
Diplomarbeit

Decidability of the Twins Property
for Weighted Tree Automata

over Extremal Semirings

Anja Fischer

24. März 2012

Technische Universität Dresden
Fakultät Informatik

Institut für Theoretische Informatik
Professur Theorie der Programmierung

Betreuender Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler
Betreuender Mitarbeiter: Dipl.-Inf. Matthias Büchse

Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 24. März 2012

Anja Fischer

Danksagung
An dieser Stelle möchte ich mich bei all denen bedanken, die mich beim Anfertigen
dieser Arbeit tatkräftig unterstützt und motiviert haben, und ohne die die vergangenen
fünfeinhalb Jahre nur halb so schön gewesen wären.

Zunächst zu nennen wären da Matthias Büchse für viele hilfreiche Tipps und die Be-
treuung während der letzten Monate sowie Prof. Vogler für seine Unterstützung bei der
kurzfristigen Umgestaltung meines weiteren Studienverlaufes als sich plötzlich unvorher-
gesehene Hindernisse wie der Wegfall fest eingeplanter Lehrveranstaltungen auftaten.

Zudem gilt mein Dank meiner Familie, insbesondere meinen Eltern, die mir ein sor-
genfreies Studium ermöglicht haben, mich motiviert haben und mich bei allen meinen
Projekten wie meinem Auslandssemester unterstützt haben.

Nicht vergessen möchte ich auch die Korrekturleser dieser Arbeit. Ich kann mir gut vor-
stellen, dass ihr bestimmt auch Besseres zu tun gehabt hättet... ;-)

Und schließlich geht mein Dank an meine Freunde und Kommilitonen, die das Studium
hier in Dresden zu einer unvergesslichen Zeit gemacht haben!

Aufgabenstellung für die Diplomarbeit
“Decidability of the Twins Property

for Weighted Tree Automata over Extremal Semirings”

Technische Universität Dresden
Fakultät Informatik

Studentin: Anja Fischer
Studiengang: Informatik
Matrikelnummer: 3295958

Die Klasse der bottom-up-deterministisch erkennbaren gewichteten Baumsprachen 1 ist echt in der Klasse der
erkennbaren gewichteten Baumsprachen enthalten [BV03]. Folglich ist eine Determinisierung gewichteter Baumau-
tomaten nicht uneingeschränkt möglich. Dies drückt sich darin aus, dass die bekannten Verfahren nicht in jedem Fall
terminieren.

Es wurden bislang zwei hinreichende Kriterien für die Terminierung angegeben: (a) der Halbring ist lokal endlich
[Bor04] und (b) der Halbring ist extremal und der gewichtete Baumautomat erfüllt die Twins-Eigenschaft [BMV10].
Dabei ist bislang offen, ob die Twins-Eigenschaft entscheidbar ist. Ein aktuelles Resultat von Kirsten [Kir10] für ge-
wichtete String-Automaten legt nun zumindest nahe, dass dies für gewichtete Baumautomaten über einem extremalen
Halbring der Fall ist.

Die Aufgabe dieser Diplomarbeit besteht darin, den Beweis von Kirsten in die hier angesprochene Baumwelt zu
übertragen. Falls sich dies als unmöglich herausstellt, soll dies mit Argumenten glaubhaft belegt werden und nach
Möglichkeit eine Alternative erschlossen werden. Optional kann die Studentin (i) einen Test auf Twins-Eigenschaft
in HASKELL implementieren, passend zum System VANDA des Lehrstuhls, oder (ii) das Resultat oder den Beweis
aufwerten, zum Beispiel durch eine besonders elegante Darstellung.

Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss in sich abgeschlossen sein und alle
nötigen Definitionen und Referenzen enthalten. Die Struktur der Arbeit muss klar erkenntlich sein, und der Leser
soll gut durch die Arbeit geführt werden. Die Darstellung aller Begriffe und Verfahren soll mathematisch formal fun-
diert sein. Für jeden wichtigen Begriff sollen Beispiele angegeben werden, ebenso für die Abläufe der beschriebenen
Verfahren. Wo es angemessen ist, sollten Illustrationen die Darstellung vervollständigen. Schließlich sollen alle Lem-
mata und Sätze möglichst lückenlos bewiesen werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.
Im Falle einer Implementation soll eine ausführliche Dokumentation erfolgen, die sich angemessen auf den Quelltext
und die Diplomarbeit verteilt. Dabei muss die Funktionsfähigkeit des Programms glaubhaft gemacht werden.

Literatur

[BMV10] Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization of weighted tree automata using
factorizations. Journal of Automata, Languages and Combinatorics, 15(3/4), 2010.

[Bor04] Björn Borchardt. A pumping lemma and decidability problems for recognizable tree series. Acta Cybern.,
16:509–544, September 2004.

[BV03] Björn Borchardt and Heiko Vogler. Determinization of finite state weighted tree automata. J. Autom.
Lang. Combin, 8, 2003.

[Kir10] Daniel Kirsten. Decidability, undecidability, and pspace-completeness of the twins property in the tropical
semiring. Manuscript, 2010.

1In der Literatur werden gewichtete Baumsprachen auch als Baumreihen bezeichnet.

Contents

1 Introduction 1
1.1 Outline . 2

2 Preliminaries 3
2.1 General Notions on Ranked Trees . 3
2.2 Semirings . 4
2.3 Factorization . 5

3 Weighted Tree Automata 7
3.1 Semantics . 7
3.2 The Twins Property . 10

4 Decidability of the Twins Property 13
4.1 Rephrasing the Twins Relation . 13
4.2 Compressing the Search Space . 16
4.3 Two Decision Algorithms . 20

5 Conclusion 25
5.1 Future Work . 25

A Additional Proofs 26

Bibliography 33

V

List of Figures

1 Hypergraph representation of an example wta 7
2 Sub-runs κ[z]w and κ|w obtained from a given run κ ∈ R(ξ) 9
3 State decorations of a tree’s nodes forming an example run 10
4 Hypergraph representation of a wta that has the twins property 12
5 Equivalent deterministic wta . 12

6 Moving from parallel execution of a wta A to the union wta A ∪ Ā . . . 14
7 Cumulating runs within a run vector . 16
8 Cutting out a context slice: Two possible outcomes 19

VI

1 Introduction

Machine Translation aims to provide the means to automatically translate one natural
language, like English or German, into another.
In Statistical Machine Translation (SMT), translation rules are usually extracted from

a set of example translations, a parallel corpus, and accumulated within a grammar. The
weight of each rule is estimated using statistical methods. This way, the weight of an
object derived from the newly created grammar matches approximately its likelihood
within the corpus.
However, grammars often prove to be ambiguous, i. e., they admit several possible

derivations of the same object. Consider the following sentence: He gave her cat food.
Did he give cat food to someone or did he simply feed someone’s cat? In the first
interpretation, “her” is the object of the sentence, whereas in the second case “her
cat” is the object. Thus, the different meanings are hidden within the structure of
the sentence’s derivations, invisible to the reader of that sentence. This structure can
be represented by a derivation tree. In contrast to phrase-based machine translation,
where there is no information available other than the example sentences themselves, the
syntax-based approach makes great use of the information that derivation trees provide.
Given an ambiguous grammar, the likelihood of an object is estimated by cumulating

all its derivations. This cumulation, however, is computationally intractable: it has been
shown that finding the best string that is derivable from a given grammar is NP-hard
[Sim96, CdlH00]. On the other hand, finding a best derivation is easier: it can be done
in polynomial time [Epp98, HC05].
This fact led to the idea of approximating an object’s likelihood by its best derivation.

Since derivations can be represented by trees, the application of tree automata [GS84]
seems obvious. These devices work with trees rather than strings, and their weighted
counterparts, weighted tree automata (wta), assign a weight to every tree in the same
way as a weight has been assigned to every derivation. Much like grammars, wta can
be ambiguous or nondeterministic, i. e., they admit several trees with the same yield.
Returning to the original idea of describing an object’s likelihood by its best derivation,
determinization of wta seems to be a reasonable solution to the ambiguity problem:
once we have a deterministic wta, the best derivation of an object is its only derivation.
However, determinizing a wta is not always possible, as the class of deterministic wta

is strictly less powerful than the class of nondeterministic wta. This problem led to
research on sufficient criteria that allow determinization. Mohri [Moh97] was one of the
first to work on that problem. He was able to prove that weighted finite string automata
(wfa), finite-state machines that work with strings rather than trees, over the tropical
semiring are determinizable if they have the twins property, a notion described earlier
in [Cho77]. This result has been generalized to wfa over arbitrary semirings using a
mathematical concept called factorization [KM05].

1

1 Introduction

Borchardt and Vogler were the first to describe determinization of wta [BV03]. They
limited their algorithm to wta over locally finite semifields before the approach was
extended to locally finite semirings in [Bor04]. In [BMV10] another determinization
algorithm for weighted tree automata is presented, subsuming the results of the afore-
mentioned papers.
Despite its importance for determinization algorithms the decidability of the twins

property itself remained open. The first result in this area was presented by Allauzen
and Mohri [AM03] who show the decidability of the twins property for the class of
cycle unambiguous wfa. Moreover, they proved that deciding the twins property in that
class can be done in polynomial time. However, the question as to whether the twins
property is also decidable for other classes of weighted automata remained. Recent work
on this topic by Kirsten [Kir12] proves the decidability of the twins property for wfa
over the tropical semiring and suggests a possible generalization to trees. Kirsten also
showed that deciding the twins property was PSPACE-complete. We pursue Kirsten’s
suggestion and aim to prove the decidability of the twins property for wta over extremal
semirings.

1.1 Outline
As a preparation, Chapter 2 recalls important concepts such as ranked trees, semirings
and factorizations and presents some smaller examples.
Chapter 3 gives the definition of weighted tree automata, their semantics and the

twins property. Again, examples are shown to facilitate comprehension and to improve
intuition.
Our main theorem, its proof, and two decision algorithms are presented in Chapter 4.

Finally, Chapter 5 concludes with a short summary of our work and proposes possible
future work emanating from this thesis.

2

2 Preliminaries

2.1 General Notions on Ranked Trees
By N we denote the set of natural numbers, i. e., non-negative integers.

Definition 2.1 The star N∗ is defined as the set N∗ = ⋃
i∈NNi, where Ni is defined

inductively for every i ∈ N:

(i) N0 = {ε} and

(ii) Ni+1 = {nm | n ∈ N,m ∈ Ni}, where nm denotes the concatenation of n and m.�

Definition 2.2 A ranked alphabet is a pair (Σ, rk) where Σ is an alphabet, i. e., a finite
nonempty set, and rk is a mapping rk : Σ → N that assigns a natural arity to every
symbol σ ∈ Σ. �

Henceforth, we identify (Σ, rk) with Σ. Furthermore, we define for every k ∈ N the set
Σ(k) = {σ ∈ Σ | rk(σ) = k} containing all symbols of arity k. A symbol σ ∈ Σ(k) is also
abbreviated with σ(k).

Definition 2.3 The set TΣ(H) of ranked trees over Σ indexed by H is defined as the
smallest set T such that:

(i) H ⊆ T

(ii) σ(ξ1, . . . , ξk) ∈ T for every k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T . �

Moreover, we write TΣ instead of TΣ(∅).

Definition 2.4 For every ξ ∈ TΣ(H), we define the set pos(ξ) ⊆ N∗ of positions of ξ as
follows.

(i) if ξ ∈ H, then pos(ξ) = {ε}, and

(ii) if ξ = σ(ξ1, . . . , ξk), then pos(ξ) = {ε} ∪ {iw | i ∈ {1, . . . , k}, w ∈ pos(ξi)}. �

Definition 2.5 For every ξ ∈ TΣ(H), we define the mapping ht : TΣ(H) → N that
maps every tree ξ to its height, i. e., the length of a longest position w ∈ pos(ξ):

(i) if ξ ∈ H or ξ ∈ Σ(0), then ht(ξ) = 0, and

(ii) if ξ = σ(ξ1, . . . , ξk), then ht(ξ) = 1 +max{ht(ξi) | i ∈ {1, . . . , k}}. �

3

2 Preliminaries

Definition 2.6 Let ξ, ξ′ ∈ TΣ(H) and w ∈ pos(ξ). We define the following mappings:
The label of ξ at position w:

ξ(w) =


ξ if ξ ∈ H,w = ε

σ if ξ = σ(ξ1, . . . , ξk), k ≥ 0, σ ∈ Σ(k), w = ε

ξi(w′) if ξ = σ(ξ1, . . . , ξi, . . . , ξk), k ≥ 0, σ ∈ Σ(k),

i ∈ {1, . . . , k}, and w = iw′

The subtree of ξ rooted at position w:

ξ|w =


ξ if w = ε

ξi|w′ if ξ = σ(ξ1, . . . , ξi, . . . , ξk), k ≥ 0, σ ∈ Σ(k),

i ∈ {1, . . . , k}, and w = iw′

The substitution of the subtree of ξ at position w with ξ′:

ξ[ξ′]w =


ξ′ if w = ε

σ(ξ1, . . . , ξi[ξ′]w′ , . . . , ξk) if ξ = σ(ξ1, . . . , ξi, . . . , ξk), k ≥ 0, σ ∈ Σ(k),

i ∈ {1, . . . , k}, and w = iw′

�

Definition 2.7 A Σ-context is a tree ζ ∈ TΣ({z}) that contains exactly one occurrence
of the special symbol z. The set of all Σ-contexts is denoted by CΣ. �

Definition 2.8 Let ξ ∈ TΣ ∪ CΣ and ζ ∈ CΣ. The concatenation of ξ and ζ, denoted
by ξ · ζ, is obtained from replacing the leaf z in ζ by ξ. �

Concatenation is an associative operation, i. e., (ξ·ζ1)·ζ2 = ξ·(ζ1·ζ2) for every ζ1, ζ2 ∈ CΣ
and ξ ∈ TΣ. Let ζ ∈ CΣ. If ξ ∈ TΣ, then so is ξ · ζ. Otherwise, if ξ ∈ CΣ, then the same
applies to ξ · ζ.

2.2 Semirings

Definition 2.9 A semiring [Gol99, HW98] is a tuple S = (S,+, ·, 0, 1) where S is
an arbitrary set called carrier set, + and · are binary operations called addition and
multiplication, and 0 and 1 are elements of S such that:

• (S,+, 0) is a commutative monoid, i. e., + is associative, commutative and 0 is the
neutral element satisfying a+ 0 = a = 0 + a for all a ∈ S,

• (S, ·, 1) is a monoid,

• multiplication distributes over addition from both sides, i. e.,
∀a, b, c ∈ S : a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c,

4

2 Preliminaries

• 0 is absorbing with respect to multiplication, i. e.,
∀a ∈ S : 0 · a = 0 = a · 0. �

Let S = (S,+, ·, 0, 1). Henceforth, we will identify S with its carrier set S. We call S
commutative if the multiplication is commutative and a semifield if it is commutative
and for every s ∈ S \{0} there is an element s−1 ∈ S such that s−1 ·s = 1. Furthermore,
S is zero-sum free if a+ b = 0 implies a = b = 0; it is zero-divisor free if a · b = 0 implies
a = 0 or b = 0. Moreover, S is cancellative if a · b = a · c implies b = c. We consider S
to be extremal [Mah84] if a+ b ∈ {a, b} for every a, b ∈ S. We note that every extremal
semiring is also zero-sum free and every semifield is zero-divisor free.

Example 2.10 We present four examples of semirings.

• The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction and conjunction is
extremal and a semifield, and therefore zero-sum free and zero-divisor free.

• The formal language semiring (P(Σ∗),∪, ·, ∅, {ε}) over an alphabet Σ with union
and language concatenation is neither commutative nor extremal. However, it is
zero-divisor free and zero-sum free.

• The tropical semiring (R ∪ {∞},min,+,∞, 0) with minimum and conventional
addition is an extremal semifield.

• The Viterbi semiring ([0, 1],max, ·, 0, 1) is commutative, extremal, and zero-divisor
free. It is, however, not a semifield. �

The set SQ contains all mappings u : Q → S. Thus, SQ can be viewed as the set
containing all Q-vectors over S. Instead of u(q) we denote the q-component of every
u ∈ SQ by uq. The Q-vector mapping every q ∈ Q to 0 is denoted by 0̃.

Definition 2.11 For every q ∈ Q we define a corresponding e-vector, denoted by
eq ∈ SQ, that maps only its q-component to the semiring one while all other entries
are mapped to the semiring zero, i. e., (eq)q = 1 and (eq)p = 0 for every p ∈ Q with
p 6= q. �

2.3 Factorization
Factorizations provide the means to extract a common factor from all components of
a given vector and are crucial to our later proofs. Throughout this thesis we use the
notion of a factorization as specified in [KM05].

Definition 2.12 Let Q be a nonempty, finite set and S an arbitrary semiring. A pair
(f, g) is called a factorization of dimension Q if f : SQ \ {0̃} → SQ, g : SQ \ {0̃} → S,
and u = g(u) · f(u) for every u ∈ SQ \ {0̃}. A factorization (f, g) is called maximal if
for every u ∈ SQ and a ∈ S, we have that a · u 6= 0̃ implies f(a · u) = f(u). �

As shown in [BMV10, Lemma 4.4], a maximal factorization only exists if S is zero-divisor
free or |Q| = 1.

5

2 Preliminaries

Example 2.13 Let Q be a nonempty, finite set and (f, g) a factorization of dimension
Q. We give three examples of factorizations over various semirings:

• Let S be an arbitrary semiring and (f, g) the trivial factorization, i. e., g(u) = 1
and f(u) = u for every u ∈ SQ \ {0̃}. This factorization (f, g) is not maximal in
general.

• Let S be the tropical semiring and (f, g) such that g(u) = min{uq | q ∈ Q} and
f(u) = −g(u) + u for every u ∈ SQ \ {0̃}. Thus, (f, g) is maximal: f(a + u) =
−max{a+ uq | q ∈ Q}+ a+ u = −a− g(u) + a+ u = f(u).

• Let S = (R≥0,+, ·, 0, 1) be the semifield of non-negative reals. Then g(u) =∑
q∈Q uq and f(u) = 1

g(u) ·u constitute a factorization, which is also maximal. We
note that this construction of a maximal factorization applies to every semifield.�

6

3 Weighted Tree Automata

A weighted tree automaton (wta) [ÉK03] is a finite-state machine that represents a
weighted tree language, i. e., a mapping ϕ : TΣ → S. It reads and processes an input
tree and assigns a weight based on weighted transitions, which constitute the core of
the wta.

Definition 3.1 A weighted tree automaton is a tuple A = (Q,Σ, S, δ, ν) such that Q is
a nonempty, finite set of states, Σ is a ranked alphabet, S is a semiring, δ is a transition
mapping, mapping transitions (q1 . . . qk, σ, q) into S, with q1, . . . , qk, q ∈ Q and σ ∈ Σ(k),
and ν ∈ SQ is a vector that maps every state to its root weight. �

Example 3.2 Let A = (Q,Σ,S, δ, ν) a wta with Q = {q1, q2}, Σ = {α(0), γ(1), σ(2)},
a semiring S = (P(N∗),∪, ◦R, ∅, {ε}) with union and ◦R such that U ◦R V = {vu |
u ∈ U, v ∈ V } for every U, V ∈ P(N∗), ν = ({ε}, ∅), and δ as shown by the directed
functional hypergraph in Figure 1.
Every node (depicted as a circle) represents a state, whereas transistions are repre-

sented by hyperedges (depicted as boxes with arbitrarily many incoming and exactly
one outgoing arc). Note that incoming arcs of a hyperedge are read counter-clockwise,
beginning at the outgoing arc. The root weight νq1 = {ε} is represented by an additional
outgoing arc originating from q1. Every transition that is not shown is mapped to ∅. �

3.1 Semantics
In the literature we find two different yet equivalent definitions of wta semantics: initial-
algebra semantics [GTWW77] and run semantics [FV09, Sec. 3.2]. Throughout this
thesis we will only use the latter setup, as it constitutes the basis of our proofs.

q1 q2α/{ε}

{ε}

α/{ε}

σ/{1}

σ/{2}

σ/{ε}

γ/{ε}

γ/{1}

γ/{ε}

σ/{ε}

Figure 1: Hypergraph representation of wta A.

7

3 Weighted Tree Automata

In the run semantics every node of a given tree is decorated with a state. Such a
decoration is henceforth called a run. A node’s label, its state and its successor states
comprise a transition. The weight of a run is the product of the weigts of all these
transitions (under δ and calculated in S).
The weight of a tree is then the sum of the weights of all runs on that tree, again

calculated in S. Since a wta represents a weighted tree language, every tree has to be
mapped to a certain weight. Those weights are obtained by summing up the component-
wise product of a tree’s weight and the wta’s root weight vector ν.
Throughout this thesis we need to compose and decompose trees and contexts as well

as their weights. Thus, we have to consider trees which are indexed by semiring elements
as well as Q-vectors over S.
Let H be an index set, ξ ∈ TΣ(H), A a wta, and q ∈ Q.

Definition 3.3 The set of runs on ξ that end in state q at the root of ξ is defined as
follows:

Rq(ξ)A = {(ξ, κ) | κ : pos(ξ)→ Q, κ(ε) = q}. �

We identify the pair (ξ, κ) with κ and omit the subscript A if the chosen wta is clear
from context.

Definition 3.4 The set of all runs regardless of their final state is

R(ξ) =
⋃
q∈Q

Rq(ξ). �

Definition 3.5 Let κ ∈ Rq(ξ) and w ∈ pos(ξ). We define the following notions:

• κ|w ∈ Rκ(w)(ξ|w) such that for every w′ ∈ pos(ξ|w) : κ|w(w′) = κ(ww′),

• κ[κ′]w ∈ Rq(ξ[ξ′]w) for every ξ′ ∈ TΣ(H) and κ′ ∈ Rκ(w)(ξ′) such that
(i) κ[κ′]w coincides with κ′ on ξ′, i. e., ∀w′ ∈ pos(ξ′) : κ[κ′]w(ww′) = κ′(w′), and
(ii) κ[κ′]w coincides with κ on ξ[z]w, i. e., ∀w′′ ∈ pos(ξ[z]w) : κ[κ′]w(w′′) = κ(w′′),

• κ · κ′ ∈ Rq′(ξ · ζ) for every q′ ∈ Q, ζ ∈ CΣ, and κ′ ∈ Rq
′(ζ) mapping the position

of node z to state q such that κ · κ′ coincides with κ on ξ and κ · κ′ coincides with
κ′ on ζ. �

Moreover, we use the following abbreviations: κ[z]w denotes κ[κ′]w where κ′ is the
only element of Rκ(w)(z), and for every s ∈ S we write s · κ to denote the run on s · ξ
which coincides with κ. Figure 2 illustrates the two runs κ|w and κ[z]w that are obtained
from a given κ ∈ R(ξ).

Definition 3.6 Let ξ ∈ TΣ(S ∪ SQ) and κ ∈ R(ξ). The weight of a run κ, denoted by
〈κ〉A ∈ S, is:

(i) if ξ ∈ S, then 〈κ〉A = ξ,

8

3 Weighted Tree Automata

ξ[z]w

w

w′′

ξ

w

w′′ w′

ξ|w

w′

κ[z]w(w′′) = κ(w′′)

κ(ww′) = κ|w(w′)

Figure 2: Runs κ[z]w (left-hand side) and κ|w (right-hand side) obtained from a run κ ∈ R(ξ).

(ii) if ξ ∈ SQ, then 〈κ〉A = ξκ(ε), and

(iii) if ξ = σ(ξ1, . . . , ξk) where ξ1, . . . , ξk ∈ TΣ(S ∪ SQ), σ ∈ Σ(k), then we have 〈κ〉A =
〈κ|1〉A · . . . · 〈κ|k〉A · δ(κ(1) . . . κ(k), σ, κ(ε)), calculated in S. �

Again, we omit the subscript A if the wta is clear from context.

Definition 3.7 We define the mapping [[.]]A : TΣ(SQ)→ SQ such that

[[ξ]]A(q) =
∑

κ∈Rq(ξ)
〈κ〉. �

Once more, if A is clear from context or irrelevant, we will often omit the subscript.
If we have a factorization (f, g), we will write f [[ξ]] instead of f([[ξ]]). Moreover, we

will often use the following observations. Their proofs are listed in Appendix A.

Observation 3.8 Let ξ ∈ TΣ(S ∪ SQ), q ∈ Q, and κ ∈ Rq(ξ). Then we have for
every ζ ∈ CΣ, q′ ∈ Q, and κ′ ∈ Rq

′(ζ) where κ′ maps the position of node z to q:
〈κ · κ′〉 = 〈〈κ〉 · κ′〉.

Observation 3.9 Let ξ ∈ TΣ(S ∪ SQ) and ζ ∈ CΣ. Then, we have [[ξ · ζ]] = [[[[ξ]] · ζ]].

Definition 3.10 The weighted tree language run-recognized by a wta A is the mapping
ϕA : TΣ → S such that for every ξ ∈ TΣ we have

ϕA(ξ) =
∑
q∈Q

[[ξ]]q · νq. �

Example 3.11 (Ex. 3.2 continued) Figure 3 shows a tree together with a run κ.
We compute the weight 〈κ〉 of this run as follows:

〈κ〉 = 〈κ|1〉 ◦ 〈κ|2〉 ◦ δ(q1q2, σ, q1)
= δ(ε, α, q2) ◦ δ(ε, α, q1) ◦ δ(q1, γ, q1) ◦ δ(q2q1, σ, q1) ◦ δ(ε, α, q2) ◦ δ(q1q2, σ, q1)
= {ε} ◦ {ε} ◦ {1} ◦ {2} ◦ {ε} ◦ {1}
= {121}

9

3 Weighted Tree Automata

σq1

σq1 αq2

αq2 γq1

αq1

Figure 3: A tree together with a run.

Thus, the weight of κ is the position of the lowest node labeled α. Taking all runs on
a tree ξ into account, it can be shown that [[ξ]]q1 = pos(ξ) and [[ξ]]q2 = {ε}. Hence, we
obtain ϕA = pos. �

Definition 3.12 For every tree ξ ∈ TΣ(SQ) and run κ ∈ R(ξ) we call κ a victorious
run on ξ if the following condition holds: 〈κ〉 = [[ξ]]κ(ε). �

The following observations are based on [BMV10]. Observation 3.13 states that there
is a victorious run within a given set of runs if the semiring is extremal, whereas Obser-
vation 3.14 shows that the prefix of a victorious run is interchangeable with the prefix
of any other victorious run.

Observation 3.13 Let S be an extremal semiring. For every ξ ∈ TΣ(SQ) and q ∈ Q
there is a κ ∈ Rq(ξ) such that κ is victorious. �

Observation 3.14 Let ξ ∈ TΣ(SQ), w ∈ pos(ξ), and κ ∈ R(ξ) victorious. Then we
obtain 〈κ〉 = [[(〈κ|w〉 · eκ(w)) · ξ[z]w]]κ(ε).

Proof.

[[(〈κ|w〉 · eκ(w)) · ξ[z]w]]κ(ε)

= ∑
κ′∈Rκ(ε)

(
(〈κ|w〉·eκ(w))·ξ[z]w

)〈κ′〉
= ∑

κ′∈Rκ(ε)(ξ[z]w),κ′(w)=κ(w)〈〈κ|w〉 · κ′〉
= ∑

κ′∈Rκ(ε)(ξ[z]w),κ′(w)=κ(w)〈κ|w · κ′〉
= 〈κ〉 .

For the last equation, we note that the summands on the left-hand side form a subset
of {〈ν〉 | ν ∈ Rκ(ε)(ξ)}, which contains 〈κ〉. Since S is extremal and 〈κ〉 = [[ξ]]κ(ε), the
equation holds. �

3.2 The Twins Property
Definition 3.15 We define two binary relations over Q in the following way. For every
two states p, q ∈ Q we have

10

3 Weighted Tree Automata

• (p, q) ∈ Siblings(A) iff there is a tree ξ ∈ TΣ such that [[ξ]]p 6= 0 and [[ξ]]q 6= 0,
and

• (p, q) ∈ Twins(A) iff for every context ζ ∈ CΣ we have that [[ep · ζ]]p 6= 0 and
[[eq · ζ]]q 6= 0 implies [[ep · ζ]]p = [[eq · ζ]]q. �

Hence, states are siblings if there is at least one tree that can be decorated with
either one of those states at its root and gets assigned non-zero weights in both cases.
Moreover, we call states twins if the weights on contexts that are decorated with those
states both at node z and at their root coincide for all contexts. The combination of
both concepts results in the following definition of the twins property:

Definition 3.16 The wta A has the twins property if Siblings(A) ⊆ Twins(A). �

Example 3.17 We give three small examples for each of the above terms.

• Any acyclic wta has the twins property: for every p ∈ Q and ζ ∈ CΣ the weight
of the context where both leaf z and its root are decorated with p is [[ep · ζ]]p = 0.

• The wta from Example 3.2 has only two states. These states are siblings as they
can be reached by processing the tree ξ = α. The assigned weights are {ε} in both
cases. However, they are not twins because there exists at least one context that
gets assigned different weights, for example ζ = γ(z): we have [[eq1 · ζ]]q1 = {1}
but [[eq2 · ζ]]q2 = {ε}.

• Consider the wta from Figure 4 over the semiring S = ([0, 1],+, ·, 0, 1). This
automaton has the twins property: the pair (q1, q2) ∈ Siblings(A) since [[α]]q1 6= 0
and [[α]]q2 6= 0. Both states are also twins as their transitions are symmetric. An
equivalent deterministic wta is shown in Figure 5. �

Deciding the twins property requires us to be able to enumerate the set Siblings(A)
in finite time. The following observation shows that this is possible.

Observation 3.18 If S is a zero-sum free semiring, the following statement holds:
Siblings(A) = Sib(A), where Sib(A) is defined like Siblings(A) with the additional
condition that ht(ξ) < |Q|2.

Proof. The direction ⊇ is trivial. Thus, we only show the direction ⊆. This is done
by contradiction. Let p, q ∈ Q and ξ ∈ TΣ such that

(i) (p, q) ∈ Siblings(A), i. e., [[ξ]]p 6= 0 and [[ξ]]q 6= 0,

(ii) (p, q) 6∈ Sib(A), i. e., ht(ξ) ≥ |Q|2.

We assume that ξ is the smallest counterexample and show that we find a smaller
counterexample ξ′ ∈ TΣ, thus, contradicting that assumption. By (i) there are two runs
κp ∈ Rp(ξ) and κq ∈ Rq(ξ) with weights 〈κp〉 6= 0 and 〈κq〉 6= 0. In addition, by ht(ξ) ≥
|Q|2 we find two positions w1, w2 ∈ pos(ξ) such that w1 is above w2, κp(w1) = κp(w2),
and κq(w1) = κq(w2).

11

3 Weighted Tree Automata

At this point we cut out the slice between w1 and w2 by setting ξ′ = ξ[ξ|w2]w1 and
construct the runs κ′p and κ′q on ξ′ as follows: κ′p = κp[κp|w2]w1 and κ′q = κq[κq|w2]w1 .
Because κp and κq had non-zero weights we conclude 〈κ′p〉 6= 0 and 〈κ′q〉 6= 0. Moreover,

since S ist zero-sum free we obtain [[ξ′]]p 6= 0 and [[ξ′]]q 6= 0. �

q1 q2α/0.5 α/0.5

σ/0.5

σ/0.5

σ/0.5

σ/0.5

σ/0.5

σ/0.5

σ/0.5

σ/0.5
1

1

Figure 4: Siblings and twins

q1
α/1.0

σ/1.0

1

Figure 5: Equivalent deterministic wta

12

4 Decidability of the Twins Property

After having established some fundamentals in the previous two chapters, in this chapter
we aim to prove the following theorem:

Theorem 4.1 The twins property of wta over extremal semifields is decidable.

Recall that extremal semifields always admit a maximal factorization whose existence
is crucial to our later proofs. However, extremal semirings with certain characteristics
can be transferred into extremal semifields; the twins property of a wta itself remains
unaffected by this transformation. These characteristics include besides commutativity
that the semiring is cancellative. Then, by simply adding the missing multiplicative
inverse elements to the extremal semiring we obtain an extremal semifield. Henceforth,
let S be an extremal semifield and (f, g) a maximal factorization.
Turning towards our theorem, it is quite easy to describe a naïve algorithm that

searches for a context contradicting the twins property and terminates once such a
counterexample has been found. However, if the given wta has the twins property
there will be no counterexample. This results in a nonterminating algorithm, due to
having an infinite number of contexts. Based on Kirsten’s approach for weighted finite
string automata [Kir12] we will compress our search space to a finite size if a given
wta has the twins property. In the other case, the search space might remain infinite.
This, however, does not turn out to be a problem, since we will be able to find a
counterexample contradicting the twins property. Throughout the following sections we
divide our proof into smaller parts, leading to a proof for Theorem 4.1 eventually.
This chapter is structured as follows: Section 4.1 rephrases the twins relation by an

approach to run two wta in parallel. Section 4.2 deals with compressing the search space
by applying a maximal factorization, and Section 4.3 suggests two decision algorithms,
one proving Theorem 4.1 and the second one being a slight improvement of the first
algorithm by avoiding redundant calculation.

4.1 Rephrasing the Twins Relation

The definition of Twins(A) involves two vectors [[ep · ζ]] and [[eq̄ · ζ]] for every context
ζ ∈ CΣ. Comparing both vectors requires a parallel execution of A, which, unfortu-
nately, is inconvenient for our later intent to extract a common factor from both vectors.
Hence, we concatenate both vectors by constructing a union wta A∪ Ā that runs both
instances of A in parallel (Figure 6).
To this end, let A = (Q,Σ, S, δ, ν) a wta and Ā = (Q̄,Σ, S, δ̄, ν̄) the equivalent wta

with Q̄ = {q̄ | q ∈ Q}, ν̄q̄ = νq for every q ∈ Q, and δ̄(q̄1 . . . q̄k, σ, q̄) = δ(q1 . . . qk, σ, q)
for every σ ∈ Σ(k) and q1, . . . , qk, q ∈ Q.

13

4 Decidability of the Twins Property

ζ :

(ep + eq̄)
z

p →

[[ep·ζ]]A︷ ︸︸ ︷
...

...



p →


...
1
...


︸ ︷︷ ︸
ep

A

q →

[[eq·ζ]]A︷ ︸︸ ︷
...

...



q →


...
1
...


︸ ︷︷ ︸
eq

A

[[(ep+eq̄)·ζ]]A∪Ā∈Tp,q︷ ︸︸ ︷

...

...

...

...



p →

q̄ →

...

...

Q

...

...

 Q̄



...
1
...
...
1
...


︸ ︷︷ ︸

(ep+eq̄)

p →

q̄ →

A ∪ Ā

Figure 6: Moving from parallel execution of A (left-hand side) to the union wta A∪ Ā (right-
hand side).

Definition 4.2 We construct A ∪ Ā = (Q ∪ Q̄,Σ, S, δ′, ν ′) with δ′ and ν ′ as follows:

δ′(q1 . . . qk, σ, q) =


δ(q1 . . . qk, σ, q) if q1, . . . , qk, q ∈ Q
δ̄(q1 . . . qk, σ, q) if q1, . . . , qk, q ∈ Q̄
0 otherwise

and

ν ′q =
{
νq if q ∈ Q
ν̄q if q ∈ Q̄

.

�

Based on this construction, we make the following two observation. Their proofs are
shown in Appendix A.
Observation 4.3 Let u, v ∈ SQ and ζ ∈ CΣ. Then we have [[(u+v)·ζ]] = [[u·ζ]]+[[v ·ζ]].

Observation 4.4 Let p, q be two states of a wta A. Then we have

(p, q) ∈ Twins(A)⇔ (p, q̄) ∈ Twins(A ∪ Ā).

For the purpose of later anaysis we collect the weight vectors [[ξ]]A∪Ā of all trees ξ =
(ep + eq̄) · ζ, ζ ∈ CΣ, within a new set Tp,q. Note that both ep and eq̄ are vectors of
dimension Q ∪ Q̄ over S, i. e., ep, eq̄ ∈ SQ∪Q̄.

14

4 Decidability of the Twins Property

Definition 4.5 For every p, q ∈ Q we define Tp,q ⊆ SQ∪Q̄ such that

Tp,q = {[[(ep + eq̄) · ζ]]A∪Ā | ζ ∈ CΣ}. �

With the above definition we can rephrase the twins property using a simple observation
on the characteristics of elements u ∈ Tp,q.
Observation 4.6 Let p, q ∈ Q two arbitrary states. Then (p, q) ∈ Twins(A) iff for
every u ∈ Tp,q we have that

up 6= 0 and uq̄ 6= 0 implies up = uq̄.

Proof. “⇒”: Let (p, q) ∈ Twins(A) and u ∈ Tp,q such that up, uq̄ 6= 0. By definition
there is a context ζ ∈ CΣ such that u = [[(ep + eq̄) · ζ]]. Hence, we conclude

up = [[(ep + eq̄) · ζ]]p
= [[ep · ζ]]p + [[eq̄ · ζ]]p (Observation 4.3)
= [[ep · ζ]]p ([[eq̄ · ζ]]p = 0, (∗))
= [[eq̄ · ζ]]q̄ (Observation 4.4)
= [[ep · ζ]]q̄ + [[eq̄ · ζ]]q̄ ([[ep · ζ]]q̄ = 0, (∗))
= [[(ep + eq̄) · ζ]]q̄ = uq̄. (Observation 4.3)

“⇐”: Let p, q ∈ Q be states of A and let ζ ∈ CΣ satisfying [[ep · ζ]] 6= 0 and [[eq̄ · ζ]] 6= 0.
By definition u = [[(ep + eq̄) · ζ]] ∈ Tp,q. Thus, we have

([[ep · ζ]]A∪Ā)p = ([[ep · ζ]]A∪Ā)p + ([[eq̄ · ζ]]A∪Ā)p (([[eq̄ · ζ]]A∪Ā)p = 0, (∗))
= ([[(ep + eq̄) · ζ]]A∪Ā)p (Observation 4.3)
= up (by definition)
= uq̄ (by assumption)
= ([[(ep + eq̄) · ζ]]A∪Ā)q̄ (by definition)
= ([[ep · ζ]]A∪Ā)q̄ + ([[eq̄ · ζ]]A∪Ā)q̄ (Observation 4.3)
= ([[eq̄ · ζ]]A∪Ā)q̄. (([[ep · ζ]]A∪Ā)q̄ = 0, (∗))

Thus, (p, q̄) ∈ Twins(A ∪ Ā), and by Observation 4.4 we obtain (p, q) ∈ Twins(A).
Note that, whenever a transition over mixed states is involved in the computation of

a tree’s weight, we conclude that the tree’s weight is zero based on the construction of
δ′ in Definition 4.2. Hence, the equations marked with (∗) hold. �

For every pair (p, q) ∈ Siblings(A), a vector u ∈ SQ∪Q̄ is called a critical vector
(for (p, q)) if it does not fulfill the centered implication of Observation 4.6. Any critical
vector in Tp,q thereby witnesses (p, q) 6∈ Twins(A). Consequently, A has the twins
property iff Tp,q contains no critical vector for every (p, q) ∈ Siblings(A). Deciding
the twins property thus amounts to searching for a critical vector. The proof of the
following observation is shown in Appendix A.
Observation 4.7 A vector u ∈ SQ∪Q̄, u 6= 0̃, is a critical iff f(u) is a critical vector.

15

4 Decidability of the Twins Property

κqn (ε) = qn

pn

κq1(ε) = q1

κq1(w) = p1

⇔

~κ(ε) = (q1, q2, . . . , qn)

~κ(w) = (p1, p2, . . . , pn)

Figure 7: Combining simple runs κqi ∈ Rqi((ep +eq̄) ·ζ) to a run vector ~κ ∈ R((ep +eq̄) ·ζ)Q∪Q̄.

4.2 Compressing the Search Space
In this section we approach the decidability of the twins property by compressing the
previously defined set Tp,q, and, thus, compressing our search space for critical vectors.
First, we modify Definition 5.13 and Lemma 5.14 from [BMV10, Section 5.4] to be also
applicable to contexts rather than just trees.
Whenever we work with weight vectors u ∈ SQ∪Q̄ of trees we assume that every entry

has been produced by a certain victorious run. Hence, we combine all involved runs to
a vector of runs (Figure 7).

Definition 4.8 For every p, q ∈ Q and ζ ∈ CΣ we define a set of vectors of runs on
A ∪ Ā, denoted by Cp,q(ζ) ⊆ R((ep + eq̄) · ζ)Q∪Q̄, in the following way: ~κ ∈ Cp,q(ζ) iff

(i) ~κr ∈ Rr((ep + eq̄) · ζ) for every r ∈ Q ∪ Q̄

(ii) for every pair (w1, w2) ∈ pos(ζ) × pos(ζ) with w1 above w2 and ~κr(w1) = ~κr(w2)
we have that ~κr|w1 is victorious on ((ep + eq̄) · ζ)|w1 . �

For evaluation purposes we define the following mapping on any run vector.

Definition 4.9 Let p, q ∈ Q and ζ ∈ CΣ. For every Q′ ⊆ Q ∪ Q̄ we define a mapping
γQ′ : R((ep + eq̄) · ζ)Q∪Q̄ → SQ∪Q̄ that maps every vector of runs ~κ to a corresponding
weight vector:

∀q′ ∈ Q ∪ Q̄ : γQ′(~κ)q′ =
{
〈~κq′〉 if q′ ∈ Q′

0 otherwise. �

The next lemma proves the existence of a vector ~κ ∈ Cp,q(ζ) as well as the equivalence
of γQ′(~κ) for some Q′ ⊆ Q ∪ Q̄ and the weight vector [[ξ]] of a tree ξ = (ep + eq̄) · ζ. We
will use this fact later on, when trying to compress our search space.

Lemma 4.10 Let S be a commutative, extremal semiring and ζ ∈ CΣ. Then there is a
~κ such that ~κ ∈ Cp,q(ζ) and there is a Q′ ⊆ Q ∪ Q̄ such that γQ′(~κ) = [[(ep + eq̄) · ζ]].

16

4 Decidability of the Twins Property

Proof. As in [BMV10, Lemma 5.14] we prove the following statement by induction.
For every ζ ∈ TΣ ∪ CΣ and every r ∈ Q ∪ Q̄ there is a κ ∈ Rr((ep + eq̄) · ζ) such that
P (ζ, κ), where

P (ζ, κ)⇔ ∀w ∈ pos(ζ) : 〈κ|w〉 = [[((ep + eq̄) · ζ)|w]]κ|w(ε).

Note that technically (ep + eq̄) · ζ is undefined for ζ ∈ TΣ. However, since we defined
concatenation to be the replacement of node z within the second operand with the first
operand we can simply extend our original definition in the following way:
For every ξ, ζ ∈ TΣ ∪ CΣ:

ξ · ζ =
{
ζ[ξ]w with ζ(w) = z if ζ ∈ CΣ

ζ if ζ ∈ TΣ
.

Induction base: We distinguish two cases.

(i) ζ = α, α ∈ Σ(0) : 〈κ|ε〉 = 〈κ〉 = [[α]]κ(ε) = [[((ep + eq̄) · α)|ε]]κ|ε(ε), and

(ii) ζ = z : 〈κ|ε〉 = 〈κ〉 = [[(ep + eq̄)]]κ(ε) = [[((ep + eq̄) · z)|ε]]κ|ε(ε).

For the induction step we assume that ζ = σ(ξ1, . . . , ξi−1, ζi, ξi+1, . . . , ξk) with σ ∈ Σ(k),
ζi ∈ TΣ ∪ CΣ with i ∈ {1, . . . , k}, and ξ` ∈ TΣ for every ` ∈ {1, . . . , k} \ {i}.
By Observation 3.13 there is a κ′ ∈ Rr((ep + eq̄) · ζ) such that κ′ victorious. By our

induction hypothesis there are victorious runs κi ∈ R(((ep + eq̄) · ζ)|i) such that the
predicate P (((ep + eq̄) · ζ)|i, κi) holds for every i ∈ {1, . . . , k}. Now we construct the
run κ ∈ Rr((ep + eq̄) · ζ). For every w ∈ pos(ζ) we have

κ(w) =
{
κ′(ε) if w = ε

κi(w′) if w = iw′, w′ ∈ pos(ζ|i), and i ∈ {1, . . . , k}.

Thus, P (ζ, κ) holds. Now we address γQ′ : Let Q′ = {q′ ∈ Q ∪ Q̄ | [[(ep + eq̄) · ζ]]q′ 6= 0}
and construct the run vector ~κ ∈ R((ep + eq̄) · ζ)Q′ as follows.

∀q ∈ Q′ : ~κq ∈ Rq((ep + eq̄) · ζ) such that P (ζ,~κq).

Thus, we have

γQ′(~κ)q =
{
〈~κq〉 = [[(ep + eq̄) · ζ]]q if q ∈ Q′

0 otherwise.

and hence, γQ′(~κ) = [[(ep + eq̄) · ζ]]. �

Now that we have all the prerequisites needed to prove that all vectors in Tp,q are
scalar multiples of a finite set of vectors, we aim to do so in the following lemma.

17

4 Decidability of the Twins Property

Lemma 4.11 Let S be a commutative, extremal semiring. Assume that A has the twins
property. Then there is a finite set S′ ⊆ SQ∪Q̄ such that for every (p, q) ∈ Siblings(A)
we have

Tp,q ⊆ S · S′.

Proof. We construct sets S′, S′′ ⊆ SQ∪Q̄ and show the following inclusions:

Tp,q ⊆ S · S′′ ⊆ S · S′. (∗)

Let S′′ = {γQ′(~κ) | (p, q) ∈ Siblings(A), ζ ∈ CΣ, ~κ ∈ Cp,q(ζ), Q′ ⊆ Q ∪ Q̄} and S′

defined exactly as S′′ with the additional condition ht(ζ) < 2|Q|2|Q|.
The first inclusion of (∗) is proved by Lemma 4.10. Hence, we only have to show the

second inclusion. Let s ∈ S, (p, q) ∈ Siblings(A), ζ ∈ CΣ, ~κ ∈ Cp,q(ζ), and Q′ ⊆ Q∪ Q̄
such that

s · γQ′(~κ) 6∈ S · S′. (∗∗)

Because of the definition of S′ we conclude ht(ζ) ≥ 2|Q|2|Q|.
Let Q′ = {q′ ∈ Q∪ Q̄ | [[(ep + eq̄) · ζ]]q′ 6= 0} which yields 〈~κr〉 6= 0 for every r ∈ Q∪ Q̄,

and assume that ζ is the smallest context that fulfills (∗∗). We construct a smaller
context ζ ′ and a run vector κ′ ∈ Cp,q(ζ ′) such that ζ ′ is obtained from ζ by cutting out
a slice and s · γQ′(~κ) = s · s′ · γQ′(~κ′) with s′ ∈ S. Then, if s · s′ · γQ′(~κ′) ∈ S · S′, so is
the left-hand side of the equation, i. e., ζ did not fulfill (∗∗). On the other hand, ζ was
not the smallest counterexample, contradicting our assumption.
To this end, let w ∈ pos(ζ) be the position of node z. We are able two find a pair of

positions (w1, w2) ∈ pos(ζ) × pos(ζ) such that ~κ(w1) = ~κ(w2) and both w1 and w2 are
either above or below w. This leads to the following two cases as depicted in Figure 8.

(a) |w| ≤ |Q|2|Q|: Any path of a length of at least 2|Q|2|Q| shares a common prefix
of length at most |Q|2|Q| with the path leading to w. Thus, there remain at least
|Q|2|Q|+1 positions on that path, and by the pidgeonhole principle we find (w1, w2).

(b) |w| > |Q|2|Q|: The path leading to w contains at least |Q|2|Q| + 1 positions and
again, by the pidgeonhole principle we find the pair (w1, w2) on that path.

Now, we pick a pair (w1, w2) of positions such that the length of w1 is minimal and cut
out the slice between w1 and w2 yielding the smaller context ζ ′ ζ[ζ|w2]w1 . In addition,
we construct ~κ′ such that ~κ′r = ~κr[~κr|w2]w1 for every r ∈ Q∪ Q̄. Because of our choice of
w1 we have that ~κ′ ∈ Cp,q(ζ ′). Finally, we use the twins property to show that there is an
s′ ∈ S such that γQ′(~κ) = s′ · γQ′(~κ′). If Q′ = ∅, we choose s′ = 0. Otherwise we choose
an arbitrary state r′ ∈ Q′ and set s′ = [[e~κr′ (w2) · ζ ′′]] where ζ ′′ = ζ[z]w2 |w1 is the slice
that has been cut out. Let r ∈ Q′, p′ = ~κr(w1) = ~κr(w2) and q′ = ~κr′(w1) = ~κr′(w2).

18

4 Decidability of the Twins Property

(a)

ζ :

w1

w2ζ ′′

z
(ep + eq̄)

=⇒

ζ ′ :

w1

z
(ep + eq̄)

(b)

ζ :

w1

w2ζ ′′

z
(ep + eq̄)

=⇒

ζ ′ :

w1

z
(ep + eq̄)

Figure 8: Two cases for the construction of ζ ′ = ζ[ζ|w2]w1 .

Then, we have

γQ′(~κ)r = 〈~κr〉 = 〈〈~κr|w1〉 · ~κr[z]w1〉
= 〈[[(〈~κr|w2〉 · ep′) · ζ ′′]]p′ · ~κr[z]w1〉 (Observation 3.14)
= 〈~κr|w2〉 · [[ep′ · ζ ′′]]p′ · 〈1 · ~κr[z]w1〉 (commutativity)
= 〈~κr|w2〉 · [[eq′ · ζ ′′]]q′ · 〈1 · ~κr[z]w1〉 (†)
= s′ · 〈〈~κr|w2〉 · ~κr[z]w1〉 (commutativity)
= s′ · 〈~κ′r〉 (Observation 3.8)
= s′ · γQ′(~κ′)r .

At (†) we have used the twins property. This is only possible if (p′, q′) ∈ Siblings(A∪Ā).
Thus, we prove the siblings relation of p′ and q′ by distinguishing two cases.

(i) z occurs in ζ[z]w1 : By our choice of Q′ we have 〈~κr〉 6= 0 and 〈~κr′〉 6= 0 implying
〈~κr|w2〉 6= 0 and 〈~κr′ |w2〉 6= 0. Thus, we get [[ζ|w2]]p′ 6= 0 and [[ζ|w2]]q′ 6= 0.

(ii) z occurs in ζ|w2 : Due to (p, q) ∈ Siblings(A∪Ā) there is a tree ξ such that [[ξ]]p 6= 0
and [[ξ]]q 6= 0. Again, by our choice of Q′ we derive 〈~κr|w2〉 6= 0 and 〈~κr′ |w2〉 6= 0.
Since S is extremal, and therefore, zero-sum free, we obtain [[ξ · ζ]]p′ 6= 0 and
[[ξ · ζ]]q′ 6= 0.

19

4 Decidability of the Twins Property

Algorithm 1 Decision algorithm
Require: A = (Q,Σ, S, δ, ν) a wta, S commutative, extremal, (f, g) max. factorization
Ensure: print “yes” iff A has the twins property

1: compute Siblings(A)
2: for (p, q) ∈ Siblings(A) in parallel do
3: for u ∈ f(Tp,q \ {0̃}) do
4: if u is a critical vector then
5: print “no” and terminate
6: print “yes”

By the twins property of A ∪ Ā we have (p′, q′) ∈ Twins(A ∪ Ā). Thus, using
〈~κr〉 6= 0, 〈~κr′〉 6= 0 again yields 〈~κr[z]w2 |w1〉 6= 0 and 〈~κr′ [z]w2 |w1〉 6= 0; which leads to
[[ep′ · ζ ′′]]p′ 6= 0, [[ep′ · ζ ′′]]p′ 6= 0. �

Here we use our factorization (f, g) over S and Observation 4.7. Thus, we obtain a
compressed search space for critical vectors by applying the factorization to every set
Tp,q with (p, q) ∈ Siblings(A).

Lemma 4.12 Let (f, g) be a maximal factorization of dimension Q ∪ Q̄. Assume that
A has the twins property. For every (p, q) ∈ Siblings(A) the set f(Tp,q \ {0̃}) is finite.

Proof. By Lemma 4.11 there is a finite set S′ with

f(Tp,q \ {0̃}) ⊆ f(S · S′) ⊆ f(S′) ,

where we used that (f, g) is maximal. Since S′ is finite, so is f(Tp,q \ {0̃}). �

4.3 Two Decision Algorithms
Using Lemma 4.12 we can now state a simple decision algorithm that decides the twins
property of a given wta.

Proof (of Theorem 4.1). At first, Algorithm 1 computes the set Siblings(A). By
Observation 3.18 this is possible. Then, for every pair (p, q) of siblings the set f(Tp,q\{0̃})
is enumerated and checked for the occurrence of critical vectors. This process is done
in parallel for all pairs of siblings, otherwise the algorithm would not terminate if there
was a pair (p, q) ∈ Siblings(A) such that f(Tp,q \ {0̃}) is infinite but does not contain
a critical vector. At this point, there are two possible outcomes:

(a) the wta A has the twins property. In this case the sets f(Tp,q \ {0̃}) are finite. The
algorithm will not find any critical vectors, and, thus, terminates once all sets are
fully enumerated. The output in this case is “yes”.

(b) the wta A does not have the twins property. Then, by Observation 4.6 the algorithm
will find a critical vector at some point and terminate by outputting “no”. �

20

4 Decidability of the Twins Property

Algorithm 2 Improved decision algorithm
Require: A = (Q,Σ, S, δ, ν) a wta, S commutative, extremal, (f, g) max. factorization
Ensure: print “yes” iff A has the twins property

1: compute Siblings(A)
2: (T,C)← (∅, ∅)
3: repeat
4: (T ′, C ′)← (T,C)
5: (T,C)← F (T ′, C ′) . uses Siblings(A)
6: until C contains critical vector or C = C ′

7: if critical vector has been found then
8: print “no”
9: else

10: print “yes”

However, Algorithm 1 calculates certain weights repeatedly. It basically enumerates
the infinite set CΣ and computes f [[(ep + eq̄) · ζ]] for each ζ ∈ CΣ which results in
the enumeration of the set ⋃(p,q)∈Siblings(A) f(Tp,q \ {0̃}). This approach computes the
weight of each tree (ep + eq̄) · ζ from scratch, discarding previously obtained weights of
subtrees and subcontexts.
Therefore, we show an improved algorithm. Algorithm 2 does not enumerate CΣ

explicitly. It rather pursues the enumeration of weight vectors. Once computed, the
weight vectors can be reused, which prevents redundant calculation. The algorithm
maintains a pair of subsets of SQ∪Q̄. It starts with the pair (∅, ∅) and adds vectors by
applying a monotone operation F until a critical vector is found within the pair’s second
component or no new vectors are added to that second component.

Definition 4.13 We define the unary operation F : P(SQ∪Q̄)×P(SQ∪Q̄)→ P(SQ∪Q̄)×
P(SQ∪Q̄) such that F ((T,C)) = (T ′, C ′), and T ′, C ′ contain exactly the following ele-
ments:

(F1) for every k ≥ 0, σ ∈ Σ(k), and u1, . . . , uk ∈ T , if [[σ(u1, . . . , uk)]] 6= 0̃, then
f [[σ(u1, . . . , uk)]] ∈ T ′,

(F2) for every (p, q) ∈ Siblings(A), we have f(ep + eq̄) ∈ C ′,

(F3) for every k ≥ 1, σ ∈ Σ(k), i ∈ {1, . . . , k}, ui ∈ C, and u` ∈ T for every
` ∈ {1, . . . , k} \ {i}, if [[σ(u1, . . . , uk)]] 6= 0̃, then f [[σ(u1, . . . , uk)]] ∈ C ′. �

We abbreviate the set P(SQ∪Q̄) × P(SQ∪Q̄) with M , and define the partial order v,
i. e., a reflexive, transitive, and antisymmetric relation on M , such that for every two
elements (T,C), (T ′, C ′) ∈M the following equivalence holds:

(T,C) v (T ′, C ′) ⇔ T ⊆ T ′ ∧ C ⊆ C ′.

Hence, M with v is a partially ordered set (poset). Note that the set B := P(SQ∪Q̄)
with set inclusion is also a poset. Let X ⊆ B a countable chain in B, i. e., a countable

21

4 Decidability of the Twins Property

subset of B that only contains pairwise comparable elements. Since B is a power
set with respect to set inclusion it is ω-complete, i. e., every countable chain has a
supremum. The supremum of any countable chain X can be specified by sup X =⋃
x∈X x. Using the ω-completeness of B we conclude that M is also ω-complete: let

Y ⊆ M an arbitrary countable chain in M . Thus, sup Y = (sup {Ti | i ≥ 0}, sup {Ci |
i ≥ 0}) = (⋃i≥0 Ti,

⋃
i≥0Ci), where (Ti, Ci) ∈ Y for every i ≥ 0.

In addition to the ω-completeness of M we make the following two observations. The
proofs thereof are shown in Appendix A.

Observation 4.14 F is monotone on every countable chain X ⊆M .

Observation 4.15 F is ω-continuous, i. e., for every nonempty countable chain in M
that has a supremum, the supremum of F (X) exists and F (sup X) = sup F (X).

The ω-completeness of M and Observations 4.14 and 4.15 are the requirements for
Kleene’s fixpoint theorem [Wec92, Section 1.5.2, Theorem 7]. It states that there is a
least fixpoint (lfp) for the ω-continuous operator F that maps the ω-complete set M
into itself, and it can be calculated as listed above. To prove both correctness and
termination of our proposed algorithm we need to show that this fixpoint of F contains
the set ⋃(p,q)∈Siblings(A) f(Tp,q \ {0̃}) (Lemma 4.17). That proof requires us to often use
the following two statements.

Observation 4.16 Let S be commutative and (f, g) maximal. Then for every k ≥ 0,
σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(SQ), we have that

(i) [[σ(ξ1, . . . , ξk)]] = [[σ([[ξ1]], . . . , [[ξk]])]] and

(ii) f [[σ([[ξ1]], . . . , [[ξk]])]] = f [[σ(f [[ξ1]], . . . , f [[ξk]])]].

Proof. By [FV09, Section 3.2] and [BMV10, Lemma 5.5], respectively. �

Lemma 4.17 Let T f , Cf ∈ P(SQ∪Q̄) such that

(i) T f = f([[TΣ]] \ {0̃}) and

(ii) Cf = ⋃
(p,q)∈Siblings(A) f(Tp,q \ {0̃}).

Then (T,C) is the least fixpoint of F , i. e., (T f , Cf) = lfp F .

Proof. We have to prove the following two directions.

(a) “(T f , Cf) v lfp F”: Let (T̂ , Ĉ) = F (T̂ , Ĉ), i. e., (T̂ , Ĉ) is an arbitrary fixpoint of
F . By proving (T f , Cf) v F (T̂ , Ĉ) we show that (T f , Cf) is smaller (in the sense
of the partial order v) than every fixpoint of F , and, hence, (T f , Cf) v lfp F .
We show (T f , Cf) v F (T̂ , Ĉ) by contradiction.

22

4 Decidability of the Twins Property

Let ξ ∈ TΣ the smallest tree such that [[ξ]] 6= 0̃, and u = f [[ξ]] such that u ∈ T f but
u 6∈ T̂ . By definition of TΣ there are k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ such that
ξ = σ(ξ1, . . . , ξk). Hence, we derive

u = f [[ξ]]
= f [[σ(ξ1, . . . , ξk)]]
= f [[σ([[ξ1]], . . . , [[ξk]])]]
= f [[σ(f [[ξ1]]︸ ︷︷ ︸

u1

, . . . , f [[ξk]]︸ ︷︷ ︸
uk

)]].

By [[ξ]] 6= 0̃ we know that ui 6= 0̃ for every i ∈ {1, . . . , k}. Thus, by definition ui ∈ T f
holds for every ui. Now we have to distinguish two cases. Either every ui is also
an element of T̂ , but then so is u once we apply (F1) to (T̂ , Ĉ) and use that (T̂ , Ĉ)
is a fixpoint, or there is a uj , j ∈ {1, . . . , k} such that uj 6∈ T̂ . In the latter case ξ
was not the smallest counterexample which contradicts our assumption. Thus, we
conclude T f ⊆ T̂ .
Let (p, q) ∈ Siblings(A) and ζ ∈ CΣ the smallest context such that [[(ep+eq̄)·ζ]] 6= 0̃,
and u = f [[(ep + eq̄) · ζ]] such that u ∈ Cf but u 6∈ Ĉ. By definition of CΣ there are
k ≥ 0, σ ∈ Σ(k), ζi ∈ CΣ, i ∈ {1, . . . , k}, and ξ` ∈ TΣ for every ` ∈ {1, . . . , k} \ {i}
such that ζ = σ(ξ1, . . . , ζi, . . . , ξk). Hence, we derive

u = f [[(ep + eq̄) · ζ]]
= f [[(ep + eq̄) · σ(ξ1, . . . , ζi, . . . , ξk)]]
= f [[σ(ξ1, . . . , (ep + eq̄) · ζi, . . . , ξk)]]
= f [[σ([[ξ1]], . . . , [[(ep + eq̄) · ζi]], . . . , [[ξk]])]]
= f [[σ(f [[ξ1]]︸ ︷︷ ︸

u1

, . . . , f [[(ep + eq̄) · ζi]]︸ ︷︷ ︸
ui

, . . . , f [[ξk]]︸ ︷︷ ︸
uk

)]].

By [[(ep + eq̄) · ζ]] 6= 0̃ we know that u` 6= 0̃ for every ` ∈ {1, . . . , k} \ {i} and ui 6= 0̃.
Thus, for every u` we have that u` ∈ T f and ui ∈ Cf by the definitions of T f and
Cf . We already proved T f ⊆ T̂ . Hence every u` is an element of T̂ . Again, we need
to distinguish two cases: ui ∈ Ĉ, but then so is u because of (F3), or ui 6∈ Ĉ. In
this case ζ was not the smallest counterexample. This contradicts our assumption,
and we conclude Cf ⊆ Ĉ.

(b) “lfp F v (T f , Cf)”: We show that (T f , Cf) is a prefixpoint, i. e., an element m ∈M
such that F (m) v m. By Park’s Theorem [Wec92, Section 1.5.2, Proposition 9] we
obtain that lfp F v m.
We define (T̂ , Ĉ) := F (T f , Cf). Let u ∈ T̂ . It is a result of the application of
(F1) to (T f , Cf). Hence, there are k ≥ 0, σ ∈ Σ(k), u1, . . . , uk ∈ T f such that
[[σ(u1, . . . , uk)]] 6= 0̃, and we have u = f [[σ(u1, . . . , uk)]]. We obtain ui = f [[ξi]] 6= 0̃
for every i ∈ {1, . . . , k} and ξi ∈ TΣ because every ui is an element of T f and

23

4 Decidability of the Twins Property

[[σ(u1, . . . , uk)]] 6= 0̃. Hence, we derive

u = f [[σ(u1, . . . , uk)]]
= f [[σ(f [[ξ1]], . . . , f [[ξk]])]]
= f [[σ([[ξ1]], . . . , [[ξk]])]]
= f [[σ(ξ1, . . . , ξk)]],

which is an element of T f by definition. Hence, T̂ ⊆ T f .
Now let u ∈ Ĉ. Then there are two different possibilities.
(b1) As a result of (F2) we have that u = f(ep+eq̄) for some (p, q) ∈ Siblings(A).

By definition of Tp,q we have [[ep+ eq̄]] ∈ Tp,q if ζ = z. Hence, we conclude that
f [[ep + eq̄]] = f(ep + eq̄) = u is an element of Cf .

(b2) Otherwise u = f [[σ(u1, . . . , uk)]] is a result of applying (F3) to (T f , Cf). and
there are k ≥ 0, σ ∈ Σ(k), ui ∈ Cf , i ∈ {1, . . . , k}, u` ∈ T f for every ` ∈
{1, . . . , k} \ {i} such that [[σ(u1, . . . , uk)]] 6= 0̃. Using [[σ(u1, . . . , uk)]] 6= 0̃
and the definitions of T f and Cf we have that every u` = f [[ξ`]] 6= 0̃ and
ui = f [[(ep + eq̄) · ζ]] 6= 0̃, where ζ ∈ CΣ. Hence, we conclude u ∈ Cf by
deriving

u = f [[σ(u1, . . . , ui, . . . , uk)]]
= f [[σ(f [[ξ1]], . . . , f [[(ep + eq̄) · ζ]], . . . , f [[ξk]])]]
= f [[σ([[ξ1]], . . . , [[(ep + eq̄) · ζ]], . . . , [[ξk]])]]
= f [[σ(ξ1, . . . , (ep + eq̄) · ζ, . . . , ξk)]]
= f [[(ep + eq̄) · σ(ξ1, . . . , ζ, . . . , ξk)︸ ︷︷ ︸

∈CΣ

]]

︸ ︷︷ ︸
∈Tp,q\{0̃}

.

Both cases prove that Ĉ ⊆ Cf . �

24

5 Conclusion

In this thesis we proved the decidability for weighted tree automata over extremal semi-
fields. The basic idea of this proof, that is to say compressing the search space for
critical vectors, is adopted from Kirsten’s decidability proof for weighted string automata
[Kir12].
In doing so, we had to generalize Kirsten’s approach in two different ways: (a) We

permit the use of arbitrary extremal semifields by making use of maximal factorizations.
The application thereof is also present in Kirsten’s work; it is, however, only used in
an implicit way. (b) We consider weighted tree automata instead of weighted string
automata. Because of the arising need to distinguish between trees and contexts the
proof turns out to be more complex.
The question as to which of our decision algorithms performs better remains open,

as the complexity of neither algorithm has been investigated. However, transferring
Kirsten’s result that deciding the twins property is PSPACE-hard, presents a lower
bound on our algorithms’ complexity.
Moreover, the height restriction of the set S′ within Lemma 4.11 can be lowered to

ht(ζ) < 2|Q|2, as Algorithm 1 only needs the p- and q̄-components of vectors u ∈ Tp,q
to search for critical vectors. This modification might possibly improve the algorithm’s
performance.

5.1 Future Work
Future research should fathom possibilities and sufficient requirements to determinize
weighted tree automata over arbitrary, not necessarily extremal, semifields. In practical
applications of machine translation weighted tree automata over extremal semirings or
semifields are rarely used. The use of the semiring of non-negative reals for example,
is far more likely. The determinization of wta over arbitrary semirings would not just
approximate a sentence’s or translation’s likelihood with its best derivation; instead, it
would cumulate all its derivations.

25

Appendix A

Additional Proofs

Proof of Observation 3.8

Proof. By induction on ζ. Let ξ, ζ, κ, and κ′ as in the observation. For the induction
base let ζ = z.

〈κ · κ′〉 = 〈κ〉 = 〈〈κ〉〉 = 〈〈κ〉 · κ′〉

For the induction step we have to distinguish the following two cases:

(i) ζ = σ(ξ1, . . . , ξi−1, z, ξi+1, . . . , ξk) where σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ:

〈κ · κ′〉 = 〈(κ · κ′)|1〉 · . . . · 〈(κ · κ′)|i〉 · . . . · 〈(κ · κ′)|k〉
· δ((κ · κ′)(1) . . . (κ · κ′)(i) . . . (κ · κ′)(k), σ, (κ · κ′)(ε))

= 〈κ′|1〉 · . . . · 〈κ〉 · . . . · 〈κ′|k〉 · δ(κ′(1) . . . q . . . κ′(k), σ, q′)
= 〈κ′|1〉 · . . . · 〈〈κ〉〉 · . . . · 〈κ′|k〉 · δ(κ′(1) . . . q . . . κ′(k), σ, q′)
= 〈(〈κ〉 · κ′)|1〉 · . . . · 〈(〈κ〉 · κ′)|i〉 · . . . · 〈(〈κ〉 · κ′)|k〉
· δ((〈κ〉 · κ′)(1) . . . (〈κ〉 · κ′)(i) . . . (〈κ〉 · κ′)(k), σ, (〈κ〉 · κ′)(ε))

= 〈〈κ〉 · κ′〉

(ii) ζ = σ(ξ1, . . . , ξi−1, ζi, ξi+1, . . . , ξk) with σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ, and ζi ∈ CΣ. We
decompose the run on ζ into two runs κ1 ∈ Rκ

′(i)(ζi) and κ2 ∈ Rq
′(ζ[z]i) such that

κ2 maps the position of node z within ζ[z]i to state κ′(i). Thus, we have

〈κ · κ′〉 = 〈κ · (κ1 · κ2)〉 (decomposition κ′ = κ1 · κ2)
= 〈(κ · κ1) · κ2〉 (associativity)
= 〈〈κ · κ1〉 · κ2〉 (induction hypothesis on κ · κ1, κ2)
= 〈〈〈κ〉 · κ1〉 · κ2〉 (induction hypothesis on κ, κ1)
= 〈(〈κ〉 · κ1) · κ2〉 (induction hypothesis on 〈κ〉 · κ1, κ2)
= 〈〈κ〉 · (κ1 · κ2)〉 (associativity)
= 〈〈κ〉 · κ′〉 (composition κ1 · κ2 = κ′)

�

26

Appendix A Additional Proofs

Proof of Observation 3.9

Proof. Let q′ ∈ Q an arbitrary state and ξ, ζ as in the observation. By definition the
following statement holds: [[ξ · ζ]]q′ = ∑

κ′′∈Rq′ (ξ·ζ)〈κ
′′〉. Let wz ∈ pos(ζ) the position of

node z within ζ. Let κ′′(wz) = q, with q ∈ Q.
Now we decompose any run κ′′ into two smaller runs κ ∈ Rq(ξ) and κ′ ∈ Rq′(ζ) that

coincide with κ′′ on ξ and ζ, respectively:∑
κ′′∈Rq′ (ξ·ζ)

〈κ′′〉

=
∑
κ,κ′

κ·κ′∈Rq′ (ξ·ζ)

〈κ · κ′〉 (decomposition)

=
∑
κ,κ′

κ·κ′∈Rq′ (ξ·ζ)

〈〈κ〉 · κ′〉 (Observation 3.8)

=
∑
κ′

[[ξ]]·κ′∈Rq′ ([[ξ]]·ζ)

〈[[ξ]] · κ′〉

= [[[[ξ]] · ζ]]q′

Since q′ was chosen arbitrarily the statement [[ξ · ζ]]q′ = [[[[ξ]] · ζ]]q′ holds for every q ∈ Q
and hence, [[ξ · ζ]] = [[[[ξ]] · ζ]]. �

27

Appendix A Additional Proofs

Proof of Observation 4.3

Proof. By induction on ζ. We show [[(u+ v) · ζ]]q = [[u · ζ]] + [[v · ζ]]q for every q ∈ Q.
For the induction base let ζ = z:

[[(u+ v) · z]]q = (u+ v)q = uq + vq = [[u]]q + [[v]]q = [[u · z]]q + [[v · z]]q.

For the induction step we have to distinguish the following two cases:

(i) ζ = σ(ξ1, . . . , ξi−1, z, ξi+1, . . . , ξk) where σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ:

[[(u+ v) · ζ]]q
=

∑
κ∈Rq((u+v)·ζ)

〈κ〉

=
∑

κ∈Rq((u+v)·ζ)
〈κ|1〉 · . . . (u+ v)κ(i) · 〈κ|k〉 · δ(κ(1) . . . κ(i) . . . κ(k), σ, q)

=
∑

κ∈Rq((u+v)·ζ)
〈κ|1〉 · . . . (uκ(i) + vκ(i)) · 〈κ|k〉 · δ(κ(1) . . . κ(i) . . . κ(k), σ, q)

=
∑

κ∈Rq(u·ζ)
〈κ|1〉 · . . . uκ(i) · 〈κ|k〉 · δ(κ(1) . . . κ(i) . . . κ(k), σ, q)

+
∑

κ∈Rq(v·ζ)
〈κ|1〉 · . . . vκ(i) · 〈κ|k〉 · δ(κ(1) . . . κ(i) . . . κ(k), σ, q)

= [[u · ζ]]q + [[v · ζ]]q

(ii) ζ = σ(ξ1, . . . , ξi−1, ζi, ξi+1, . . . , ξk) with σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ, and ζi ∈ CΣ.
Hence, we decompose ζ into two smaller contexts ζi, ψ such that ζ = ζi · ψ and
ψ = σ(ξ1, . . . , ξi−1, z, ξi+1, . . . , ξk).

[[(u+ v) · ζ]]q = [[(u+ v) · (ζi · ψ)]]q (decomposition ζ = ζi · ψ)
= [[((u+ v) · ζi) · ψ]]q (associativity)
= [[[[(u+ v) · ζi)]] · ψ]]q (Observation 3.9)
= [[([[u · ζi]] + [[v · ζi]]) · ψ]]q (induction hypothesis on ζi)
= [[[[u · ζi]] · ψ]]q + [[[[v · ζi]] · ψ]]q (induction hypothesis on ψ)
= [[(u · ζi) · ψ]]q + [[(v · ζi) · ψ]]q (Observation 3.9)
= [[u · (ζi · ψ)]]q + [[v · (ζi · ψ)]]q (associativity)
= [[u · ζ]]q + [[v · ζ]]q (composition ζi · ψ = ζ)

�

28

Appendix A Additional Proofs

Proof of Observation 4.4
Proof. The observation follows directly from the statement below. Let A be a wta
and u, v ∈ SQ∪Q̄ arbitrary vectors. Then, for every ζ ∈ CΣ, we have

[[u|Q · ζ]]A = [[u · ζ]]A∪Ā|Q and [[v|Q̄ · ζ]]A = [[v · ζ]]A∪Ā|Q̄, (†)

where for every a ∈ SQ∪Q̄, i. e., a = (aq1 , . . . , aq|Q| , aq̄1 , . . . , aq̄|Q|), we define vectors
a|Q, a|Q̄ ∈ SQ such that a|Q = (aq1 , . . . , aq|Q|) and a|Q̄ = (aq̄1 , . . . , aq̄|Q|).

We prove the above statement by induction on ζ. Let ζ = z for the induction base.
Thus,

[[u|Q · z]]A = [[u|Q]]A = u|Q = [[u]]A∪Ā|Q = [[u · z]]A∪Ā|Q and
[[v|Q̄ · z]]A = [[v|Q̄]]A = v|Q̄ = [[v]]A∪Ā|Q̄ = [[v · z]]A∪Ā|Q̄.

For the induction step we dinstinguish two cases.

(i) ζ = σ(ξ1, . . . , ξi−1, z, ξi+1, . . . , ξk) where σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ. Let r ∈ Q
an arbitrary state of A. Then, we have

([[u|Q · ζ]]A)r
= ([[σ(ξ1, . . . , ξi−1, u|Q, ξi+1, . . . , ξk)]]A)r (concatenation)
=

∑
κ∈Rr(u|Q·ζ)

〈κ〉A (by definition)

=
∑

κ∈Rr(u|Q·ζ)
〈κ|1〉A · . . . · 〈κ|i〉A · . . . · 〈κ|k〉A · δ(κ(1) . . . κ(i) . . . κ(k), σ, r)

(by definition)
=

∑
κ∈Rr(u·ζ)

〈κ|1〉A∪Ā · . . . · 〈κ|i〉A∪Ā · . . . · 〈κ|k〉A∪Ā · δ
′(κ(1) . . . κ(i) . . . κ(k), σ, r)

(∗)
=

∑
κ∈Rr(u·ζ)

〈κ〉A∪Ā (by definition)

= ([[σ(ξ1, . . . , ξi−1, u, ξi+1, . . . , ξk)]]A∪Ā|Q)r (by definition)
= ([[u · ζ]]A∪Ā|Q)r

At (∗) we used the following facts:
• The wta A assigns a weight 〈κ|i〉A the the according run on u|Q. Using the

induction base, we conclude that the union wta A ∪ Ā assigns the weight
〈κ|i〉A∪Ā.

• Any run κ in the sum decorates the nodes of the given tree with the same
states, independent of whether the weight 〈κ〉 is assigned by A or A ∪ Ā.
Theoretically, a run on ζ that is evaluated by the union wta could decorate

29

Appendix A Additional Proofs

nodes with states r̄ ∈ Q̄ in addition to simply using states from Q. However,
if this happens, the weights of transitions over states from both Q and Q̄
are zero. Hence, they do not contribute to the final sum. Transitions over
states that are only taken from Q̄ would have a non-zero weight based on δ̄.
However, since the root of ζ is decorated with some r ∈ Q there would have
to be at least one transistion over mixed states from both Q and Q̄. Thus,
〈κ|`〉A = 〈κ|`〉A∪Ā for every ` ∈ {1, . . . , k} \ {i}.

• The weights of transitions δ′ and δ coincide. By similar reasoning as above,
we do not need to consider weights of transistions over states from both Q
and Q̄. We are only interested in the weight vector [[u · ζ]]A∪Ā|Q and on those
stated both transitions and their weights coincide.

As r was chosen arbitrarily, the statement ([[u|Q · ζ]]A)r = ([[u · ζ]]A∪Ā|Q)r holds for
every state r ∈ Q, and, thus, [[u|Q · ζ]]A = [[u · ζ]]A∪Ā|Q. Similar considerations lead
to [[v|Q̄ · ζ]]A = [[v · ζ]]A∪Ā|Q̄.

(ii) ζ = σ(ξ1, . . . , ξi−1, ζi, ξi+1, . . . , ξk) with σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ, and ζi ∈ CΣ.
Hence, we decompose ζ into two smaller contexts ζi, ψ such that ζ = ζi · ψ and
ψ = σ(ξ1, . . . , ξi−1, z, ξi+1, . . . , ξk).

[[u|Q · (ζi · ψ)]]A = [[(u|Q · ζi) · ψ]]A (associativity)
= [[[[u|Q · ζi]]A · ψ]]A (Observation 3.9)
= [[[[u · ζi]]A∪Ā|Q · ψ]]A (induction hypothesis on ζi)
= [[[[u · ζi]]A∪Ā · ψ]]A∪Ā|Q (induction hypothesis on ψ)
= [[(u · ζi) · ψ]]A∪Ā|Q (Observation 3.9)
= [[u · (ζi · ψ)]]A∪Ā|Q (associativity)

We obtain [[v|Q̄ · (ζi · ψ)]]A = [[v · (ζi · ψ)]]A∪Ā|Q̄ in a similar way.

Using (†), we derive

([[ep · ζ]]A∪Ā)p = ([[ep · ζ]]A∪Ā|Q)p = ([[ep|Q · ζ]]A)p and
([[eq̄ · ζ]]A∪Ā)q̄ = ([[eq̄ · ζ]]A∪Ā|Q̄)q = ([[eq̄|Q̄ · ζ]]A)q,

where ep|Q, eq̄|Q̄ ∈ SQ are the corresponding e-vectors for A. Hence, our observation
stating (p, q) ∈ Twins(A) ⇔ (p, q̄) ∈ Twins(A ∪ Ā) follows directly from the above
equations. �

30

Appendix A Additional Proofs

Proof of Observation 4.7

Proof. Let (p, q) ∈ Siblings(A) and u ∈ SQ∪Q̄ a critical vector with u 6= 0̃. Thus, we
have that up 6= uq̄. Moreover, we know that u = g(u) · f(u). Hence, we derive

up 6= uq̄

⇔ g(u) · (f(u))p 6= g(u) · (f(u))q̄
⇔ g−1(u) · g(u) · (f(u))p 6= g−1(u) · g(u) · (f(u))q̄
⇔ (f(u))p 6= (f(u))q̄ �

Proof of Observation 4.14

Proof. Let X ⊆M a nonempty countable chain and (T0, C0), (T1, C1) ∈ X two arbit-
rary elements of X such that (T0, C0) v (T1, C1). We compute (T ′0, C ′0) := F (T0, C0)
and (T ′1, C ′1) := F (T1, C1), and show that (T ′0, C ′0) v (T ′1, C ′1):

(i) Let u an arbitrary element of T ′0. It had to be constructed by making use of (F1).
Thus, there are k ≥ 0, σ ∈ Σ(k), and u1, . . . , uk ∈ T0 such that [[σ(u1, . . . , uk)]] 6= 0̃.
Hence, u = f [[σ(u1, . . . , uk)]]. Moreover, we have that u1, . . . , uk ∈ T1 because
T0 ⊆ T1. By applying (F1) to (T1, C1) we obtain f [[σ(u1, . . . , uk)]] ∈ T ′1 and, thus,
u ∈ T ′1. Since u ∈ T ′0 was chosen arbitrarily, we conclude T ′0 ⊆ T ′1.

(ii) Let u an arbitrary element of C ′0. We have to distinguish two different cases:
(a) u = f(ep + eq̄). Then, by definition of (F2) we have that u is also in C ′1.
(b) u = f [[σ(u1, . . . , uk)]]. Then, u has been produced by applying (F3) to (T0, C0).

Hence, there exist k ≥ 0, σ ∈ Σ(k), i ∈ {1, . . . , k}, ui ∈ C0, and u` ∈ T0 for
every ` ∈ {1, . . . , k} \ {i} such that [[σ(u1, . . . , uk)]] 6= 0̃. By T0 ⊆ T1 and
C0 ⊆ C1 we obtain u` ∈ T1 for every ` ∈ {1, . . . , k} \ {i} and ui ∈ C1.
Applying (F3) to (T1, C1) leads to u = f [[σ(u1, . . . , uk)]] ∈ C ′1.

As a result of choosing u ∈ C ′0 arbitrarily we get C ′0 ⊆ C ′1.

By the definition of v, we obtain (T ′0, C ′0) v (T ′1, C ′1). �

Proof of Observation 4.15

Proof. Let X = {(Tm, Cm) | m ≥ 0} ⊆ M an arbitrary nonempty countable chain.
The supremum of X exists due to the ω-completeness of M . By Observation 4.14 we
have that (Tm, Cm) v (Tn, Cn) implies F (Tm, Cm) v F (Tn, Cn) for arbitrary two ele-
ments (Tm, Cm), (Tn, Cn) ∈ X, with m,n ≥ 0. Thus, F (X) itself is a countable chain in
M , and by the ω-completeness of M the supremum of F (X) exists.

31

Appendix A Additional Proofs

Now we show F (sup X) = sup F (X): First, we compute both terms. Note that
whenever we apply F to an element (T,C) ∈M we abbreviate the output with (T ′, C ′).
Thus, we obtain

(T ′A, C ′A) : = F (sup X)

= F (sup {Tm | m ≥ 0}, sup {Cm | m ≥ 0}) = F (

TA︷ ︸︸ ︷⋃
m≥0

Tm,

CA︷ ︸︸ ︷⋃
m≥0

Cm) and

(T ′B, C ′B) : = sup F (X)
= (sup {T ′i | i ≥ 0}, sup {C ′i | i ≥ 0}) = (

⋃
m≥0

T ′m,
⋃
m≥0

C ′m).

Hence, we show (T ′A, C ′A) = (T ′B, C ′B) by proving the following two directions.

(i) “v”: Let u ∈ T ′A arbitrary. By (F1) there are k ≥ 0, σ ∈ Σ(k), u1, . . . , uk ∈ TA such
that [[σ(u1, . . . , uk)]] 6= 0̃, and, hence, u = f [[σ(u1, . . . , uk)]]. From u1, . . . , uk ∈ TA
we conclude that every ui with i ∈ {1, . . . , k} has to be an element of some Tm,
m ≥ 0. However, since the sets Tm are first components of a countable chain, there
has to be an element (Tx, Cx) ∈ X, x ≥ 0 such that Tx contains all u1, . . . , uk.
Then, by applying (F1) to (Tx, Cx) we obtain u = f [[σ(u1, . . . , uk)]] ∈ T ′x. Hence,
u is also in T ′B.
Let u ∈ C ′A arbitrary. Then, either u = f(ep + eq̄) for some (p, q) ∈ Siblings(A),
which, by definition of (F2), leads to u ∈ C ′B, or u = f [[σ(u1, . . . , uk)]]. In the
latter case we have by (F3) that there are k ≥ 0, σ ∈ Σ(k), i ∈ {1, . . . , k}, ui ∈ CA,
and u` ∈ TA for every ` ∈ {1, . . . , k} \ {i} such that [[σ(u1, . . . , uk)]] 6= 0̃. By the
same argumentation as above there is an element (Tx, Cx) ∈ X, x ≥ 0 such that Tx
contains all u`k, for every ` ∈ {1, . . . , k} \ {i} and Cx contains ui. Hence, u ∈ C ′x
and also u ∈ C ′B.
Because we chose elements of T ′A and C ′A arbitrarily we obtain T ′A ⊆ T ′B and
C ′A ⊆ C ′B. Hence, (T ′A, C ′A) v (T ′B, C ′B).

(ii) “w”: Let u ∈ T ′B arbitrary. By the definition of T ′B we know that u ∈ T ′m for
some m ≥ 0. By (F1) there exist k ≥ 0, σ ∈ Σ(k), and u1, . . . , uk ∈ Tm such that
[[σ(u1, . . . , uk)]] 6= 0̃ which leads to u = f [[σ(u1, . . . , uk)]]. Since u1, . . . , uk ∈ Tm we
also have that u1, . . . , uk ∈ TA. Thus, by (F1) on (TA, CA) we get u ∈ T ′A.
Let u ∈ C ′B arbitrary. Then, either u = f(ep + eq̄) for some (p, q) ∈ Siblings(A),
which, by definition of (F2), leads to u ∈ C ′A, or u = f [[σ(u1, . . . , uk)]]. In the
latter case we have that u ∈ C ′m for some m ≥ 0 and by (F3) there are k ≥ 0,
σ ∈ Σ(k), i ∈ {1, . . . , k}, ui ∈ Cm, and u` ∈ Tm for every ` ∈ {1, . . . , k} \ {i} such
that [[σ(u1, . . . , uk)]] 6= 0̃. Hence, ui ∈ CA and u` ∈ TA for every ` ∈ {1, . . . , k}\{i}.
As a result of applying (F3) to (TA, CA) we have that u ∈ C ′A.
Since elements of T ′B and C ′B were chosen arbitrarily we obtain T ′B ⊆ T ′A and
C ′B ⊆ C ′A. Hence, (T ′B, C ′B) v (T ′A, C ′A). �

32

Bibliography

[AM03] Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the
twins property. J. Autom. Lang. Comb., 8:117–144, April 2003.

[BMV10] Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization of
weighted tree automata using factorizations. Journal of Automata, Lan-
guages and Combinatorics, 15(3/4), 2010.

[Bor04] Björn Borchardt. A pumping lemma and decidability problems for recog-
nizable tree series. Acta Cybern., 16:509–544, September 2004.

[BV03] Björn Borchardt and Heiko Vogler. Determinization of finite state weighted
tree automata. J. Autom. Lang. Combin, 8, 2003.

[CdlH00] Francisco Casacuberta and Colin de la Higuera. Computational complexity
of problems on probabilistic grammars and transducers. In Proc. ICGI,
pages 15–24. Springer, 2000.

[Cho77] Christian Choffrut. Une caracterisation des fonctions sequentielles et des
fonctions sous-sequentielles en tant que relations rationnelles. Theor. Com-
put. Sci., 5(3):325–337, 1977.

[ÉK03] Zoltán Ésik and Werner Kuich. Formal tree series. J. Autom. Lang. Comb.,
8(2), 2003.

[Epp98] David Eppstein. Finding the k shortest paths. SIAM Journal on Comput-
ing, 28(2), 1998.

[FV09] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree trans-
ducers. In Handbook of Weighted Automata, chapter 9. Springer, 2009.

[Gol99] Jonathan Samuel Golan. Semirings and their Applications. Kluwer Aca-
demic Publishers, 1999.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadéniai Kiadó,
Budapest, Hungary, 1984.

[GTWW77] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B.
Wright. Initial algebra semantics and continuous algebras. J. ACM, 24:68–
95, January 1977.

[HC05] Liang Huang and David Chiang. Better k-best parsing. In Proc. IWPT,
pages 53–64. ACL, 2005.

33

Bibliography

[HW98] Udo Hebisch and Hanns Joachim Weinert. Semirings: Algebraic Theory
and Applications in Computer Science, volume 5 of Series in Algebra. World
Scientific, 1998.

[Kir12] Daniel Kirsten. Decidability, undecidability, and pspace-completeness of
the twins property in the tropical semiring. Theor. Comput. Sci., 420:56–
63, 2012.

[KM05] Daniel Kirsten and Ina Mäurer. On the determinization of weighted auto-
mata. J. Autom. Lang. Comb., 10:287–312, 2005.

[Mah84] Bernd Mahr. Iteration and summability in semirings. Annals of Discrete
Mathematics, 19:229–256, 1984.

[Moh97] Mehryar Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997.

[Sim96] Khalil Sima’an. Computational complexity of probabilistic disambiguation
by means of tree-grammars. In Proc. COLING, pages 1175–1180, 1996.

[Wec92] Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25
of Monogr. Theoret. Comput. Sci. EATCS Ser. Springer, 1992.

34

	Introduction
	Outline

	Preliminaries
	General Notions on Ranked Trees
	Semirings
	Factorization

	Weighted Tree Automata
	Semantics
	The Twins Property

	Decidability of the Twins Property
	Rephrasing the Twins Relation
	Compressing the Search Space
	Two Decision Algorithms

	Conclusion
	Future Work

	Additional Proofs
	Bibliography

