interpreted, and compared to reference scores.

5.1 Experiment setup
We follow a common three step experiment setup from statistical machine translation [Lop08] to test
the suitability of the hybrid grammar approach to represent non-projective dependency structures and
discontinuous constituent structures: modeling, training, and evaluation. Note that we employ the
related terminology from statistics although our definition of probabilistic hybrid grammars is not
probabilistic in the strict sense, cf. Definition 3.27.

assumptions modeling probabilistic model
M ⊆ M(HT(Σ, Γ))

training data
(corpus) training p̂ ∈ M

test data evaluation score

In the above graphic M(HT(Σ, Γ)) is the set of all probability distributions over HT(Σ, Γ). Our assump-
tions to modeling restrict this set to the set of probability distributions M that are induced by probabilistic
LCFRS/sDCP-hybrid grammars. During training, we induce an (unweighted) LCFRS/sDCP-hybrid
grammar G′ from the corpus and perform relative frequency estimation to obtain probabilities for its
productions. This probabilistic LCFRS/sDCP-hybrid grammar G induces a probability distribution
p̂ ∈ M. Finally, we evaluate the system by comparing each hybrid tree hg from a test corpus with the
hybrid tree hp, where

hp = argmaxh∈HT(Σ,Γ) : str(h)=str(hg) p̂(h)
= argmaxh∈HT(Σ,Γ) : str(h)=str(hg) JGK (h).

In other words, hp is obtained by probabilistic parsing of str(hg) with the string component of G and a
subsequent evaluation of the sDCP productions of the best parse. To evaluate our system we score the
similarity of hg and hp according to an established metric.

5.2 Corpora and metrics for dependency parsing
The annual Conference on Natural Language Learning (CoNLL) is accompanied by a shared task on
a machine learning problem from the natural language domain. In 2006 and 2007 this task has been
multilingual dependency parsing [BM06; Niv+07]. In order to allow many teams to run their parsers on
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1 Hier _ ADV ADV _ 6 MO 2 MO
2 mu _ VMFIN VMFIN _ 0 ROOT 0 ROOT
3 eine _ ART ART _ 5 NK 5 NK
4 neue _ ADJA ADJA _ 5 NK 5 NK
5 Sozialpolitik _ NN NN _ 2 SB 2 SB
6 entwickelt _ VVPP VVPP _ 7 OC 7 OC
7 werden _ VAINF VAINF _ 2 OC 2 OC
8 . _ $. $. _ 2 PUNC 2 PUNC

(a) A sentence from TIGER in the format of the CoNLL-X shared task, and

Hier1 muß2 eine3 neue4 Sozialpolitik5 entwickelt6 werden7 .8

(here) (need) (a) (new) (social policy) (developed) (be)

muss

Sozialpolitik

eine
NK

neue NK

SB

werden

entwickelt

Hier MO

OC

OC

.

PUNC

(b) a graphical representation of its (labeled) dependency structure.

1 " " PUNC PUNC _ 0 ExD _ _
2 Paraziti parazit Noun Noun-common Gender=masculine|Number=plural|Case=nominative 0 ExD _ _
3 - - PUNC PUNC _ 6 AuxG _ _
4 to ta Pronoun Pronoun-demonstrative Gender=neuter|Number=singular|Case=nominative|Syntactic-Type=nominal 6 Sb _ _
5 je biti Verb Verb-copula VForm=indicative|Tense=present|Person=third|Number=singular|Negative=no 6 AuxV _ _
6 bil biti Verb Verb-copula VForm=participle|Tense=past|Number=singular|Gender=masculine|Voice=active 0 ExD _ _
7 nekdo nekdo Pronoun Pronoun-indefinite Case=nominative|Syntactic-Type=nominal 6 Pnom _ _
8 drug drug Pronoun Pronoun-indefinite Gender=masculine|Number=singular|Case=nominative|Syntactic-Type=nominal 7 Atr _ _
9 . . PUNC PUNC _ 0 ExD _ _

10 " " PUNC PUNC _ 0 ExD _ _

(c) A sentence from SDT in the format of the CoNLL-X shared task, and

”1 Paraziti2 −3 to4 je5 bil6 nekdo7 drug8 .9 ”10

” Paraziti bil

− to je nekdo drug

. ”

(d) a graphical representation of its (unlabeled) dependency structure.

Figure 5.1: Dependency structures in CoNLL-X format and their graphical representations.
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Corpus Language LAS LAS (avr) UAS UAS (avr) LA LA (avr)
TIGER German 87.3 78.6 90.4 82.6 92.1 86.3
METU-Sabanci Turkish 65.7 56.0 75.8 69.4 78.5 69.6
SDT Slovene 73.4 65.2 83.2 76.5 82.5 76.3

Table 5.1: Top and average (avr) scores in the CoNLL-X shared task.

corpora from different languages, a homogeneous format was introduced and a common metric for success
defined. A German and a Slovene sentence in what we henceforth call CoNLL format are depicted
in Figure 5.1. In this format sentences are finite sequences of tokens with ten fields of which the first
eight are as follows: the position of the token in the sentence, the form, the lemma, the coarse POS-tag
(CPOS), the POS-tag, optional (morphological) features (FEATS) like case or number, the position of
the token’s head (HEAD) in the sentence, and the dependency relation (DEPREL) the token has to its
head. In addition, there are two fields for the projectivized head and the projectivized DEPREL which
indicate a projective dependency structure for the same sentence.

Existing dependency and constituent corpora, varying in size and annotated information, were
transformed into the CoNLL format. Each corpus was split into a training section of varying size
and a test section with approximately 5,000 scoring tokens. A token might have empty fields if some
information is not available in the original treebank. An empty field is indicated by _.

The CoNLL-X shared task was the following: a sentence is given as a sequence of tokens, for which
only the first six fields are available. For each token, the HEAD and the DEPREL, i.e., the seventh
and eighth field, shall be predicted correctly. To evaluate the performance of a dependency parser its
output on the test section of the corpus is compared to the gold standard annotation, i.e., the manual
annotation in the corpus, and three metrics are computed. The unlabeled attachment score (UAS) is
the percentage of scoring tokens for which the HEAD was found correctly. The label accuracy (LA)
is the percentage of scoring tokens for which the DEPREL is correct. The labeled attachment score
(LAS) describes the percentage of scoring tokens with correct DEPREL and HEAD. In each of the above
metrics a scoring token is one where lemma or form do not consist completely of punctuation symbols,
e.g., punctuation and %-signs are not scored. The LAS is the metric relevant for ranking in the shared
task.

Although all corpora share the common format, they have different characteristics influencing the
difficulty of parsing. Next, we briefly sketch those of the corpora used in this work and report reference
scores and difficulties that arose in the CoNLL-X shared task.

The TIGER treebank [Bra+02] is an annotated German corpus based on articles from the newspaper
Frankfurter Rundschau. POS-tags are specified using a modified version of the Stuttgart-Tübingen-Tagset
(STTS) [Sch+99]. Also, lemmata and morphology are annotated. The syntactic structure is given as a
(discontinuous) constituent tree whose edges are labeled with syntactic functions. For the CoNLL-X
shared task a dependency corpus was automatically extracted and split into a training set of ca. 700,000
tokens and a test set of ca. 5,000 tokens. After this conversion lemma and FEATS are no longer present
and POS and CPOS are always similar. There are 46 DEPRELs and each tree’s root has the DEPREL
ROOT. The size of the training set is very large compared to the other corpora in the CoNLL-X shared
task. This might be one reason for the high reference scores which we list in Table 5.1.

A second slightly older German constituent treebank that was not featured in the CoNLL-X shared
task is NEGRA [Sku+98]. It shares many of the characteristics of TIGER: the STTS was used for
POS-tagging and discontinuities are represented. We included NEGRA to compare our results against
the only existing LCFRS-based implementation of a dependency parser by [MK10] that we are aware of.
We used their implementation rparse1 for automatic conversion of NEGRA into CoNLL format. In the
output no lemma and FEATS information is contained, CPOS and POS are equal for each word, and
760 different DEPRELs occur. 25 DEPRELs occur only in the test set which is not significant as only
0.12% of the scoring tokens are affected. We use the experiment setup of [MK10]: from the sentences of

1rparse is available under GPL2.0 at https://github.com/wmaier/rparse.
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length smaller than 25 words the first 14,858 sentences were used for training and the remaining 1,651
for testing. Reference scores include punctuation and are 78.98% in case of UAS and 71.84% in case of
LAS for the LCFRS-based system of [MK10]. The MSTParser [McD+05] achieves a UAS of 87.96% and
a LAS of 82.62% on this corpus.

The METU-Sabanci Turkish Treebank [Ofl+03] is a native dependency corpus. Different text sources
were annotated using lemma, 14 CPOS, 30 POS, and 82 binary grammatical features at word level. In
total 700 different feature combinations occur in the training corpus and 40 unseen feature combinations
occur in the test data. Since Turkish has a rich morphology, there may be multiple tokens for a single
word each with its own POS-tag. There is one main token per word to whom the other tokens are
attached as children with the DEPREL DERIV. The latter tokens are not scored in the CoNLL-X shared
task. Syntactic functions are otherwise annotated with 25 DEPRELs. A sentence may have multiple
root nodes. Each of them has the DEPREL ROOT. The relatively low scores from 2006 are depicted in
Table 5.1 They were reckoned to be caused by the inherent difficulties of the language, a rather small
training corpus based on multiple text sources, and the annotation scheme [Niv+07]. In the 2007 shared
task a modified annotation scheme was used with which better results were obtained but we did not use
this new version.

The Slovene Dependency Treebank (SDT) [De+06] is a small corpus with only 29,000 training tokens.
For each word, lemma, CPOS, POS, and grammatical features are annotated. To this end, 11 CPOS, 28
POS and 51 feature categories were used. In the training set occur 479 different combination of features
and additional 22 ones occur only in the test set. Syntactic annotation may lead to multiple nodes at
root level and utilizes 25 DEPRELs. Reference scores, cf. Table 5.1, are again relatively low, potentially
due to the small corpus size.

5.3 A corpus and a metric for constituent parsing
The focus of this work lies on dependency parsing. Thus, we provide only one new experiment for
constituent parsing. However, we use a much larger portion of the TIGER corpus than in [NV14]. Now
the first 40,000 sentences are used for training omitting 10 where a single tree did not span the entire
sentence2 and from the remaining 10,474 sentences we removed the ones of length greater than 20
leaving 7,597 sentences for testing.

The usual metric for constituent parsing is PARSEVAL [Bla+91]. Often this metric is also referred to
as evalb which is an implementation by [Col97]. We describe how the PARSEVAL metric translates
to hybrid trees. Let [s, t] be a pair of canonically indexed s-terms over (Σ, Γ) where |s| = n. For each
p ∈ pos(t), let βt(p) = {i ∈ [n] | ∃q ∈ N ∗ : ∃σ ∈ Σ : t(pq) = σ i }. Let now [sg, tg] be the gold standard
constituent tree and [s, t] the system output where s = sg. We define the sets Relevant, Found, and
FoundCorrectly such that

Relevant = {(D(tg(p)), βtg (p)) | p ∈ posI([n],Γ)(1)(tg)},
Found = {(D(t(p)), βt(p)) | p ∈ posI([n],Γ)(1)(t)}, and

FoundCorrectly = Relevant ∩ Found.

Then we define (Labeled) Precision, (Labeled) Recall and F-measure as follows:

Precision = |FoundCorrectly|
|Found|

, Recall = |FoundCorrectly|
|Relevant| , and

F-measure = 2 · Precision · Recall
Precision + Recall .

Actually, PARSEVAL additionally restricts Relevant and Found to contain only tuples (γ,B) ∈ Γ(1) ×
P([n]) where |B| > 1. However, we did not apply this restriction in our experiments.

2The implementation of hybrid trees with multiple nodes at root level of the s-term toke place after these time-consuming
experiments.
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package description
/hybridtree Hybrid trees and a legacy-wrapper for constituent trees are defined

here.
/corpora This package contains modules for reading and writing tree corpora

from and to text files.
/grammar The implementation of LCFRS/sDCP-hybrid grammars.
/constituent Grammar induction for the constituent scenario.
/dependency Grammar induction for the dependency scenario.
/parser Interfaces for LCFRS parser and derivation-trees.

/active An experimental implementation of the active LCFRS parser described
in [Kal10, Sec. 7.1.3].

/naïve Implementation of a weighted naïve LCFRS parser.
/sDCPevaluation Implementation of an sDCP evaluator.

/evaluation A database for experiments and an adapter for scoring scripts.
/util 3rd party utilities reside here.
/ The user interface.

Table 5.2: The structure of the implemented prototype for LCFRS/sDCP-hybird grammars, grammar
induction, and LCFRS parsing.

5.4 Implementation
The author implemented hybrid trees, LCFRS/sDCP-hybrid grammars, grammar induction, LCFRS
parsing, and sDCP evaluation in Python by extending the software provided with [NV14]. Basically, the
main contribution to the software lies in generalizing the existing implementation for constituent parsing
to the dependency parsing scenario. This means that the grammar induction for constituent structures
was not modified, but many shared components like the implementation of hybrid trees and sDCP
evaluation were rewritten. Grammar induction for dependency structures was implemented as a new
package. The basic structure of the resulting piece of software is given in Table 5.2. In the following we
go through the packages and give a brief explanation of the contents and design decisions that we made.
We supplement the documentation of LCFRS parsing and sDCP evaluation with a formal description of
the implemented algorithms.

5.4.1 /hybridtree

In the package hybridtree a generic hybrid tree class and a wrapper for constituent structures are
implemented. The author rewrote the existing class by [NV14] to allow for dependency structures and
hybrid trees with multiple roots. We do not directly specify a monadic alphabet but use an interface
MonadicToken for symbols. For the dependency scenario this interface gets implemented by the class
CoNLLToken, which is in essence a record holding the form, lemma, CPOS, POS, FEATS, and DEPREL.
In the constituent case we distinguish ConstituentTerminal and ConstituentCategory where the
former has a form and a POS whereas the latter has a field for a syntactic category.

The class HybridTree contains a list nodes with a unique node identifier for each position of the
s-term s of the hybrid tree h = (s,≤s) it represents. In addition, there are two dictionaries of whom
the first, called node_token, maps each node identifier to a MonadicToken. The second one, called
children, maps each node identifier to the list of its children which are arranged according to the
sibling order. There is also a list of node identifiers, named id_yield, that represents the linear order
≤s. A second list, called root, holds those node identifiers that correspond to positions at the root of
the s-term in the order from left to right. The class also provides a wide range of utility functions like
accessing the parent or the siblings of a node or generating the recursive partitioning directly extracted
from h, cf. Definition 4.4. An example is given in Figure 5.2.
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helpen

Piet lezen

Marie

Piet Marie helpen lezen

HybridTree
nodes = [’a’,’b’,’c’,’d’]
node_token:

’a’ |–> ’Piet’
’b’ |–> ’helpen’
’c’ |–> ’lezen’
’d’ |–> ’Marie’

root = [’b’]
children:

’a’ |–> []
’b’ |–> [’a’,’c’]
’c’ |–> [’d’]
’d’ |–> []

id_yield = [’a’,’d’,’b’,’c’]

Figure 5.2: A hybrid tree and a schematic representation of the data structure in the implementation.

5.4.2 /corpora

The corpora-package provides parsers for the TIGER format and the NEGRA format in the constituent
case and a parser and printer for the CoNLL format. The implementation for the constituent corpora
was taken from [NV14] whereas that for the CoNLL format has been added. The capability to output
dependency structures in CoNLL format is crucial for using the official scoring script, cf. Section 5.4.9.

5.4.3 /grammar

The grammar package contains an implementation of LCFRSs where each production can optionally be
equipped with an sDCP function. The class LCFRS_rule implements LCFRS productions and consists
of an LCFRS_lhs, a weight, and a list of nonterminals representing those on the right-hand side. The
LCFRS_lhs consists of the left-hand side nonterminal and a word-tuple function. An LCFRS consists of
a start symbol, a list of LCFRS_rules, and dictionaries for fast access to productions with rank 0, to
productions with a certain left-hand side nonterminal, and to productions with a certain first terminal
in the first component of the word-tuple function.

An sDCP function 〈s(0)
1,σ0

, s
(1)
1,ι1

, . . . , s
(n)
1,ιn

〉 of the signature s̃, cf. Definition 3.18, is represented as a list
` of DCP_rules. Each DCP_rule defines one s-term s

(i)
j where the i and j are given by a DCP_variable

and the s-term is given by a list of DCP_terms. For each (i, j) in S(s̃) there must be exactly one DCP_rule
in ` but the order is not constraint. Each DCP_term corresponds to a term in I∗

[q],(Σ,rkΓ),(∆,rkΓ)(X) for
appropriate alphabets Σ, Γ, and ∆ = Γ \ Σ and some index set [q]. In other words, an DCP_term consists
of a head that is either a DCP_variable, a DCP_string, or a DCP_index, and a list of children which
are again DCP_terms. This list needs to be empty, if the head is a variable or corresponds to a symbol in
Γ(0). If the head is a DCP_string, then a terminal occurrence not linked to the LCFRS production is
modeled. Otherwise, if the head is a DCP_index, then it points to a terminal occurrence in the LCFRS
component of the hybrid production.

The package does also contain an interface for an sDCP evaluator: a class that implements this
interface may visit a DCP_term, DCP_index, DCP_string, or DCP_variable and each of these objects
calls the respective evaluation method in the evaluator.

In the current implementation every terminal and nonterminal is a string. Consequently, strings need
to be compared during parsing, which is likely to cause a high constant factor in parsing time complexity.
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parameter implemented strategies
terminal labeling: form, CPOS, or POS
nonterminal labeling: strict and child labeling with either

form, CPOS, POS, DEPREL, CPOS and DEPREL, or POS and
DEPREL as argument label for each position in ⊥max(J) · >max(J)
where J is a node in the recursive partitioning

recursive partitioning: left-branching, right-branching, directly extracted, or fanout-k-
transformation of the directly extracted recursive partitioning (where
k > 0)

Table 5.3: Strategies for terminal labeling, nonterminal labeling, and recursive partitioning.

5.4.4 /constituent

The existing implementation of grammar induction for constituent structures by [NV14] resides almost
unaltered in the constituent package. Also, the implementation of PARSEVAL (with the subtle
variation described above) can be found here. The minor modifications concern changes due to
generalizations in other packages.

5.4.5 /dependency

The package dependency implements the induction of an LCFRS/sDCP-hybrid grammar for a corpus
of dependency structures. At this point we generalize the concept of hybrid grammars given in
Definition 3.25: originally, the synchronized terminals in a hybrid production must be identical. Moreover,
we modeled a labeled dependency structure such that the alphabet consists of tuples of forms and
DEPRELs, cf. Definition 3.14. In practice, however, the input part of the CoNLL token does not include
a DEPREL. We either obtain it by guessing a DEPREL for each token before presenting the sentence
to the parser or, equivalently, by synchronizing a form in the LCFRS component with a pair of form
and DEPREL in the sDCP component of a hybrid production. Note that the latter option amounts
to postponing the guess of the DEPREL until the application of a production. This is beneficial for
parsing since the search space for all possible combination of guesses can be explored simultaneously.
Below we depicted two such generalized hybrid productions:

C
ε

(l, dobj) 1

x
(1)
1

 → D
1 (x(1)

1 ) D
ε (((M,nsubj) 1 (()))) → ε

C
ε ((x1), (l 1 )) → D

1 (x1) D
ε ((M 1 )) → ε .

An equally important modification relates to the comprehensive input: a CoNLL token does not only
consist of a form and a DEPREL. Thus, we may choose any combination of form, POS, CPOS, lemma,
FEATS, and DEPREL as terminal instead of form and DEPREL. In fact, we can make this choice twice:
once for the terminals, which we call terminal labeling, and where the DEPREL is never included in the
word-tuple functions but always in the sDCP functions. The second choice relates to the nonterminal
labeling strategies in Sections 4.3.3 and 4.3.4. Given some node J of a recursive partitioning we may
select CoNLL token fields for each position in ⊥max(J) · >max(J) independently from the tokens used in
terminal labeling. In the following we refer to this choice as argument labels.

We implemented the strategies for terminal labeling, nonterminal labeling, and recursive partitioning
that are given in Table 5.3. From the user interface a high-level method called induce_grammar that
is parameterized with a list of HybridTrees over CoNLL_tokens, a nonterminal labeling strategy, a
terminal labeling strategy, and a recursive partitioning strategy will be invoked. The package also
contains the necessary auxiliary functions for computing ⊥max and >max and the traversal over a

51



recursive partitioning in order to extract word-tuple functions and sDCP functions as described in
Section 4.2.

5.4.6 /parser

The package parser has three subpackages: the first two contain one implementation of an LCFRS
parser each and the third one hosts an sDCP evaluator. Both LCFRS parsers share a common
interface that specifies how they can be called (AbstractParser) and what structure a derivation tree
needs to have (AbstractDerivation). Thus, the parsing strategy can be modified transparently to
the user and also new parser implementations can be added later. Each derivation tree that meets
the specification of AbstractDerivation can be transformed into a hybrid tree h = (s,≤s) with the
function derivation_to_hybrid_tree such that str(h) is the input string and s is the parse tree that
corresponds to the derivation tree. By parse tree we mean the tree that is obtained from the derivation
tree by replacing the production at each position by its left-hand side nonterminal and adding potential
terminals that occur in the word-tuple function of this production as children. A formal definition can
be found in [Kal10, Definition 6.9].

There are two implementations of an LCFRS parser: the first uses the active strategy [BL05; Kal10,
Sec. 7.1.3] and is currently in an experimental state. Since it is complete in the sense that every possible
derivation tree is generated, there exist duplicate parse items in case of ambiguity which causes a high
memory consumption. As this implementation was not used for the experiments, we do not describe it
in more detail.

The second parsing algorithm uses the naïve strategy [BL05; Kal10, Sec. 7.1.2]. The author rewrote
parts of the implementation from [NV14]: some low-level improvements were made and the capability to
generate derivation trees in compliance with the AbstractDerivation interface was added. A description
of the parsing algorithm is given in the subsequent section.

5.4.7 /parser/naïve

The naïve LCFRS parsing strategy is close to the [CS70; You67; Kas65]-style algorithm by [Sek+91]: a
passive parse item associates a nonterminal A with subsequences w1, . . . , wk of the input string w such
that A(w1, . . . , wk) ⇒∗

G ε. The parser proceeds bottom-up by initially applying only productions with
rank 0 to generate passive items. Later multiple passive items may be combined to a single one if there
is a production that licenses it. The characteristic of the naïve strategy is that this combination of parse
items is performed stepwise: it starts by predicting an active parse item from a production such that no
right-hand side nonterminal is fixed. Then the variables of one nonterminal are replaced by the strings
found in a passive parse item for this nonterminal. This process of completing the active item is repeated
until every right-hand side nonterminal has been fixed. Now the result is converted into a passive item
and may be used for completing other active items. Once the process of conversion and completion is
saturated it is checked whether there is a parse item for the start nonterminal and the entire input string.
If this is the case, then the string was recognized. In the following we describe this process formally.

To this end, let Σ be an alphabet, G = (N,S,Σ, ϕ, P ) be an LCFRS, w ∈ T∗
Σ, and n = | pos(w)|.

Definition 5.1. A range of w is a pair of integers 〈l, r〉 ∈ ([n]0)2 such that l ≤ r. Let ∆ be an alphabet
such that ∆ = {〈l, r〉 | 0 ≤ l ≤ r ≤ n}. We define the w-instantiation function ·w : Σ → P(∆) :

α 7→ {〈i− 1, i〉 ∈ ([n]0)2 | w(iε) = α}.

We denote ·w(α) also by αw and lift ·w to T∗
Σ(X) → P(T∗

∆(X)) in the obvious way. If s ∈ T∗
Σ(X) and

d ∈ T∗
∆(X) such that d ∈ sw, then we say that d is a w-instantiation of s. Moreover, we define the
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range-merging function µ : T∗
∆(X) → P(T∗

∆(X)) recursively such that

d 7→



{(x) � d′′ | d′′ ∈ µ(d′)} if ∃d′ ∈ T∗
∆ : ∃x ∈ X : d = (x) � d′,

{(〈l1, r1〉) � (x) � d′′ | d′′ ∈ µ(d′)} if ∃d′ ∈ T∗
∆ : ∃x ∈ X : d = (〈l1, r1〉) � (x) � d′,

µ((〈l1, r2〉) � d′) if ∃d′ ∈ T∗
∆ : d = (〈l1, r1〉) � (〈l2, r2〉) � d′ and r1 = l2,

{(〈l, r〉)} if d = (〈l, r〉),
{()} if d = (), and
∅ otherwise.

We lift µ to µ̄ : P(T∗
∆(X)) → P(T∗

∆(X)) such that D 7→
⋃

d∈D µ(d). We say that two ranges 〈l1, r1〉 and
〈l2, r2〉 overlap if l1 ≤ l2 < r1 or l2 ≤ l1 < r2. Finally, we define the w-instantiation of a word-tuple
function (s1, . . . , sk) for w as

〈s1, . . . , sk〉w =

〈s′
1, . . . , s

′
k〉 ∈ (T∗

∆(X))k

∣∣∣∣∣∣
∀i ∈ [k] : s′

i ∈ µ̄(sw
i ) and

the occurrences of ranges in 〈s′
1, . . . , s

′
k〉

are pairwise non-overlapping

 .

�

In the above definition the instantiation function ·w replaces terminal occurrences in s-terms by ranges
of w that span the same terminal. We capture the nondeterminism in the replacement by sets: there
may be multiple occurrences of the same terminal or no occurrence at all. In the former case we obtain
a set with multiple ranges. In the latter case the set is empty. The range-merging function µ transforms
an s-term d ∈ T∗

∆(X) such that multiple ranges in consecutive positions are merged into one range. In
the process it is also checked that merged ranges are adjacent, i.e., 〈l1, r1〉 and 〈l2, r2〉 may only be
merged to 〈l1, r2〉 if r1 = l2. In case of failure µ(d) is the empty set. The instantiation of a word-tuple
function 〈s1, . . . , sk〉 amounts to w-instantiation and subsequent range-mering of each s-terms si, such
that the results are pairwise non-overlapping.

Using the notion of w-instantiation we describe the naïve parser as a deduction system [SSP95] with
active and passive items and three kinds of rules.

1. The Predict-rule creates a new active item.

Predict
(
A(s1,k) → B1(x1,m1) · · ·Bn(xmn−1+1,mn

)
)

∈ P

[A → •B1 · · ·Bn;φ]
φ ∈ 〈s1,k〉w

2. In the Convert-rule, a completely recognized active item is converted into a passive one.

Convert
[A → B1 · · ·Bn•;φ]

[A;φ]

The next rule will imply that each component of φ consists of a single range of w if Convert is
applicable.

3. The Complete-rule stepwise completes an active item by replacing the variables belonging to the
i-th right-hand side nonterminal by ranges of a passive item for this nonterminal. By application
of µ it is enforced that the inserted ranges are adjacent with the surrounding ones.

Complete
[A → B1 · · ·Bi−1 •Bi Bi+1 · · ·Bn; 〈φ1, . . . , φϕ(A)〉], [Bi, 〈ψ1, . . . , ψϕ(Bi)〉]

[A → B1 · · ·Bi •Bi+1 · · ·Bn;φ′]

where
φ′ ∈ {〈φ′

1, . . . , φ
′
ϕ(A)〉 | ∀l ∈ [ϕ(A)] : φ′

l ∈ µ(φl[x(i)
j /ψj | j ∈ [ϕ(Bi)]])}

The above rules are used in a bottom-up parsing algorithm which we describe below. During its
execution parse items are stored in a processing queue Q and a table T .
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1. For every production with rank 0 all Predict-rules are performed and the resulting active items
are added to Q and T .

2. While Q is non-empty do the following.
a) Pop an item I from Q.
b) If I is active and can be converted to [A,φ] and [A,φ] is not in T , then add [A,φ] to T and Q.
c) If I is active and cannot be converted, then try to complete I with every passive item [Bi, ψ]

in T . If a Complete-step was successful and yielded an item I ′ not already present in T , then
I ′ is added to T and Q.

d) If I = [A,φ] is a passive item, then apply the Predict-rule for every production whose first
right-hand side nonterminal is A and add each resulting active item I ′ to Q and T if I ′ is not
in T . Add also every active item in T to Q, if its next unfixed nonterminal is A.

3. If [S, 〈〈0, |w|〉〉] was derived, then there exists a successful parse.

So far we described only a recognizer for L(G). It can be easily extended to a parser generating
derivation trees: if we obtain a passive item by conversion or an active item by completion, we keep a
trace to the predecessor items in the table. By allowing for multiple traces for one item we preserve the
ambiguity of the grammar.

As yet, we completely excluded the productions’ probabilities: they are only considered after successful
unweighted parsing. Before searching the most probable parse we compute the maximal probability for
each entry I of T . To this end, we search the best parse of I’s predecessors first. We avoid infinite loops
which could arise from chain productions by setting the best weight to 0 when reaching an entry for the
first time. This value gets updated by the best weight obtained by multiplication of the weight of the
production and the weights of all predecessor. By remembering the items that contributed to the best
weight we can finally construct the derivation tree.

Example 5.2. In Figure 5.3 the proof tree π for parsing the string (P,M,h, l) with the string component
of the LCFRS/sDCP-hybrid grammar in 3.26 is depicted. Of course we deindexed the LCFRS productions
before using them for parsing.

The derivation tree ξ that corresponds to this proof can be constructed by traversing the proof tree.
From each Predict-rule we can read off the hybrid production and a reindexing function where the latter
is uniquely determined by the used instantiation of the word-tuple function. For instance, during the
application of the Predict-rule for [r4, r

′
4] the only terminal occurrence l 1 in the word-tuple function is

instantiated by the range 〈3, 4〉. Thus, the reindexing for this production must be {1 7→ 4}. Moreover,
the structure of ξ is obtained by collapsing Combine-rules and Convert-rules. Thus, in case of our
example we obtain the derivation tree depicted in Figure 3.7. �

It is obvious that the described parsing algorithm has much potential for optimization. For instance,
since we are only interested in the best parse, one could consider weights much earlier in the parsing
process. We may use a priority queue to greedily expand the best item found so far. Thus, we are able
to maintain completeness but hopefully prune large parts of the search space.

Also, we do not account for special properties of the induced LCFRS. For instance, LCFRSs with
fanout 1 are context-free grammars and, thus, one could apply more efficient parsing strategies in this
case [Ear70; Tom87; Tom85]. Furthermore, if the hybrid grammar was induced using the left-branching
or the right-branching recursive partitioning strategy, then its LCFRS component generates a regular
language. An optimal parse may be found in time linear in the length of w with an algorithm similar to
the Viterbi algorithm [Vit67]. This method could be refined by using a greedy strategy inspired by the
Dijkstra algorithm [Dij59].

5.4.8 /parser/sDCPevaluation

To evaluate the sDCP components of a derivation tree we can use treewalk attribute evaluators that
have been described for attribute grammars [KW76]. Basically, such an evaluator computes the value
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of the s-term corresponding to the only synthesized attribute in the word-tuple functions of the root
by traversing the derivation tree. Whenever a variable occurs in the s-term, the value of this variable
needs to be computed. Thus, the evaluator walks to the child, the sibling, or the parent node in the
derivation tree that defines the value of this variable. Since we only consider non-circular sDCPs, such a
traversal terminates and is correct.3 Note also that the reindexing functions need to be applied to any
index symbol in order to establish the synchronization with the terminals in the string.

Now we specify the treewalk attribute evaluator formally. Let G = ((N1, S1,Σ, ϕ), (N2, S2, Γ, ι, σ), P )
be an LCFRS/sDCP-hybrid grammar and ∆ = Γ \ Σ. Also, let ξ ∈ TPR be a derivation tree, p ∈ pos(ξ),
sDCP(ξ(p)) the sDCP function of the hybrid production at ξ(p), s̃p the signature of sDCP(ξ(p)), and
Rp the reindexing function at ξ(p). Let p ∈ pos(ξ) and 〈s(0)

1,σ0
, s

(1)
1,ι1

, . . . s
(n)
1,ιn

〉 = sDCP(ξ(p)). For every
(s-)term s ∈ {s(i)

j |q | (i, j) ∈ S(s̃p), q ∈ pos(s(i)
j )}, we define JsKp

ξ recursively as follows:

s 7→



Js1K
p
ξ � · · · � JsnKp

ξ if s = (s1, . . . , sn) ∈ T∗
I(N,(Σ,rkΓ),(∆,rkΓ))(X),

(δ(Js′Kp
ξ)) if s = δ(s′) and δ ∈ ∆(1),

(δ) if s = δ ∈ ∆(0),

(Rp(σ j )(Js′Kp
ξ)) if s = σ

j (s′) and σ
j ∈ I(N, (Σ, rkΓ))(1)

(Rp(σ j )) if s = σ
j and σ

j ∈ I(N, (Σ, rkΓ))(0)

r
s

(0)
j

zp i

ξ
if s = x

(i)
j , i > 0, and sDCP(ξ(p i)) = 〈s(0)

1,σ0
, s

(1)
1,ι1

, . . . , s
(n)
1,ιn

〉
r
s

(i′)
j

zp′

ξ
if s = x

(i)
j , i = 0, p = p′ i′, and sDCP(ξ(p′)) = 〈s(0)

1,σ0
, s

(1)
1,ι1

, . . . , s
(n)
1,ιn

〉.

Let now sDCP(ξ(ε)) = 〈s(0)
1,σ0

, s
(1)
1,ι1

, . . . , s
(n)
1,ιn

〉, where we know from Definition 3.20 that σ0 = 1. We set
t to

r
s

(0)
1

zε

ξ
. Thus, we can define the result of LCFRS parsing and sDCP evaluation to be the canonical

indexed pair of s-terms [s, t] where s is such that pos(s) = pos(w) and, for every p ∈ pos(s), we have
that s(p) = w(p) p .

Example 5.3. The evaluation of the derivation tree of the ongoing example is as follows:

t =
r
x

(1)
1

zε

ξ
=

r
h 1 ((x(1)

1 , x
(0)
1 ))

z1

ξ

= h 3

(r
(x(1)

1

z1

ξ
�

r
x

(0)
1

z1

ξ

)
R1 = {1 7→ 3}

= h 3

(r
P 1 (())

z11

ξ
�

r
x

(2)
1

zε

ξ

)
= h 3

(
(P 1 (())) �

r
l 1 ((x(1)

1 ))
z2

ξ

)
R11 = {1 7→ 1}

= h 3

(
(P 1 (())) �

(
l 4

(r
x

(1)
1

z2

ξ

)))
R2 = {1 7→ 4}

= h 3

(
(P 1 (())) �

(
l 4

(r
M 1 (())

z21

ξ

)))
= h 3

((
P 1 (()), l 4

(
M 2 (())

)))
R21 = {1 7→ 2}.

Observe that our evaluator visits the root node of the tree twice. This is due to information passing from
its second child to its first child. Pairing t with s = (P 1 ,M 2 ,h 3 , l 4 ) yields the canonically indexed
pair of s-terms [s, t] that is depicted with its corresponding hybrid tree in Example 3.24. �

3The evaluator also terminates if it is applied to a derivation tree with circular flow of information. This is because the
single syntactic use requirement of sDCPs prevents the evaluator from entering any cycle.
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We implemented this evaluator using a visitor pattern [Gam+95] and the prepared interface described
in Section 5.4.3.

5.4.9 /evaluation

The package evaluation contains the essential infrastructure for running and evaluating the experiments
in the dependency parsing scenario. Its first module is a database that stores the hybrid trees of the
corpus, the parameterization of grammar induction, properties of the induced grammar, and the parsing
results. The package’s second module is a wrapper that exports the gold standard and the system output
for subsets of the test corpus and runs the official scoring tool eval.pl4 of the CoNLL-X shared task.
Given a set of parameterizations it is possible to compute scores only on the intersection of recognized
sentences or to define some fall-back strategy in case of failure. Also, one can restrict the test corpus to
sentences of some maximal length during scoring. A third module allows for the generation of compact
LATEX-tables from the database. In fact, the tables below (cf. Section 5.5) were plotted using this module.

5.4.10 /util

The directory util contains scripts from the CoNLL-X shared task. Among others, the implementation
of UAS, LAS, and LA, called eval.pl, and format verifiers for the CoNLL format are located here.

5.4.11 /

At the root of the project we located the scripts that a user has to run to start or evaluate an experiment.
In the following we describe the scripts and how they can be used.

1. To run a constituent parsing experiment one first needs to specify the location of the corpora
and the size of training and test section in experiment.py. Also, one needs to select the desired
parameterizations by uncommenting the appropriate lines. Afterwards one runs

python experiment.py
and results are printed to stdout.

2. The parameterization of a dependency parsing experiment is specified by a configuration file of
the following form, where the text in serif typeface indicates the default values in optional lines.

# This is a comment
Database: path/to/experiment-db
Training Corpus: path/to/training/corpus
Test Corpus: path/to/test/corpus
Nonterminal Labeling: child-cpos+deprel
Terminal Labeling: pos
Recursive Partitioning: left-branching
Training Limit: 1000 default: none
Test Limit: 200 default: none
Test Length Limit: 25 default: none
# Pre/Post-processing options
Default Root DEPREL: ROOT default: none
Ignore Punctuation: NO # YES or NO default: NO
Default Disconnected DEPREL: PUNC default: _

The Limit options can be used to restrict the experiment to a sub-set of the training and test
corpus. Using the above configuration only the first 1000 sentences of the training corpus are used
for training and from the first 200 sentences of the test corpus only those with length smaller or
equal than 25 are used for testing. The Default ROOT DEPREL-option can be used to overwrite the
DEPRELS of every root of the hybrid tree after parsing. If Ignore Punctuation is activated, then

4eval.pl can be downloaded at http://ilk.uvt.nl/conll/software.html#eval.
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punctuation is removed from the hybrid trees before induction and parsing. It is reinserted into
the system’s output by connecting it to the first root with the DEPREL Default Disconnected
DEPREL. Note that disconnecting punctuation is experimental and may lead to errors if it used
with dependency structures where punctuation has children that are non-punctuation.

The dependency parsing experiment can be started by running
python dependency_experiments_db.py run-experiment path/to/config/file.

This will either create a new database or append new data to the existing one. Also, some statistics
are printed to stdout, where the plotted scores include also punctuation symbols.

3. To list each experiment in the database with basic information on the used corpus, the param-
eterization, and the start time, run python evaluate path/to/database list. To generate a
LATEX-document that contains a table with rows for a selection of experiments in the database run
the script

python evaluate.py path/to/database plot –experiments=$SELECTION
–outfile=path/to/tex/file.

Here $SELECTION is a string over positive integers, -, and , that specifies a selection of parameteriza-
tions of the database. For instance, 3-5,1,19 will include a row for the 3rd, 4th, 5th, 1st, and 19th
parameterization in the database in exactly this order. The option –max-sentence-length=$N
can be used score only sentences with length ≤ $N.

The execution of the above command will generate a table with the following columns: recursive
partitioning, terminal labeling strategy, nonterminal labeling strategy, number of nonterminals
with fanout 1 and fanout 2, UAS and LAS including punctuation, UAS, LAS, and LA excluding
punctuation, and the parsing time. A selection of columns from the command line interface is
currently not implemented. A different selection of columns and additional ones are available by
modifying the python script table_plotting.py in the package evaluation.

5.4.12 Remarks on the programming language
The dynamically typed scripting language python [Ros95] is well-suited for rapid prototyping. It unites
features from different families of programming languages: imperative and procedural statements, classes
and inheritance, as well as lambda-abstractions and build-in higher order functions on lists.

There is, however, an inherent problem for our use case: the language is interpreted and not compiled to
a binary. This gives a great penalty on running time and memory consumption since certain optimizations
present in modern compilers cannot be performed. Also, type-checking is at run-time and, thus, some
type-related errors in the current code base might be undetected since certain run-time configurations
have not occurred so far.

A more powerful type system would also allow for a more sophisticated design of hybrid trees and
grammars: these classes could be parameterized by a concrete instance of MonadicToken. Currently,
the correct token type is just a matter of convention.

Given the size of the corpora involved and the general complexity of LCFRS parsing, a programming
language that is directly compiled to machine code is desirable to keep the constant factor in the running
time as low as possible. Alternatively, one may also try to use the existing state-of-the-art LCFRS parsers
in rparse or the GrammaticalFramework.5 The appeal of this approach could be the reimplementation
of grammar induction and sDCP evaluation in a strongly-typed, functional language like Haskell, while
the running time intense parsing task (which requires various kinds of low-level optimization) might
be better solved in an imperative, system-oriented language. On the other hand, this decomposition
imposes requirements to the interface of the external parser: presumably, we want to incorporate filtering
and features on the input and certain fall-back strategies if parsing fails that still utilize successful parses
of substrings.

5The grammatical framework is a programming language for the writing of grammars. It features an LCFRS parser and
can be downloaded at http://www.grammaticalframework.org/.
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5.5 Experiments
In this section we describe the experiments that we carried out with the implementation described
above. We used a server with 64GB of RAM and two 2.6GHz Intel Xeon CPU E5-2630 CPUs with
six cores each. The server’s operating system was Ubuntu 14.04 and we used Python in version 2.7.6.
The implementation of the LCFRS parser does not feature parallelization. Still, some parameterizations
were executed at the same time which could cause small distortions in the measured running time.

5.5.1 Results for dependency parsing
We carried out experiments for labeled dependency parsing only, i.e., we aim to correctly determine the
HEAD and the DEPREL for each CoNLL token in a sequence. In this process, we tried to run a broad
range of the parameterization options described in Section 5.4.5. However, parsing LCFRSs with high
fanouts has an immense running time and early tests indicated that the improvement with a higher
fanout is very small in most cases. Moreover, these tests indicated that certain parameterizations would
result in too many parse failures to be relevant. Thus, we restricted our attention to an interesting
subset of parameterizations that depends on the corpus in use.

As each corpus contains a significant amount of unseen forms (and lemmas if available), we used either
POS or CPOS (if distinct) as terminal labels. Also, since parameterizations with CPOS as terminal
labels turned out to perform worse than those with POS, we skipped many experiments with CPOS.
The results of the experiments are reported in Tables 5.4, 5.5, 5.6, 5.7, and 5.8. We grouped experiments
according to their nonterminal labeling strategies. Each row describes one parameterization and there
are columns for a relevant subset of the following values where the selection depends on the corpus:
the recursive partitioning strategy, the terminal labeling strategy, the argument label for each position
in the nonterminal label, the number of nonterminals with a certain fanout, and the number of parse
failures. Furthermore, we report the UAS, LAS, and LA, each with and without punctuation, and the
parsing time. All scores and the parsing time concern only the recognized sentences with the respective
parameterization, i.e., an experiment with many parse failures can have high scores and a low parsing
time which only reflect easy sentences.

In case of TIGER we used the whole CoNLL-X version of the corpus for training and in all but one
experiment the sentences with length ≤ 20 for testing. We used POS as terminal labels and set the
DEPREL of the determined root to ROOT as a post-processing step. For NEGRA we used only sentences
of length ≤ 25 in both training and testing. Again, terminal labels were POS in every configuration. For
Turkish and Slovene we used also CPOS-tags for the labeling of terminals and nonterminal. In case of
Turkish the DEPREL of each root was set to ROOT during post-processing. The small training corpus
of both Turkish and Slovene induced a grammar sufficiently small to run the experiment without length
restriction if the grammar’s fanout was 1. We included a second table for Turkish (cf. Table 5.8) that
also features parameterizations with k = 2, i.e., transformation of the recursive partitioning directly
extracted to one with fanout 2, however, the sentence length was limited to 20 for testing.

In the following we analyze different phenomena, starting by general observations made with all
corpora. Afterwards we will point out special characteristics in the results of each corpus. Whenever
possible, we try to isolate single aspects of parameterization.

• In all corpora child labeling leads to fewer parse failures than strict labeling keeping the other
parameters fixed. Thus, the desired higher coverage of child labeling is obtained.

• Based on the experiments with TIGER and SDT, where different configurations have a reasonable
good coverage, we reckon the following. If only DEPRELs are used as argument labels, then the
label accuracy is higher compared to sole POS. On the contrary, using only POS seems to lead
to higher UAS than DEPREL alone. Using the DEPREL alone outperforms the POS when it
comes to LAS. Although these effects could also be caused by the favorable ratio of DEPRELs and
POS in TIGER (46 vs. 52) and SDT (28 vs. 25), a connection between DEPREL, i.e., syntactic
function, and correct attachment seems also linguistically plausible. Unsurprisingly, at the price of
more parse failures the best scores are obtained if POS and DEPREL are annotated . However,
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the experiments with the Turkish treebank do not support this theory as the measured scores
show only low fluctuation for the different labeling strategies.

• Strict labeling can result in a number of nonterminals that is an order of magnitude higher than
those obtained with child labeling. The better coverage of child labeling resembles this trend.

• The number of nonterminals (and productions) has a substantial impact on the measured parsing
time: a very high number causes a high constant in the parsing complexity. For instance, the
number of nonterminals in the SDT experiments for child labeling with DEPREL as argument
label is smaller than in the experiments for TIGER with similar parameterizations. Since the
coverage is equally good in both cases and the average sentence length in TIGER is even smaller,
the lower parsing times for SDT support our claim.

• Observe how the recursive partitioning strategy influences the number of nonterminals: the left-
branching and the right-branching recursive partitioning lead to the highest number of nonterminals.
Also, a more rigorous fanout-reduction raises the number of nonterminals. Thus, a very low number
of nonterminals tends to coincide with a higher combinatoric potential of the productions which
has a positive influence on coverage but increases the parsing time as well.

• In theory the choice of the recursive partitioning strategy is one of the main driver for parsing
complexity. The measured parsing times reflect this correlation to the fanout of the LCFRS
although there are exceptions. The parsing times measured for the left-branching and the right-
branching recursive partitioning are sometimes higher than those for k = 1. Moreover, there are
two parameterizations of TIGER where k = 2 is faster than k = 1, namely, strict labeling with
POS+DEPREL or POS as argument labels.

• The scores of the fanout-k parameterizations for different k do not differ significantly for TIGER.
In Turkish the positive impact is more substantial. There is no clear indicator that a lower fanout
is worse, although the higher fanout influences the coverage positively. Left-branching and right-
branching reach lower scores than k = 1 and have a worse coverage.

• There can be serious differences between the left-branching and the right-branching recursive
partitioning in the number of nonterminals and the measured scores, coverage, and parsing times.
The picture is favorable for the left-branching strategy with any of the used corpora. In TIGER the
parsing time is lower, the scores are slightly better, the number of nonterminals is marginally lower,
but the coverage is similar. The results for NEGRA are comparable to that of TIGER, however,
for child labeling with DEPREL the parsing time with the left-branching recursive partitioning is
higher than with the right-branching one. In Turkish the scores show a low level of fluctuation,
however, the coverage with the left-branching recursive partitioning is much better. This holds
especially for strict labeling with CPOS as argument labels. The trends for Slovene follow those of
the other corpora but are less appreciable.

• Both the experiments for Turkish and Slovene indicate that the use of CPOS instead of POS as
terminal label or argument label improves the coverage but reduces the scores.

For TIGER strict labeling with DEPREL and k = 1, left-branching, or right-branching recursive
partitioning, and child labeling with POS+DEPREL and k = 1 turned out to be the best choices. The
obtained scores are below the best numbers reported in the CoNLL-X shared task for this data set, but
they are close to the average results. Recall however, that we imposed a length restriction due to the
computational costs, which was not the case for the competitors in the CoNLL-X shared task. Therefore,
we included one TIGER experiment without length-restrictions which indicates a moderate decrease in
the scores compared to the length-limited experiment with equal parameterization.

For NEGRA the best results are obtained using child labeling with DEPREL and k = 1. The scores
are slightly better than those reported for the LCFRS-based system by [MK10] but they are inferior to
the scores of MSTParser, too. We did not include results for strict labeling, as the numbers of parse
failures were too high to be of interest, e.g., already 57 parse failures in the case of DEPREL and k = 1.
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For Turkish the scores obtained with the different parameterizations differ only slightly. A good
coverage is only obtained with child labeling or strict labeling with DEPREL and any recursive
partitioning strategy, or with strict labeling with CPOS and k = 1. Interestingly, child labeling with
DEPREL and k = 1 has a slightly higher LA and LAS than strict labeling with DEPREL and k = 1,
whereas the latter has the better UAS. Strict labeling with CPOS and k = 1 has an even better UAS.
Our system significantly misses both the average and the overall scores of the CoNLL-X shared task.

The best coverage for Slovene is obtained with strict or child labeling with DEPREL. The best scores
are reached with child labeling with CPOS and k = 1. Again we miss the reference scores significantly.

5.5.2 Results for constituent parsing
The results are displayed in Table 5.9 and allow for similar conclusions as in [NV14]. Unsurprisingly, the
larger training set leads to smaller proportions of parse failures and to improvements of F-measures.
Another consequence is that the more fine-grained strict labeling now outperforms child labeling.

5.6 Discussion
The experiments suggest that the developed induction method for LCFRS/sDCP-hybrid grammars has
the potential to be used in practice. The desired separation of parsing complexity and accuracy by
different recursive partitioning strategies was confirmed in our experiments, although the variations tend
to be relatively small. But this is in fact an advantageous observation as it favors the use of hybrid
grammars that are efficiently parseable but still sufficiently accurate.

Clearly, the scores achieved with the current implementation are lower than those of state-of-the-
art dependency parsers, but, for TIGER and NEGRA they are not too far away from them either.
One reason for the superior performance of the existing systems is that they use the available input
information more exhaustively. Normally, most of the input fields in a CoNLL token are taken into
consideration whereas we only use POS or CPOS. As mentioned in Chapter 2.3, the POS-tag often does
not capture every syntactic feature of a word. Thus, it seems natural that a parser reasonably making
use of these features, outperforms our approach. The second advantage of the existing approaches is
their usually linear or quadratic running time. In contrast, we have a very high demand of computational
resources that is due to the higher parsing complexity of LCFRSs and the inefficient implementation.

Finally, it should be noted that using PARSEVAL and comparable metrics for comparing the
performance of parsers on different treebanks has been criticized [RG07]. Also, one can question the
relevance of LAS, UAS, and LA in a non-projective parsing scenario. Due to the relatively low amount
of discontinuous tokens a high (but imperfect) score might also be achieved by a model not even capable
of representing discontinuity at all. Thus, [Mai+14a] compiled a test suite containing samples for several
kinds of grammatical constructions in German that are discontinuous/non-projective. Since this is a
qualitative test that requires linguistic interpretation of data, we leave such an analysis of the hybrid
grammar approach open for future investigation.
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argument labels f 1 f 2 lim fail UAS LAS LA secs
strict labeling
k = 1 POS+DEPREL 129,013 0 20 65 89.4 85.5 90.1 2,431
k = 2 POS+DEPREL 86,945 33,929 20 57 88.5 84.3 89.2 2,054
r-branch POS+DEPREL 293,179 0 20 132 92.3 89.0 91.8 3,923
l-branch POS+DEPREL 296,093 0 20 131 93.5 89.7 92.2 811
k = 1 POS 85,618 0 20 28 84.4 66.5 74.6 4,048
k = 2 POS 54,437 22,666 20 26 84.1 66.0 74.9 3,471
r-branch POS 227,695 0 20 112 89.7 69.5 74.0 3,390
l-branch POS 231,595 0 20 111 90.5 70.5 74.7 855
k = 1 DEPREL 51,660 0 20 3 85.4 80.0 87.1 14,225
k = 2 DEPREL 31,792 15,569 20 3 85.4 79.9 87.0 53,796
r-branch DEPREL 154,639 0 20 3 85.0 78.8 85.9 12,817
l-branch DEPREL 147,439 0 20 3 85.2 79.0 85.9 9,292
child labeling
k = 1 POS+DEPREL 21,158 0 20 6 88.0 82.1 87.4 2,242
k = 1 POS+DEPREL 21,158 0 ∞ 6 85.7 80.4 87.0 13,029
k = 2 POS+DEPREL 8,270 4,123 20 3 87.8 81.8 87.2 6,207
r-branch POS+DEPREL 93,856 0 20 39 86.5 80.4 86.7 2,077
l-branch POS+DEPREL 89,999 0 20 31 86.0 79.8 86.0 780
k = 1 POS 7,302 0 20 2 84.6 65.7 74.0 1,800
k = 2 POS 1,605 1,616 20 2 84.7 66.2 74.2 13,368
r-branch POS 53,384 0 20 24 84.2 65.5 73.5 1,362
l-branch POS 48,672 0 20 19 85.1 66.9 74.4 862
k = 1 DEPREL 5,193 0 20 0 78.3 69.9 80.5 13,343
r-branch DEPREL 40,037 0 20 0 75.6 66.8 79.0 12,906
l-branch DEPREL 35,362 0 20 0 76.4 67.7 79.2 30,290

Table 5.4: Experiments for dependency parsing on TIGER: label information per argument position,
number of nonterminals with fanout 1, number of nonterminals with fanout 2, limit on
sentence length, number of parse failures, unlabeled attachment score, labeled attachment
score, label accuracy, and parsing time.
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arg.
labels f 1 f 2 fail

U
A

Sp

LA
Sp

U
A

S

LA
S

LA secs

child labeling
k = 1 P+D 20,887 0 378 88.0 82.9 86.3 80.4 85.0 4,431
k = 2 P+D 8,626 8,160 283 86.6 81.3 84.8 78.7 83.8 21,214
r-branch P+D 43,889 0 857 88.4 83.0 86.6 80.4 84.3 6,609
l-branch P+D 41,206 0 834 87.8 82.4 85.9 79.5 83.5 1,709
k = 1 P 7,025 0 83 85.1 68.7 83.3 64.2 71.4 5,717
k = 2 P 1,832 2,879 39 84.6 68.2 82.8 63.8 71.3 120,925
r-branch P 21,672 0 465 84.5 68.1 82.1 63.0 70.8 4,070
l-branch P 19,292 0 426 84.6 68.2 82.3 63.3 71.1 2,348
k = 1 D 13,266 0 1 80.8 74.5 78.7 71.4 78.5 38,981
r-branch D 29,462 0 1 77.2 70.0 75.0 66.5 75.4 36,149
l-branch D 27,396 0 1 77.8 70.5 75.5 67.1 75.7 44,492

Table 5.5: Experiments for dependency parsing on NEGRA. Columns are as in Table 5.4. Additional
columns present unlabeled and labeled attachment scores that include punctuation (UASp
and LASp, respectively).

term. argument labels f 1 fail UAS LAS LA secs
strict labeling
k = 1 POS CPOS+DEPREL 9,389 119 68.0 54.4 68.5 886
r-branch POS CPOS+DEPREL 16,116 332 82.7 71.3 79.1 620
l-branch POS CPOS+DEPREL 15,310 338 90.3 79.8 84.3 156
k = 1 CPOS CPOS+DEPREL 9,389 59 63.5 47.8 60.9 1,474
k = 1 POS DEPREL 6,679 0 68.3 53.7 66.8 4,455
r-branch POS DEPREL 12,622 5 62.6 46.8 59.6 1,748
l-branch POS DEPREL 11,730 9 62.1 47.1 59.9 2,820
k = 1 POS POS 7,100 76 68.3 45.1 60.0 917
k = 1 POS CPOS 5,126 18 69.6 45.0 60.1 1,727
child labeling
k = 1 POS POS+DEPREL 3,803 34 73.4 58.5 70.6 1,325
r-branch POS POS+DEPREL 8,651 217 73.9 59.7 70.9 390
l-branch POS POS+DEPREL 8,685 206 71.1 57.0 69.9 362
k = 1 CPOS POS+DEPREL 3,803 6 66.1 50.0 62.5 3,168
k = 1 POS CPOS+DEPREL 2,845 5 73.2 57.8 70.4 2,934
r-branch POS CPOS+DEPREL 7,367 49 66.8 52.4 65.4 506
l-branch POS CPOS+DEPREL 7,068 28 68.8 52.9 65.7 1,761
k = 1 CPOS CPOS+DEPREL 2,845 5 66.2 50.2 63.3 3,402
k = 1 POS DEPREL 1,370 0 67.5 53.4 67.6 11,801
r-branch POS DEPREL 5,171 0 66.4 51.3 65.3 2,944
l-branch POS DEPREL 4,587 0 67.0 52.2 66.5 10,720
k = 1 POS POS 1,462 13 73.4 48.2 61.8 1,639

Table 5.6: Experiments for dependency parsing on the Slovene Dependency Treebank. Columns are as
in Table 5.4.
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term. argument labels f 1 fail

U
A

Sp

LA
Sp UAS LAS LA secs

strict labeling
k = 1 POS CPOS+DEPREL 13,842 37 73.2 58.9 60.1 42.3 54.5 3,978
r-branch POS CPOS+DEPREL 25,655 199 76.1 60.4 62.9 42.9 54.4 2,107
l-branch POS CPOS+DEPREL 24,448 193 75.8 60.4 62.6 42.4 54.1 1,389
k = 1 CPOS CPOS+DEPREL 13,842 29 71.9 56.3 58.8 40.5 52.5 4,871
k = 1 POS DEPREL 7,937 0 69.7 55.8 56.7 39.8 54.1 10,247
r-branch POS DEPREL 15,479 12 71.1 55.9 58.9 39.4 53.3 3,770
l-branch POS DEPREL 15,340 8 72.1 57.0 59.1 39.3 53.0 10,167
k = 1 POS POS 8,688 25 71.2 52.5 60.7 39.4 54.1 3,780
k = 1 POS CPOS 5,660 8 72.0 53.0 61.0 39.4 54.2 4,145
r-branch POS CPOS 12,706 128 74.8 55.9 62.5 40.9 55.2 1,350
l-branch POS CPOS 11,486 61 72.0 53.5 61.2 39.7 54.3 852
child labeling
k = 1 POS POS+DEPREL 5,130 26 72.8 59.0 59.4 43.0 55.5 2,672
r-branch POS POS+DEPREL 10,472 70 70.4 55.2 57.5 38.7 52.1 1,149
l-branch POS POS+DEPREL 9,560 61 71.5 56.2 58.8 39.5 52.8 2,937
k = 1 CPOS POS+DEPREL 5,130 12 71.4 56.0 58.3 39.9 51.7 4,395
k = 1 POS CPOS+DEPREL 3,364 14 73.2 59.5 59.6 43.0 55.9 3,666
r-branch POS CPOS+DEPREL 7,716 36 70.5 55.6 57.3 39.0 52.1 1,236
l-branch POS CPOS+DEPREL 7,098 34 71.2 56.2 58.4 39.7 52.9 3,966
k = 1 CPOS CPOS+DEPREL 3,364 11 71.7 57.0 58.9 41.7 53.3 4,338
k = 1 POS DEPREL 1,288 0 69.8 55.7 56.1 39.9 53.8 10,721
r-branch POS DEPREL 3,537 0 67.8 52.5 54.7 36.6 51.8 2,959
l-branch POS DEPREL 3,469 0 70.0 54.4 55.7 36.9 51.7 14,619
k = 1 POS POS 1,347 12 73.6 53.4 62.0 40.5 55.5 2,644
r-branch POS POS 4,417 53 73.0 53.6 60.7 40.5 55.6 596
l-branch POS POS 3,565 39 72.1 53.2 61.1 40.5 55.7 1,823

Table 5.7: Experiments for dependency parsing on the METU-Sabanci Turkish Treebank. Columns are
as in Table 5.5.
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term. argument labels f 1 f 2 fail UAS LAS LA secs
strict labeling
k = 1 POS CPOS+DEPREL 13,842 0 32 64.9 46.2 56.1 1,861
k = 2 POS CPOS+DEPREL 7,834 5,058 25 63.5 44.5 55.5 5,630
l-branch POS CPOS+DEPREL 24,448 0 146 65.3 44.7 55.2 699
r-branch POS CPOS+DEPREL 25,655 0 150 66.2 45.6 55.3 1,401
k = 1 POS DEPREL 7,937 0 0 62.1 44.0 55.8 4,512
k = 2 POS DEPREL 4,246 3,005 0 63.2 45.0 57.0 21,515
r-branch POS DEPREL 15,479 0 9 63.5 43.5 55.4 2,447
l-branch POS DEPREL 15,340 0 6 63.7 43.5 55.0 4,230
k = 1 POS CPOS 5,660 0 7 65.7 42.8 55.2 1,726
k = 2 POS CPOS 2,899 2,062 10 64.8 41.9 54.5 8,787
l-branch POS CPOS 11,486 0 52 65.5 43.4 55.8 396
r-branch POS CPOS 12,706 0 96 65.9 44.2 56.0 894
child labeling
k = 1 POS POS+DEPREL 5,130 0 24 64.7 46.7 57.1 1,123
k = 2 POS POS+DEPREL 2,537 1,141 20 64.7 46.1 56.5 10,500
r-branch POS POS+DEPREL 10,472 0 61 61.7 41.9 53.4 739
l-branch POS POS+DEPREL 9,560 0 51 62.7 42.2 53.6 1,310
k = 1 POS CPOS+DEPREL 3,364 0 13 65.2 47.6 58.3 1,457
k = 2 POS CPOS+DEPREL 1,637 801 12 65.5 47.2 57.4 18,786
r-branch POS CPOS+DEPREL 7,716 0 33 62.0 42.6 54.0 785
l-branch POS CPOS+DEPREL 7,098 0 29 63.1 43.4 54.8 1,694
k = 1 POS DEPREL 1,288 0 0 62.4 44.8 55.8 3,868
k = 2 POS DEPREL 476 323 0 64.3 47.0 57.6 107,819
r-branch POS DEPREL 3,537 0 0 59.5 41.0 54.2 1,753
l-branch POS DEPREL 3,469 0 0 60.8 41.7 54.4 6,198
k = 1 POS POS 1,347 0 11 66.6 43.6 56.4 978
k = 2 POS POS 459 316 10 68.4 44.8 56.7 19,351
r-branch POS POS 4,417 0 46 65.2 43.6 56.3 385
l-branch POS POS 3,565 0 32 65.3 43.6 56.2 773

Table 5.8: Experiments with the METU-Sabanci Turkish Treebank featuring also the k = 2 recursive
partitioning. Only sentences of length ≤ 20 were used for testing. Columns are as in Table 5.4.

fail R P F1 # cons. str. secs
strict labeling
k = 1 11 77.3 77.3 76.5 1.0133 113,905
k = 2 9 77.6 77.9 77.0 1.0135 1,692,216
r-branch 325 67.0 63.5 64.6 1.0121 127,645
l-branch 1,841 65.6 58.3 60.8 1.0118 5,429
child labeling
k = 1 1 75.3 74.9 74.5 1.0141 124,910
r-branch 23 75.5 74.8 74.5 1.0132 37,570
l-branch 79 75.6 75.3 75.0 1.0123 39,082

Table 5.9: Number of parse failures, recall, precision, F-measure, average number of consecutive strings
per constituent, and running time.
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6 Related work
This short chapter gives an overview of related work on constituent parsing and dependency parsing.

6.1 Dependency parsing
Much progress was made in syntactic dependency parsing in the first decade of the 21st century in the
surrounding of the CoNLL shared-tasks of the years 2006 and 2007 [BM06; Niv+07]. Essentially, there
are two classes of dependency parsers: either transition-based models or graph-based models are used to
represent (non-projective) dependency structures. In the following we outline the central ideas of both
approaches. Moreover, we give a summary of the less examined area of grammar-based models where
also hybrid grammars are located.

6.1.1 Transition-based models
The idea of transition based parsing is reading the input stepwise and composing it to a dependency
structure. Thus, a dependency structure is modeled by a sequence of parser actions (or transitions).
The action of the parser depends on certain characteristics of the current input token, of its surrounding
in the sentence, the partially built structure, and, lastly, on previous parser actions.

We briefly sketch the stack-based approach by [Niv09] as an example for transition based parsing.
There are two stacks in this approach: one holds the input tokens and is called input in the following
whereas the other serves as work space and is called stack. Depending on the mentioned characteristics
of the input and stack configuration, one of the following actions is triggered:

• an arc between the two top-most stack tokens is created (in either direction) and the dominated
node is removed from the stack, or

• the top-most elements on the stack are swapped, or

• the top-most element is popped from the input and pushed onto the stack.

Due to swapping on the stack non-projective structures can be obtained. Training of this model amounts
to feature selection and the learning of linear classifiers or support vector machines. Clearly, a big
advantage is the inclusion of various kinds of input features and the expected linear run-time of the
parser.1 This and similar parsing strategies were implemented in maltparser [NHN06]. Transition-
based parsers have been extended successfully with beam search strategies [ZC08] and neural networks
for the trigging of parser actions [CM14].

6.1.2 Graph-based models
The idea of graph-based models is to learn which dependency structure is good among all possible
dependency structures for a sentence. As an example, we briefly describe the maximum spanning tree
approach by [McD+05]. Let w be a sequence or sentence of tokens. Let G = (V,E) be a directed graph
such that V contains the set T of tokens of w and a virtual root node v0 and E = ({v0} × T ) ∪ (T × T ),
i.e., G is complete except for v0 not having incoming edges. Further, let f be a weight function with the
signature f : E → R. A spanning tree of G is a subgraph t = (V ′, E′) of G such that V = V ′ and t is

1Note that due to swapping on the stack a quadratic running time is possible, although linear running time is measured
in practice [Niv09].
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a tree. We assign t the weight
∑

e∈E′ f(e). The maximum spanning tree G is the spanning tree with
maximal weight.

The set of spanning trees of G and the dependency structures of w are isomorphic. There are algorithms
with running time in O(n3) for finding the maximum spanning trees of a directed graph [CL65;
Edm67], which can be refined to algorithms with a running time in O(n2) if the graph is dense [Tar77].
Thus, one can train a weight function f and run one of these algorithms for dependency parsing. The
results obtained with graph-based approaches are comparable to those obtained with transition-based
models. The basic model has been extended to support higher-order dependencies [Koo+10; ZM12], i.e.,
dependencies not only between parent and child but also between two siblings, parent and grand-child,
etc.

6.1.3 Grammar-based models
The attempts to describe non-projective dependency structures with formal grammars are relatively
new. This is because existing grammar formalisms were either not expressive enough or lacked in
efficient parser implementations. Due to the advent of more efficient LCFRS parsers [BL05; KM09;
KM15; Mai15] and the study of LCFRS binarization [GS09] and restrictions like well-nestedness [GKS10]
and fanout constraints [MKK12] the use of grammar-based parsing approaches has become a more
realistic objective. Alternatively, tree adjoining grammars have been proposed as a plausible model for
dependency structures [KK12].

A system based on LCFRSs for parsing non-projective dependency structures is described in [Kuh13]
and implemented by [MK10]. In this approach, the grammar’s derivation trees initially resemble
the dependency structure with nonterminals being DEPRELs. The running time of the parser and
the generalization of the grammar are improved by binarization and Markovization, respectively.
Experimental results are reported for NEGRA and the Prague Dependency Treebank [Haj+00].

6.2 Constituent parsing
In the last decade of the 20th century sentences from the Wall Street Journal with over 4.5 million
words were syntactically annotated [MSM94]. The availability of this corpus of constituent trees
known as Penn treebank fostered the research on statistical parsing with context-free grammars [Col97;
Cha00]. Soon, corpora for other languages like German [Sku+98; Bra+02] or Chinese [XCP02] were
created. Among the techniques that have been developed to improve both coverage and accuracy of the
grammars are lexicalization [SW93], Markovization [KM03], latent annotation of nonterminals [MMT05],
and automated splitting and merging of nonterminals [Pet+06; PK07]. These techniques have been
implemented in the stanford parser2 and the berkeley parser.3

This research focused mainly on parsing English, however other languages with free-word order like
German stimulated research on automated learning of grammars capable of representing discontinuity.
First theoretical work was by [Pla04] and [MS08] and implementations and refinements of the latter
LCFRS-based approach followed with [MK10; MKK12; KM15; Mai15].

2The stanford parser is available at http://nlp.stanford.edu/software/lex-parser.shtml.
3The berkeley parser is available at http://github.com/slavpetrov/berkeleyparser.
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7 Conclusions and outlook
We showed that discontinuous constituent structures and non-projective dependency structures can
be represented as hybrid trees. We considered hybrid grammars, which generate languages of hybrid
trees, and presented methods to learn a probabilistic LCFRS/sDCP-hybrid grammar G from a corpus of
constituent structures or a corpus of dependency structures. We demonstrated that G can afterwards be
used to parse unseen sentences and produce their constituent or dependency structure. The required
time for parsing can be adjusted by the recursive partitioning strategy that was chosen during grammar
induction.

We implemented hybrid trees, hybrid grammars, grammar induction, and parsing and tested our
syntax model on four language corpora. One of the key insights is that the desired decoupling of
the expressiveness and the parsing complexity of the hybrid grammar is achieved: using an LCFRS
with small fanout as string component in the hybrid grammar allows us to reduce the parsing time.
Nonetheless, the loss in accuracy and coverage is small. Although the experimental results yield that
our prototype is not competitive with state-of-the-art systems its accuracy is lower and it consumes
much time and memory the scores indicate that the hybrid grammar approach works in principle.
Also, the comparison with state-of-the-art parsers suggests that a broad range of improvements can be
incorporated into the framework of hybrid trees and hybrid grammars.

• The good coverage obtained with POS as terminals in the LCFRS is payed with accuracy. A
sensible inclusion of lexical information with suitable fall-back strategies in case of unknown words
should improve the accuracy while maintaining the coverage. Additional morphological information
might be useful as well [Mai+14b].

• In the Markovization technique by [KM03] the width of the horizontal and vertical context that is
encoded in the nonterminal label can be adjusted. Perhaps the context information encoded in
our labeling strategies can be extended and adjusted similarly.

• It can be examined whether the techniques for latent annotation [MMT05] and automated splitting
and merging [Pet+06] of nonterminals can be transferred to hybrid grammars.

• We weight our grammar by plain relative frequency estimation. The inside-outside variant
of the expectation-maximization algorithm has been used to train probabilistic context-free
grammars [Bak79; LY90; Pre01]. Perhaps these algorithms can be adopted for hybrid grammars
to obtain better weight-distributions.

• The implementation of the LCFRS parser can be either improved or replaced by an existing, more
efficient implementation.

• We manually ran many experiments in order to find good combinations of strategies for terminal
labeling, nonterminal labeling, and recursive partitioning. Automating this process is desirable.

Moreover, we specified Grammar induction in a more formal way than [NV14]. Our presentation also
captures corner cases of hybrid trees like multiple nodes at root level and empty categories in constituent
structures. However, this level of detail also reveals that sDCPs are quite bulky in constructions and
proofs. Thus, for future theoretic work the author suggests the following.

• There might exist a class of higher-order grammars that is equivalent to (non-circular) sDCPs
and more suitable for formal considerations. For instance, 2nd-order abstract categorial gram-
mars [Gro01] have been shown to have the same string-generating power as LCFRSs [GP04], but
can also be used to model tree grammars. One should consider the replacement of sDCPs by this
or a similar formalism.
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• The rank of an LCFRS affects its parsing complexity. Can the binarization algorithm for
LCFRSs [GS09] be transfered to LCFRS/sDCP-hybrid grammars?

• Hybrid grammars that combine a string grammar and a tree grammar different from LCFRSs and
sDCPs can be explored and compared w.r.t. their expressiveness and parsing complexity.

• Certain classes of tree transducers [FMV11; Ost14] and synchronous grammars [Shi04; Shi06;
NV12] can be described by a regular tree grammar and two tree transformations [AD82]. Since
our conception of the derivation trees of hybrid grammars is that of trees over an infinite ranked
set (the infinity is due to the reindexing), we cannot characterize this tree language by a tree
grammar. However, if the synchronization of nonterminals is encoded differently, then one might
obtain a similar bitransformation result for hybrid grammars. A promising perspective for such an
endeavor might be that of graph grammars [Ehr+06].
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