
Diplomarbeit

Product of a Grammar
with an n-Gram Model

for Statistical Machine Translation
(revised version)

Tobias Denkinger

31. Mai 2013

Technische Universität Dresden
Fakultät Informatik

Institut für Theoretische Informatik
Lehrstuhl für Grundlagen der Programmierung

Betreuer: Dipl.-Inf. Matthias Büchse
Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler

ii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Trees . 3
2.2 Algebras . 4
2.3 Corpora and Languages . 5
2.4 n-Gram Models . 6

2.4.1 Application . 6
2.4.2 Training . 7
2.4.3 Limitation . 8
2.4.4 Smoothing . 8

2.5 Interpreted Regular Tree Grammars . 9
2.5.1 Regular Tree Grammars . 10
2.5.2 Interpreted Regular Tree Grammars 12

3 Component Product 17
3.1 n-Gram Tree Language . 18
3.2 Closure under Inverse Homomorphism . 23
3.3 Closure under Hadamard Product . 26
3.4 Component Product . 28

4 Algorithm 29
4.1 n-Gram wRTG . 29
4.2 Inverse Homomorphism wRTG . 29
4.3 Product wRTG . 31
4.4 Component Product . 31

5 Implementation 33
5.1 The Class LM . 33
5.2 The Module WTA . 35
5.3 Product Construction . 36

6 Conclusion 45

iii

1 Introduction

The research area of machine translation (MT) aims to enable computers to translate
texts from one natural language to another; a natural language is a language spoken by
humans. For the past decades, the field is dominated by purely statistical approaches:
researchers define a class of possible translation functions and use computers to find the
best function in the class regarding a given set of existing translations. This approach is
called statistical machine translation (SMT).
The class of translation functions is called a translation model; the selection of a trans-

lation function in the translation model is called the training process. The translations
quality of a system depends not only on the translation model itself, but also on the
amount and quality of the data used to select the training function. Most corpora are
not sufficiently large for a monolithic training process. Therefore the training process
is usually broken down into two parts, the training of the translation model and the
training of the language model; both are treated independently. This strategy is called
source-channel approach.
A sequence of pairs of a translated sentence and a translation score is generated with

the translation model. Every translated sentence in that sequence is scored again by
the language model. The score of the translation model and the score of the language
model are then combined in order to determine the translations quality. The translation
model can not predict bad language model scores for the generated sentences. Therefore,
in order to calculate a k-best list, we need to consider much more than k translations.
Hence a two-step translation process results in a blow-up of translations (that have to
be considered).
To avoid this blow-up, we incorporate the language model into the translation model

after the training process. With the combined model, we only have to consider exactly
k translations in order to calculate the k-best translations. This procedure preserves
the benefits of the source-channel approach in the training process while providing the
advantages of a monolithic translation model for decoding.
I show that the combination of a translation model based on interpreted regular tree

grammars and a language model based on n-grams is possible in principle. I will prove
the regularity of that combination and provide a construction and an algorithm for it. I
also added an implementation of the algorithm to the SMT toolkit Vanda and integrated
it into the project Vanda Studio1.
A similar construction has already been proposed for wSCFGs and n-gram mod-

els [Chi07, Section 5.3]. Since interpreted regular tree grammars subsume wSCFGs,
the result shown in this work is more general.

1Vanda is an SMT toolkit. Vanda Studio is a development environment for experiments in SMT. Both
are developed at the Chair of Foundations of Programming, TU Dresden, Germany.

1

1 Introduction

After introducing the notations and formalisms used (Chapter 2), I will define the
product of a tree language and an n-gram model and proof that it is regular (Chapter 3).
Chapter 4 provides an algorithm for the construction of regular tree grammer that rec-
ognizes the product language and describes the optimisations I applied to it in order to
enhance performance. Important parts of the implementation of the algorithm as well as
a description of their functions are shown in Chapter 5. Chapter 6 concludes the work
and names options to enhance the algorithm and the implementation further.

2

2 Preliminaries

This chapter introduces basic notations and formalisms used in this work.
The set of non-negative integers is denoted by N and the set of positive integers is

denoted by N>0, i.e., N>0 = N \ {0}. The set of real numbers is denoted by R and the
set of non-negative real numbers is R≥0. We assume that R and R≥0 contain ∞. The
set of variables is denoted by X = {xi | i ∈ N>0}.
An alphabet is a finite set, its elements are called symbols; Σ,∆ and Γ will denote al-

phabets. A sequence of symbols w = 〈w1, . . . , wn〉 will often be abbreviated by w1 . . . wn,
omitting the surrounding chevrons and commas in between; w1, . . . , wn are called items
of w. Let w = w1 . . . wn be a sequence.

• The length of w is |w| = n.

• A sub-sequence of w is the sequence wlk = wk . . . wl where 1 ≤ k ≤ l ≤ n.

The empty sequence 〈〉 is abbreviated by ε. For any given sequence u, the k-th item of u
is denoted by uk where 1 ≤ k ≤ |u|. We abbreviate the set of all sequences over Σ with
at most length k, i.e., the set

⋃k
i=0 Σi, by Σ≤k.

Let f be a function f : A → R≥0. The support of f is the set supp(f) = {a ∈ A |
f(a) 6= 0}. Let g : A→ Y be a partial function from the set A to the set Y . The domain
of g is the set of all elements of A that are assigned an element of Y by g; we denote the
domain of g by Dg. Let {a1, . . . , ak} = Dg, y1, . . . , yk ∈ Y such that g(ai) = yi for every
1 ≤ i ≤ k. We denote g by [a1/y1, . . . , ak/yk].

2.1 Trees

A ranked alphabet is a tuple 〈Σ, rk〉 where Σ is an alphabet and rk : Σ → N assigns a
rank to every element of Σ. If the mapping rk is clear from the context, we denote the
set rk−1(n) by Σ(n) and the ranked alphabet 〈Σ, rk〉 by Σ.
Let Σ be a ranked alphabet. The set of trees over Σ, denoted by TΣ, is the smallest

set T where for every n ≥ 1, ξ1, . . . , ξn ∈ T and σ ∈ Σ(n) we have σ(ξ1, . . . , ξn) ∈ T .
Let ξ ∈ TΣ be a tree. The set of positions in ξ, denoted by pos(ξ) is defined as follows:

If ξ = σ(ξ1, . . . , ξk) where σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ then pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤
k, v ∈ pos(ξi)}.
Let p ∈ pos(ξ) be a position in ξ and ξ′ ∈ TΣ be a tree.

• The label at position p, i.e., the symbol σ ∈ Σ at position p in ξ, is denoted by
ξ(p).

• The subtree of ξ at position p is denoted by ξ|p.

3

2 Preliminaries

ξ1 = α ξ2 =

γ

α

ξ3 =

σ

βγ

α

(a) Σ-trees

ζ1 = α ζ2 = q1 ζ3 =

σ

q2γ

q1

(b) Q-indexed Σ-trees

ζ3f =


σ

q2γ

q1

 [α]〈1,1〉[γ(α)]〈2〉 =


σ

q2γ

α

 [γ(α)]〈2〉 =

σ

γ

α

γ

α

(c) tree substitution ζ3f

Figure 2.1: Examples for Σ-trees, Q-indexed Σ-trees and tree substitution.

• The tree obtained by replacing the sub-tree of ξ at position p with ξ′ is denoted by
ξ[ξ′]p.

• The pre-order of a tree ξ is the sequence of all symbols in ξ top-down then left-to-
right.

Let f : pos(ξ) → TΣ be a partial function where for every p ∈ Df there is no p′ ∈ Df
such that p is a strict prefix of p′. The tree substitution of ξ with f , denoted by ξf , is
the tree ξ[f(p1)]p1 . . . [f(pk)]pk .
Let Σ be a ranked alphabet and Q be an alphabet.

• The set of trees over Σ indexed by Q is the set TΣ(Q) = TΣ∪Q where rk(q) = 0 for
every q ∈ Q.

• The set of Q-indexed Σ-symbols is the set Σ(Q) = {σ(q1, . . . , qk) | σ ∈ Σ(k), q1,
. . . , qk ∈ Q} ⊆ TΣ(Q).

Example 2.1 (trees, indexed trees, tree substitution). Let Σ = {α(0), β(0), γ(1), σ(2)} be
a ranked alphabet where for each symbol, the number in superscript parenthesis denotes
its rank, Q = {q1, q2} be an alphabet and f = [〈1, 1〉/α, 〈2〉/γ(α)] be a partial function.
Figure 2.1(a) shows some trees ξ1, ξ2, ξ3 ∈ TΣ, Figure 2.1(b) shows some indexed trees
ζ1, ζ2, ζ3 ∈ TΣ(Q) and Figure 2.1(c) shows the tree substitution ζ3f .

2.2 Algebras

Let Σ be a ranked alphabet and A a set.

4

2.3 Corpora and Languages

• The set of operations on A of arity k is the set of mappings Opsk(A) = AA
k , and

• the set of operations on A is the set of functions Ops(A) =
⋃
k∈N Opsk(A).

A Σ-algebra over A is a tuple A = 〈A, (·)A〉 where A is a set (the carrier set) and for all
k ∈ N, the mapping (·)A (the interpretation mapping) assigns a k-ary operation to every
k-ary symbol, i.e., ∀k ∈ N : ∀σ ∈ Σ(k) : σA ∈ Opsk(A). We extend the interpretation
mapping to trees. For every ξ = σ(ξ1, . . . , ξk) ∈ TΣ where rk(σ) = k, the interpretation
mapping is defined as the mapping (·)A′ : TΣ → A where ξA′ = σA(ξA

′
1 , . . . , ξA

′
k). In the

following, we abbreviate the mapping (·)A′ by (·)A.

• The term algebra over Σ is the Σ-algebra A = 〈TΣ, (·)A〉 where for every k ∈ N, σ ∈
Σ(k) holds σA(ξ1, . . . , ξk) = σ(ξ1, . . . , ξk).

• The string algebra over Σ is the ∆-algebra A = 〈Σ∗, (·)A〉 where ∆ = {σ(0) | σ ∈
Σ} ∪ {•(k)

k | 2 ≤ k ≤ k̂} for a given number k, for every α ∈ Σ(0) we have αA = α
and for every k ≥ 2 and σ ∈ Σ(k) we have σA(w1, . . . , wk) = w1 . . . wk. Whenever
we use the string algebra, the number k̂ will be clear from the context.

Example 2.2 (algebras). Consider the ranked alphabet Σ and the trees ξ1, ξ2, ξ3 in
Example 2.1. Let A1 be a Σ-algebra over (the carrier set) {α, β}∗ where αA1 = α,
βA1 = β, (γ(ξ1))A1 = ξA1

1 and (σ(ξ1, ξ2))A1 = ξA1
1 ξA1

2 . Let A2 be the Σ-term algebra
(over the carrier set TΣ). We apply both interpretation functions to the trees ξ1, ξ2, ξ3:

ξA1
1 = α ξA1

2 = α ξA1
3 = αβ

ξA2
1 = ξ1 ξA2

2 = ξ2 ξA2
3 = ξ3

2.3 Corpora and Languages

Let A be an arbitrary set. An A-corpus c is a mapping c : A → R≥0. Let Σ be an
alphabet.

• A sentence corpus over Σ is a Σ∗-corpus.

• An n-gram corpus over Σ is a Σn-corpus.

Let Σ be an alphabet.

• A string language over Σ is a subset of Σ∗.

• A tree language over Σ is a subset of TΣ.

• A weighted string language over Σ is a function Σ∗ → R≥0.

• A weighted tree language over Σ is a function TΣ → R≥0.

5

2 Preliminaries

2.4 n-Gram Models

An n-gram model is a language model that evaluates the quality of a sentence according
to n-grams. An input sentence is decomposed into sub-sequences of words, each sub-
sequence being of length n. Each of those sub-sequences is called an n-gram of the
sentence. The n-gram model assigns a weight to every n-gram. The overall weight
(score) of the sentence is the product of the weights of the n-grams in the sentence
[MJ09, Equation 4.7].
We will see that this plain interpretation of n-gram models has some limitations.

Definition 2.3 (n-gram). Let w ∈ Γ∗ be a sentence. For every 0 ≤ i ≤ |w| − n, the
sequence wi+ni+1 is an n-gram of w.

Example 2.4 (n-gram). Let w = 〈garcia, tambien, tiene, una, empresa, .〉 be a sen-
tence. It contains the 2-grams {〈garcia, tambien〉, 〈tambien, tiene〉, 〈tiene, una〉, 〈una,
empresa〉, 〈empresa, .〉} and the 3-grams {〈garcia, tambien, tiene〉, 〈tambien, tiene,
una〉, 〈tiene, una, empresa〉, 〈una, empresa, .〉}.

Definition 2.5 (n-gram weight function). An n-gram weight function is a function
N : Γn → R≥0 that assigns a weight to every n-gram.

2.4.1 Application

In order to apply the n-gram model to a sentence w, we need to split w into n-grams
and then multiply the weights of those n-grams. The sentence w must therefore have at
least length n. The following function takes care of splitting a sentence, weighting the
n-grams and multiplying the weights [MJ09, Section 4.2].

Definition 2.6 (n-gram score function). Let N : Γn → R≥0 be an n-gram weight func-
tion. We define the n-gram score function N ′ : Γ≥n → R≥0 such that for every sentence
w ∈ Γ≥n we have

N ′(w) =

|w|−n∏
i=0

N(wi+ni+1).

The fact that the product is commutative, i.e., the order of evaluation does not affect
the outcome, will be used later.

Definition 2.7 (n-gram model). Let N : Γ≥n → R≥0 be an n-gram score function. We
define the n-gram model N ′ over Γ as a weighted string language N ′ : Γ∗ → R≥0 over Γ
such that for every w ∈ Γ∗ :

N ′(w) =

{
N(w) if |w| ≥ n
0 otherwise.

We abbreviate the n-gram weight function, the n-gram score function and the n-gram
model all by N .

6

2.4 n-Gram Models

Example 2.8 (n-gram model). Let Γ = {garcia, tambien, tiene, una, empresa, .} be an
alphabet and N : Γ2 → R≥0 be the 2-gram weight function shown in Table 2.1. For
a given 2-gram αβ, we look in the row indexed by α and the column indexed by β.
Consider the sentences w1 = 〈garcia, tambien, tiene, una, empresa, .〉 and w2 = 〈una,
empresa, .〉. We apply the n-gram model according to Definition 2.7 to the sentences:

N(w1) = 1 · 1 · 1 · 1 · 2

3
=

2

3

N(w2) = 1 · 1 · 2

3
=

2

3

Lemma 2.9. Let N be a n-gram model over Γ. For every u, v ∈ Γ∗ where |u| > n and
|v| > n holds

N(uv) = N(u) ·N(u
|u|
|u|−n+1v

n−1
1) ·N(v).

Proof.

N(uv) =

|uv|−n∏
i=0

(uv)i+ni+1 (Definition 2.6)

=

(|u|−n∏
i=0

(uv)i+ni+1

)
·

(|u|+n−1∏
i=|u|−n+1

(uv)i+ni+1

)
·

(|uv|−n∏
i=|u|+n

(uv)i+ni+1

)

=

(|u|−n∏
i=0

(u)i+ni+1

)
·

(|u|u||u|−n+1
vn−1
1 |−n∏

i=0

(u
|u|
|u|−n+1v

n−1
1)i+ni+1

)
·

(|v|−n∏
i=0

(v)i+ni+1

)
= N(u) ·N(u

|u|
|u|−n+1v

n−1
1) ·N(v) (Definition 2.6)

�

2.4.2 Training

Let c be an n-gram corpus over Γ. We call the set of all symbols that occur in c the
vocabulary of c. An n-gram weight function can be obtained from c by relative frequency
estimation as follows:

N(w) =

{ c(w)∑
α∈Γ c(w

n−1
1 α)

if w ∈ supp(c)

0 otherwise.

The n-gram weight function thus obtained has maximum likelihood among all possible
weight functions [Pre04, Theorem 1], where the likelihood of an n-gram corpus c under
the n-gram weight function N is given by

LN (c) =
∏
w∈Γn

N(w)c(w).

7

2 Preliminaries

α

β
garcia tambien tiene una empresa .

garcia 0 1 0 0 0 0

tambien 0 0 1 0 0 0

tiene 0 0 0 1 0 0

una 0 0 0 0 1 0

empresa 0 1/3 0 0 0 2/3

. 2/3 0 0 1/3 0 0

Table 2.1: The 2-gram weight function N(αβ) of Example 2.8.

2.4.3 Limitation

The training as well as the application of n-gram models cause a major restriction when
determining the language model score of sentences: With the described training process,
any n-gram that is not in the corpus will be assigned an n-gram weight of 0, hence each
sentence with at least one of those n-grams will get an n-gram model score of 0. This
limitation is called sparse-data problem.

2.4.4 Smoothing

Smoothing is a technique that deals with the sparse-data problem. Smoothing can be ap-
plied in the training process or in the application and avoids n-gram weights of zero. We
will see three smoothing techniques: Laplace smoothing, also known as add-one smooth-
ing, Good-Turing discount, and Katz backoff [CG99, Section 2].

Laplace Smoothing

Laplace smoothing is an intuitive way to avoid zero-weights. According to Section 2.4.2,
exactly the n-grams, that have a corpus count of zero, will have a weight of zero under
the n-gram weight function. We avoid counts of zero by adding one to every original
corpus count. Let c : Γn → R≥0 be an n-gram corpus. By applying Laplace smoothing to
c, we get an n-gram corpus c′ where for every n-gram w ∈ Γn we have

c′(w) = c(w) + 1.

Good-Turing Discount

A more elaborate method than Laplace smoothing is Good-Turing discount. We build
classes according to the count of each element, i.e., the class labelled with k contains all

8

2.5 Interpreted Regular Tree Grammars

elements of the corpus where c(w) = k. For every 1 ≤ k < ∞ we count the elements
of those classes: N(k) = |{w | c(w) = k}|, for k = 0 we have N(0) =

∑∞
j=1N(j). The

smoothed value according to Good-Turing discount is the Laplace-smoothed corpus value
normalized by the ratio of the class sizes of c(x) + 1 and c(x):

c′(w) = (c(w) + 1) · N(c(w) + 1)

N(c(w))
.

Katz Backoff

Katz backoff approximates the weight of unknown n-grams by falling back to m-gram
models with lower degree, i.e., m < n. A weighted string language over Γ of degree
n according to Katz backoff contains an m-gram model Nm : Γm → R≥0 for all 1 ≤
m ≤ n; we denote these models by N1, . . . , Nn. Each of the models N1, . . . , Nn is
trained individually. For 1 ≤ m ≤ n, the model Nm is trained with the m-gram corpus
cm : Γm → R≥0.
For every w ∈ Γ∗, the remaining probability mass is defined as the mappingNrem : Γ∗ →

R≥0 where

Nrem(w) =

1−
∑

σ∈Γ
c|w|+1(wσ)>0

N|w|+1(wσ)

1−
∑

σ∈Γ
c|w|+1(wσ)>0

N|w|(w
|w|
2 σ)

.

By utilizing the remaining probability mass, we can define the Katz backoff language
model N ′ : Γ∗ → R≥0 by:

N ′(w) =

{
N|w|(w) if c|w|(w) > 0

Nrem(w
|w|−1
1) ·N ′(w|w|2) otherwise.

The Katz backoff language model assigns a non-zero weight to every m-gram, for every
1 ≤ m ≤ n, that only contains symbols in the vocabulary.

2.5 Interpreted Regular Tree Grammars

In order to cover the structure of language, currently many translation systems utilize
weighted synchronous context-free grammars (wSCFGs). Weighted regular tree gram-
mars (wRTGs) are a natural extension of weighted context-free grammars (wCFGs)
[Bra69, Section 2].
While wCFGs define a weighted language of strings, wRTGs define a weighted lan-

guage of trees. In order to make the wRTGs synchronous, we add tree homomorphisms.
A wRTG and a sequence of tree homomorphisms form a generalized bimorphism. Gener-
alized bimorphisms define a weighted language of tuples of trees. To make the language
more flexible, we add a sequence of algebras to the generalized bimorphism. The resulting
interpreted regular tree grammar (IRTG) defines a weighted language of tuples, where
the elements of the tuple can be of arbitrary structure, i.e., any structure that can be
modelled as an element of the carrier set of an algebra.

9

2 Preliminaries

[1] S• →
S

.•VP•NP•

[2] NP• →
NP1

NNP•

[3] NP• →
NP2

NN•DT•

[4] NNP• →
NNP

garcia
[5] DT• →

DT

a

[6] NN• →
NN

company

[7] VP• →
VP

ADVP•NP•VBZ•

[8] VBZ• →
VBZ

has

[9] ADVP• →
ADVP

RB•

[10] RB• →
RB

also

[11] .• →
.1

.

Figure 2.2: Rule set R of the RTG of Example 2.11.

2.5.1 Regular Tree Grammars

A regular tree grammar is a formalism that can derive trees. We will first introduce
(unweighted) regular tree grammars (RTGs) which define languages of trees, then we
will introduce weighted RTGs which define weighted languages of trees.

Definition 2.10 (regular tree grammar). A regular tree grammar over Σ (Σ-RTG) is
a tuple G = 〈Q, q0, R〉 where Q is a finite set (of states), Σ is a finite ranked alphabet
where Q ∩ Σ = ∅, q0 ∈ Q is a state (initial state) and R ⊆ Q × Σ(Q) is a finite set (of
rules).

In literature, RTGs are usually defined more generally, but they are equally powerful
to the RTGs defined here [Bra69, Lemma 3.16].
The rank of a rule is the rank of the terminal symbol on the right-hand side of the

rule. The set of rules then forms a ranked alphabet. The following example shows an
RTG.

Example 2.11 (RTG). Let G = 〈Q, S•, R〉 be a finite Σ-RTG with

• the alphabet Σ = {garcia(0), has(0), a(0), company(0), also(0), .(0), S(3), NP(1)
1 ,

NP(2)
2 , NNP(1), DT(1), NN(1), VP(3), VBZ(1), ADVP(1), RB(1), .(1)

1 } and

• the states Q = {S•, NP•, NNP•, DT•, NN•, VP•, VBZ•, ADVP•, RB•, .•}.

For the set of rules we have for example r1 = 〈S•, S(NP•, VP•, .•)〉. All rules in
R = {r1, . . . , r11} are shown in Figure 2.2.

10

2.5 Interpreted Regular Tree Grammars

S

.1

.

VP

ADVP

RB

also

NP2

NN

company

DT

a

VBZ

has

NP1

NNP

garcia

Figure 2.3: A derived tree.

Definition 2.12 (derivations). Let a G be a Σ-RTG. The set of derivations of G is
the set DG ⊆ TR where d ∈ DG if and only if for every position p ∈ pos(d) holds:
Let d(p) = 〈q, ζ〉, for every n ∈ {1, . . . , rk(d(p))}, ζ(n) matches the left-hand side of
d(pn). The set of derivations of ξ where ξ ∈ TΣ is the set DG(ξ) = {d ∈ DG | ∀p ∈
pos(d) : ξ(p) = (d(p))2(ε)}. The set of derivations of ξ in state q is the set Dq

G(ξ) = {d ∈
DG(ξ) | (d(ε))1 = q}.

The set Dc
G denotes the set Dq

G of derivations such that q is the initial state.

Definition 2.13 (derived tree). Let G be an RTG. The tree ξ ∈ TΣ is called derived tree
of G if Dc

G(ξ) 6= ∅.

Example 2.14 (derivation, derived tree). Given the RTG from Example 2.11, we can
derive the tree ξ, shown in Figure 2.3, with the derivation d ∈ DG(ξ) where

d = r1(r2(r4), r7(r8, r3(r5, r6), r9(r10)), r11).

Definition 2.15 (language). Let G be an RTG. The language of G is the tree language
[[G]] = {ξ ∈ TΣ | q0 ⇒∗ ξ}.

A regular weighted tree grammar (wRTG) extends an RTG G by assigning a weight
to every rule in G. The weight of a derivation d ∈ DG is then calculated as the product
over all positions in d of the weight of the rule at that position. The weight of a derived
tree ξ is the sum of the weights over all derivations d ∈ Dc

G(ξ) that derive ξ.

Definition 2.16 (regular weighted tree grammar). A regular weighted tree grammar over
Σ (Σ-wRTG) is a tuple G = 〈Q, q0, R, µ〉 where 〈Q, q0, R〉 is a Σ-RTG and µ : R→ R≥0

assigns a weight to every rule.

Definition 2.17 (weight of a derivation). Let G be a wRTG. The derivation weight is
the function µ̂ : DG → R≥0 where for every d ∈ DG holds

µ̂(d) =
∏

w∈pos(d)

µ(d(w)).

11

2 Preliminaries

We do not differentiate between the rule weight µ and the derivation weight µ̂; we
denote both by µ.

Definition 2.18 (language). Let G be a Σ-wRTG. The language of G, denoted by [[G]],
is the weighted Σ-tree language [[G]] : TΣ → R≥0 where

[[G]](ξ) =
∑

d∈DcG(ξ)

µ(d).

Definition 2.19 (regular). A weighted tree language L is called regular if there exists
a wRTG G such that [[G]] = L.

Example 2.20 (wRTG). Let 〈Q, S•, R〉 be the RTG in Example 2.11. Then G = 〈Q,
S•, R, µ〉 is a wRTG where µ(r) = 1 if r ∈ R \ {r2, r3} and µ(r2) = µ(r3) = 1

2 . The
language of G assigns a weight of 1

4 to the derivation and the tree in Example 2.14. These
weights are equal because there is only one complete derivation of the tree.

2.5.2 Interpreted Regular Tree Grammars

A wRTG, a sequence of tree homomorphisms and a sequence of algebras form an IRTG.
Both parsing and translation can be done using IRTGs. Many formalisms, e.g., CFGs,
SCFGs and LCFRS, are subsumed by IRTGs [KK11, Section 7].

Definition 2.21 (tree homomorphism). Let Σ and ∆ be ranked alphabets. A map-
ping h : TΣ → T∆ is called tree homomorphism from TΣ to T∆ if there is a mapping
h′ : Σ → T∆(X) where for all σ ∈ Σ(k), h′(σ) is a tree with variables x1, . . . , xk each
occurring exactly once, such that h(ξ) = h′(σ)[p1/h(ξ1), . . . , pk/h(ξk)] holds for every
ξ = σ(ξ1, ..., ξk) ∈ TΣ where ξ(p1) = x1, . . . , ξ(pk) = xk.

A tree homomorphism h : TΣ → T∆ is usually given by a mapping h′ : Σ→ T∆(X) as
defined in Definition 2.21. Both mappings are referred to by the same symbol, here h.

In literature, a tree homomorphism is usually defined more generally. The tree homo-
morphism defined here is a linear and non-deleting tree homomorphism. That means it
can neither copy nor delete sub-trees (linear and non-deleting).

Example 2.22 (tree homomorphism). Let h1 : TΣ → T∆ and h2 : TΣ → TΓ be the tree
homomorphisms shown in Figure 2.4(a). The tree homomorphisms h1 and h2 map every
symbol in Σ to an element of T∆(X) and TΓ(X) respectively. By extending h1 and h2

as defined in Definition 2.21, whole trees (in TΣ) are mapped to elements of T∆ and TΓ

respectively; an example is shown in Figure 2.4(b).

Definition 2.23 (generalized bimorphism). A generalized bimorphism B over ∆1, . . . ,∆n

(∆1, . . . ,∆n-bimorphism) is a tuple B = 〈G, h1, . . . , hn〉 where

• G is a Σ-wRTG and

• for every 1 ≤ i ≤ n, hi is a tree homomorphisms hi : TΣ → T∆i .

12

2.5 Interpreted Regular Tree Grammars

Definition 2.24 (interpreted regular tree grammar). An interpreted regular tree gram-
mar over Γ1, . . . , Γn (Γ1, . . . , Γn-IRTG) is the tuple G = 〈B, A1, . . . , An〉 where

• B is a ∆1, . . . , ∆n-bimorphism and

• for every 1 ≤ i ≤ n, Ai is a ∆i-algebra over carrier set Γi.

Example 2.25 (generalized bimorphism and IRTG). Let G be the Σ-wRTG from Ex-
ample 2.20. Let h1, h2 be the tree homomorphisms from Example 2.22. Let furthermore
A1 = 〈T∆, ·A1〉 be the term algebra over T∆ and A2 = 〈Γ∗, ·A2〉 be the string algebra
over Γ. Now consider the tree ξ in Figure 2.3. Figure 2.5 shows ξ at the top. The
tree ξ is recognized by the Σ-wRTG G which is represented by the inner most dashed
rectangle. The trees h1(ξ) and h2(ξ) are shown in the centre of the figure. The tu-
ple 〈h1(ξ), h2(ξ)〉 of trees is recognized by the generalized bimorphism B = 〈G, h1, h2〉
over T∆, TΓ, as shown by the second inner most dashed rectangle. The figure shows
(h1(ξ))A1 and (h2(ξ))A2 at the bottom. The tuple 〈(h1(ξ))A1 , (h2(ξ))A2〉 is recognized
by the T∆,Γ

∗-IRTG G = 〈B,A1,A2〉, as the outer most dashed rectangle indicates.

Definition 2.26 (language). Let G be an IRTG over Γ1, . . . ,Γn. The language of G is
the weighted language over Γ1 × · · · × Γn where

[[G]](w) =
∑
ξ∈TΣ

∀i∈{1,...,n} :

(hi(ξ))
Ai=wi

[[G]](ξ)

The sum in Definition 2.18 is potentially not finite. However if the Σ-wRTG G is
proper, then [[G]](ξ) ≤ 1 holds for every ξ ∈ TΣ ([BT73]).

13

2 Preliminaries

σ h1(σ) h2(σ)

garcia garcia garcia

has has tiene

a a una

company company empresa

also also tambien

. . .

S S(x1, x2, x3) •3(x1, x2, x3)

NP1 NP1(x1) x1

NP2 NP2(x1, x2) •2(x1, x2)

NNP NNP(x1) x1

DT DT(x1) x1

NN NN(x1) x1

VP VP(x1,NP(x2, x3)) •2(x3, •2(x1, x2))

VBZ VBZ(x1) x1

ADVP ADVP(x1) x1

RB RB(x1) x1

.1 .1(x1) x1

(a) The tree homomorphisms h1 and h2.

NP2

NN

company

DT

a

NP2

NN

company

DT

a

h1

TΣ

T∆

•2

empresauna

h2

TΓ

(b) Application of h1 and h2 to
a tree.

Figure 2.4: The tree homomorphisms h1 and h2 and their application to a tree.

14

2.5 Interpreted Regular Tree Grammars

S

.1

.

VP

ADVP

RB

also

NP2

NN

company

DT

a

VBZ

has

NP1

NNP

garcia

TΣ

•3

.•2

•2

•2

empresauna

tiene

tambien

garcia

h2 TΓ

S

.1

.

VP

ADVP

RB

also

NP2

NN

company

DT

a

VBZ

has

NP1

NNP

garcia

h1T∆

S

.1

.

VP

ADVP

RB

also

NP2

NN

company

DT

a

VBZ

has

NP1

NNP

garcia

(·)A1

T∆

garcia tambien tiene una empresa .

(·)A2

Γ∗

wRTG G
generalized

bimorphism B

IRTG G

Figure 2.5: An IRTG over T∆ and Γ∗.

15

3 Component Product

The SMT toolkit Vanda represents weighted languages by IRTGs; an IRTG defines a
weighted language of tuples. We can not calculate the product of a weighted language
of tuples and a weighted string language. Instead we select a component of the given
IRTG.

Definition 3.1 (component). Let G = 〈B, A1, . . . , Ak〉 be an IRTG where B = 〈G,
h1, . . . , hk〉. The tuple C = 〈G, hi, Ai〉 is a component of G where 1 ≤ i ≤ k.

Definition 3.2 (language). Let C = 〈G, h,A〉 be a component of some IRTG where G
is a Σ-wRTG, h : TΣ → T∆ a tree homomorphism and A a ∆-algebra with carrier set Γ.
The language of C is the weighted language over Γ such that for every γ ∈ Γ holds

[[C]](γ) =
∑
ξ∈TΣ

(h(ξ))A=γ

[[G]](ξ).

Since an n-gram model is a weighted string language, we will select a component
C = 〈G, h,A〉 such that [[C]] is also a weighted string language. For an n-gram model
over Γ, C has to be a weighted string language over Γ, hence A is an algebra with carrier
set Γ∗. In this section we will only deal with the string algebra.

Definition 3.3 (component product). Let C = 〈G, h,A〉 be a component of some IRTG
where [[C]] is a weighted string language over Γ and N be an n-gram model over Γ. The
product of C and N is the weighted string language L over Γ where for every w ∈ Γ∗

holds
L(w) = [[C]](w) ·N(w).

We will show that the product of an n-gram model N and a component C = 〈G, h,A〉
of an IRTG G can be represented by a component C ′ = 〈G′, h,A〉 of an IRTG G′. We
decompose the claim into three parts:

1. First, we lift N to a weighted tree language ϕN . One could also say we apply the
algebras evaluation function (·)A backwards. We construct a wRTG that recognizes
ϕN (ϕN is therefore regular).

2. Then, we apply the tree homomorphism h backwards to ϕN , generating a weighted
tree language h−1(ϕN). We construct a wRTG that recognizes h−1(ϕN). It was
already shown that regular tree languages are closed under inverse homomorphism
[FMV10, Theorem 5.1].

17

3 Component Product

T∆

Γ∗

·A

R≥0

ϕN

N

(a) n-gram model and
n-gram tree language

TΣ

T∆

h

R≥0

h−1(L)

L

(b) language and in-
verse homomorphism
language

TΣ R≥0

L1

L2

L1 � L2

(c) Hadamard product
of two languages

Figure 3.1: Sets and functions for the steps of the component product.

3. At last, we calculate the Hadamard product of h−1(ϕN) and [[G]], denoted by
h−1(ϕN) � [[G]]. We construct a wRTG that recognizes h−1(ϕN) � [[G]]. It was
already shown that regular tree languages are closed under Hadamard product
[BR82, Proposition 5.1].

3.1 n-Gram Tree Language

In order to intersect a weighted tree language with the weighted string language of
an n-gram model, we first need to lift the n-gram model to a weighted tree language.
Figure 3.1(a) shows the sets and functions involved in the definition of the n-gram tree
language.

Definition 3.4 (n-gram tree language). Let N : Γ∗ → R≥0 be an n-gram model and A
be a ∆-algebra with carrier set Γ∗. The n-gram tree language associated with N is the
weighted language ϕN : T∆ → R≥0, ξ 7→ N(ξA).

We will only apply Definition 3.4 for the string algebra.

Definition 3.5 (n-gram wRTG). Let N be an n-gram score function over Γ and let
k ∈ N. The n-gram wRTG associated with N is the ∆-wRTG G = 〈Q1∪Q2∪{q0}, q0, R0∪
R1 ∪R2, µ〉 where

∆ = {γ(0) | γ ∈ Γ} ∪ {•(j)j | 2 ≤ j ≤ k},
Q1 = Γ≤n−1, (3.1)

Q2 = Γn−1 × Γn−1. (3.2)

We define the functions ι′ : (Q1 ∪Q2)∗ × Γ∗ × (Γ∗)∗ → (Γ∗)∗ and ι : (Q ∪Q2)∗ → (Γ∗)∗

to prepare a sequence of states for the use with the language model N :

ι′(ε, s, r) = rs,

ι′(w, s, r) =

{
ι′(w

|w|
2 , sw1, r) if w1 ∈ Q1

ι′(w
|w|
2 , v, r(su)) if w1 = 〈u, v〉 ∈ Q2,

18

3.1 n-Gram Tree Language

ι(w) = ι′(w, ε, ε). (3.3)

We define the function f : (Q1 ∪Q2)∗ → (Q1 ∪Q2) in order to calculate resulting states:

f(w) =

{
(ι(w))1 if |ι(w)| = 1 ∧ |(ι(w))1| < n

〈un−1
1 , v

|v|
|v|−n+1〉 otherwise, let u = (ι(w))1, v = (ι(w))|ι(w)|.

(3.4)

And we define the function g : (Q1 ∪Q2)∗ → R≥0 in order to calculate weights:

g(w) =


∏
v∈ι(w)
|v|≥n

N(v) if |ι(w)| > 1 ∨ |(ι(w))1| ≥ n

1 otherwise.
(3.5)

Using f and g, the sets of rules R0, R1 and R2 and the weight function µ are defined by:

R0 = {〈〈α〉, α〉 | α ∈ Γ}, (3.6)
R1 = {〈f(q1 . . . qj), •j(q1, . . . , qj)〉 | 2 ≤ j ≤ k, q1, . . . , qj ∈ Q1 ∪Q2}, (3.7)
R2 = {〈q0, q

′〉 | q′ ∈ Q2}, (3.8)

µ(r) =

{
g(q1 . . . qj) if r = 〈q′, •j(q1, . . . , qj)〉 ∈ R1

1 otherwise.
(3.9)

Example 3.6. Let ι be the function defined in Equation 3.3 and w ∈ Q∗ for some Q
where

w = 〈〈〈garcia〉, 〈empresa〉〉, 〈tambien〉〉

The value of ι(w) is calculated as follows

ι(w) = ι(〈〈〈garcia〉, 〈empresa〉〉, 〈tambien〉〉)
= ι′(〈〈〈garcia〉, 〈empresa〉〉, 〈tambien〉〉, ε, ε)
= ι′(〈〈tambien〉〉, 〈empresa〉, 〈〈garcia〉〉)
= ι′(ε, 〈empresa, tambien〉, 〈〈garcia〉〉)
= 〈〈garcia〉, 〈empresa, tambien〉〉

Example 3.7. LetN : Γ∗ → R≥0 be the 2-gram model defined in Example 2.8 and k = 3.
We construct the ∆-wRTG G = 〈Q, q0, R0∪R1∪R2, µ〉 according to Definition 3.5. Some
rules of G with weights are shown in Table 3.1.

Let the ∆-wRTG G = 〈Q, q0, R, µ〉 be the n-gram wRTG associated with an arbitrary
n-gram score function over Σ. We make a number of observations.

Observation 3.8. Every tree ξ ∈ T∆ has exactly one complete derivation if |ξA| ≥ n.

Argumentation: • For every rule r ∈ R, the left-hand side is determined by the
right-hand side, i.e., for any given ζ ∈ ∆(Q) there is at most one rule with the
right-hand side ζ (Equations 3.6, 3.7 and 3.8). Therefore every tree in T∆ has at
most one complete derivation.

19

3 Component Product

R0
〈garcia〉 1−→ garcia 〈tambien〉 1−→ tambien 〈tiene〉 1−→ tiene
〈una〉 1−→ una 〈empresa〉 1−→ empresa 〈.〉 1−→ .

R1

〈〈garcia〉, 〈tambien〉〉 1−→ •2(〈garcia〉, 〈tambien〉)
〈〈garcia〉, 〈tiene〉〉 1−→ •3(〈garcia〉, 〈tambien〉, 〈tiene〉)
〈〈tambien〉, 〈tiene〉〉 1−→ •2(〈tambien〉, 〈tiene〉)

〈〈tambien〉, 〈una〉〉 1−→ •3(〈tambien〉, 〈tiene〉, 〈una〉)
...

〈〈garcia〉, 〈tambien〉〉
2/3−→ •2(〈〈garcia, empresa〉〉, 〈tambien〉)

...

R2

q0
1−→ 〈〈garcia〉, 〈garcia〉〉 q0

1−→ 〈〈garcia〉, 〈tambien〉〉
q0

1−→ 〈〈garcia〉, 〈tiene〉〉 q0
1−→ 〈〈garcia〉, 〈una〉〉

q0
1−→ 〈〈garcia〉, 〈empresa〉〉 q0

1−→ 〈〈garcia〉, 〈.〉〉
...

Table 3.1: Rules of the wRTG G in Example 3.7.

• Every tree in ξ ∈ T∆ has at least one complete derivation if |ξA| ≥ n (Equations 3.8
and 3.4).

Observation 3.9. For every ξ ∈ T∆ and d ∈ DG(ξ) the following holds:

• (d(ε))1 ∈ Q1 implies ξA = (d(ε))1

• (d(ε))1 ∈ Q2 implies (ξA)n−1
1 = ((d(ε))1)1 and (ξA)

|ξA|−n+1

|ξA| = ((d(ε))1)2

Argumentation: We traverse a given tree bottom-up. At nullary symbols, the states
are equal to the symbols. At the • operators, sequences from the bottom are merged
until their accumulated length is greater than n − 1. The merging does not add, delete
or swap sequences. Therefore the first statement holds.
When a length of n is reached, the first and the last n − 1 symbols are copied to the

next state. This continues upwards. Therefore the second statement holds.

Theorem 3.10. The n-gram tree language associated with an n-gram model is regular.

Proof. Let N : Γ∗ → R≥0 be an n-gram model, the ∆-algebra A be the string algebra
over Γ, ϕN : T∆ → R be the n-gram tree language associated with N and G be the
n-gram wRTG associated with N . We show that ϕN is regular by showing that for every
ξ ∈ T∆, the equation [[G]](ξ) = ϕN (ξ) holds. This is done by induction over the length of
ξA and the number of occurrences of states in Q2 in the right-hand side of d(ε) for every
d ∈ DG(ξ).

20

3.1 n-Gram Tree Language

Base case 1: Let |ξA| < n. For every d ∈ DG(ξ) holds

µ(d) = 1. (3.10)

This is shown as follows:

µ(d) =
∏

p∈pos(d)

µ(d(p)) (Definition 2.17)

=

(∏
p∈pos(d)
d(p)∈R1

µ(d(p))

)
·

(∏
p∈pos(d)
d(p)/∈R1

µ(d(p))

)

=

(∏
p∈pos(d)
d(p)∈R1

d(p)=〈q,σ(q1,...,qk)〉

g(q1 . . . qk)

)
·

(∏
p∈pos(d)
d(p)/∈R1

1

)
(Equation 3.9)

=
∏

p∈pos(d)
d(p)∈R1

d(p)=〈q,σ(q1,...,qk)〉

g(q1 . . . qk) (neutral element)

= 1. (Observation 3.9)

Base case 2: Let |ξA| = n. For every d ∈ DG(ξ) holds

µ(d) = N(ξA). (3.11)

This is shown as follows:

µ(d) = µ(d(ε)) ·
k∏
i=1

µ(d|i)

= µ(d(ε)) ·
k∏
i=1

1 (Equation 3.10)

= µ(d(ε))

= g((d(ε))A2) (Equation 3.9)

=
∏

v∈ι((d(ε))A2)

N(v) (Equation 3.5)

= N(ξA). (Equation 3.3)

Base case 3: Let |ξA| > n. For every d ∈ DG(ξ) where d(ε) = 〈q, σ(q1, . . . , qk)〉 and
there exists exactly one j such that qj ∈ R1, holds

N(ξA) =

(∏
v∈ι(q1...qk)

g(v)

)
·

(
k∏
i=1

µ(d|i)

)
(3.12)

21

3 Component Product

This is shown as follows:(∏
v∈ι(q1...qk)

g(v)

)
·

(
k∏
i=1

µ(d|i)

)

=

(∏
v∈ι(q1...qk)

N(v)

)
·

(
k∏
i=1

µ(d|i)

)
(|ξA| > n)

=

(∏
v∈ι(q1...qj−1(qj)1

N(v)

)
·

(∏
v∈ι((qj)2qj+1...qk)

N(v)

)
·

(
k∏
i=1

µ(d|i)

)

= N(q1 . . . qj−1(qj)1) ·N((qj)2qj+1 . . . qk) ·

(
k∏
i=1

µ(d|i)

)
(Equation 3.3)

= N(q1 . . . qj−1(qj)1) ·N((qj)2qj+1 . . . qk) ·N((ξ|j)A) (Equation 3.11)

= N((ξ|1)A . . . (ξ|j−1)A((ξ|j)A)1) ·N(((ξ|j)A)2(ξ|j+1)A . . . (ξ|k)A) ·N((ξ|j)A)
(Observation 3.9)

= N((ξ|1)A . . . (ξ|k)A) (Observation 2.9)

= N(ξA) (definition of string algebra)

Inductive step: Now let |ξA| > n. There is only one derivation d (Observation 3.8);
d(ε) = 〈q, σ(q1, . . . , qk)〉. The number j is the biggest number such that qj ∈ R1. The
equation

[[G]](ξ) = N(ξA)

holds. This is shown as follows:

[[G]](ξ) =
∑

d′∈DcG(ξ)

µ(d) (Definition 2.18)

= µ(d) (there is only one d′)

= µ(d(ε)) ·
k∏
i=1

µ(d|i)

= g(q1 . . . qk) ·
k∏
i=1

µ(d|i) (Equation 3.9)

=

(∏
v∈ι(q1...qk)

N(v)

)
·

(
k∏
i=1

µ(d|i)

)
(Equation 3.5)

=

(∏
v∈ι(q1...qj−1(qj)1)

N(v)

)
·

(∏
v∈ι((qj)2qj+1...qk)

N(v)

)
·

(
j−1∏
i=1

µ(d|i)

)
·

(
k∏
i=j

µ(d|i)

)

22

3.2 Closure under Inverse Homomorphism

= N((ξ|1)A . . . (ξ|j−1)A((ξ|j)A)n−1
1) ·

(∏
v∈ι((qj)2qj+1...qk)

N(v)

)
·

(
k∏
i=j

µ(d|i)

)
(Equation 3.12)

= N((ξ|1)A . . . (ξ|j−1)A((ξ|j)A)n−1
1) ·N((qj)2qj+1 . . . qk) · µ(d|j)

(j is the biggest number such that qj ∈ R1)

= N((ξ|1)A . . . (ξ|j−1)A((ξ|j)A)n−1
1)

·N(((ξ|j)A)
|(ξ|j)A|
|(ξ|j)A|−n+1

(ξ|j+1)A . . . (ξ|k)A) ·N((ξ|j)A) (Equation 3.11)

= N((ξ|1)A . . . (ξ|k)A) (Observation 2.9)

= N(ξA) (definition of string algebra)

�

3.2 Closure under Inverse Homomorphism

Figure 3.1(b) shows the sets and functions involved in the definition of the inverse ho-
momorphism language.

Definition 3.11 (inverse homomorphism language). Let L : T∆ → R≥0 be a regular
weighted tree language and h : TΣ → T∆ a tree homomorphism. The inverse homomor-
phism language of L is defined by h−1(L) : TΣ → R≥0, h

−1(L)(ξ) = L(h(ξ)).

Definition 3.12 (inverse homomorphism wRTG). Let G = 〈Q, q0, R, µ〉 be a ∆-wRTG
and h : TΣ → T∆ a tree homomorphism. We define the set R′ = {〈q, σ(q1, . . . , qk)〉 | k ∈
N, σ ∈ Σ(k), q, q1, . . . , qk ∈ Q}. For every r = 〈q, σ(q1, . . . , qrk(σ))〉 ∈ R′, we define the
(∆ ∪X)-wRTG

Gr = 〈Q, q,Rr, µr〉 where (3.13)
Rr = R ∪ {〈qj , xj〉 | 1 ≤ j ≤ rk(σ)},

µr(r
′) =

{
µ(r′) if r′ ∈ R
1 otherwise.

(3.14)

The inverse homomorphism wRTG of G is the Σ-wRTG h−1(G) = 〈Q, q0, R
′, µ′〉 where

for every r ∈ R′ we have µ′(r) = [[Gr]](h(r2(ε))).

Let G = 〈Q, q0, R, µ〉 be a ∆-wRTG, h : TΣ → T∆ a tree homomorphism and for some
r ∈ R be Gr = 〈Q, q0, Rr, µr〉 the Σ-wRTG in Equation 3.13.

Observation 3.13. Every derivation in G is also a derivation in Gr (DG ⊆ DGr) since
R ⊆ Rr.

Observation 3.14. Every derivation in Gr that only contains rules from R is also a
derivation in G.

23

3 Component Product

Lemma 3.15. Let G = 〈Q, q0, R, µ〉 be a ∆-wRTG, h : TΣ → T∆ be a tree homomor-
phism and the Σ-wRTG G′ = 〈Q, q0, R

′, µ′〉 be the inverse homomorphism wRTG of G
regarding h. The following equation holds for every ξ ∈ TΣ and q ∈ Q:∑

d∈DG′ (ξ)
(d(ε))1=q

µ′(d) =
∑

d∈DG(h(ξ))
(d(ε))1=q

µ(d) (3.15)

Proof. We proof Equation 3.15 by induction over the size of pos(ξ).
Inductive hypothesis: For a given j ∈ N holds:

∀ξ ∈ T∆, q ∈ Q : |pos(ξ)| ≤ j =⇒
∑

d∈DG′ (ξ)
(d(ε))1=q

µ′(d) =
∑

d∈DG(h(ξ))
(d(ε))1=q

µ(d). (3.16)

Base case: We show that the inductive hypothesis (Equation 3.16) holds for j = 0:
There exists no ξ ∈ T∆ such that pos(ξ) ≤ 0. The implication therefore has a false
precondition. Hence, the induction hypothesis holds.
Inductive step: We show that if Equation 3.16 holds for j, it holds for j + 1:∑

d∈DG′ (ξ)
(d(ε))1=q

µ′(d) =
∑
r∈R′

r=〈q,σ(q1,...,qk)〉
∀i∈{1,...,k} :
di∈DG′ (ξ|i)
(di(ε))1=qi

µ′(r) · µ′(d1) · . . . · µ′(dk) (Definition 2.12)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

∑
d1∈DG′ (ξ|1)

(d1)1=q1

. . .
∑

dk∈DG′ (ξ|k)
(dk)1=qk

µ′(r) · µ′(d1) · . . . · µ′(dk)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

µ′(r) ·

(∑
d1∈DG′ (ξ|1)

(d1)1=q1

µ′(d1)

)
· . . . ·

(∑
dk∈DG′ (ξ|k)

(dk)1=qk

µ′(dk)

)

(distributivity)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

µ′(r) ·
k∏
i=1

∑
di∈DG′ (ξ|i)

(di)1=qi

µ′(di)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

µ′(r) ·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di) (Equation 3.16)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

[[Gr]](h(σ)) ·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di) (Definition 3.12)

24

3.2 Closure under Inverse Homomorphism

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

(∑
d∈DcGr (h(σ))

µr(d)

)
·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di)

(Definition 2.18)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

(∑
d∈DGr (h(σ))

(d(ε))1=q

µr(d)

)
·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di)

(Definition 2.12)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

(∑
d∈DGr (h(σ))

(d(ε))1=q

∏
p∈pos(d)

µr(d(p))

)
·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di)

(Definition 2.17)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

(∑
d∈DGr (h(σ))

(d(ε))1=q

∏
p∈pos(d)
d(p)∈R

µ(d(p))

)
·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di)

(Equation 3.14)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

∑
d∈DGr (h(σ))

(d(ε))1=q

(∏
p∈pos(d)
d(p)∈R

µ(d(p))

)
·
k∏
i=1

∑
di∈DG(h(ξ|i))

(di)1=qi

µ(di)

(distributivity)

=
∑
r∈R′

r=〈q,σ(q1,...,qk)〉

∑
d∈DGr (h(σ))

(d(ε))1=q

∑
d1∈DG(h(ξ|1))

(d1)1=q1

. . .
∑

dk∈DG(h(ξ|k))
(dk)1=qk(∏

p∈pos(d)
d(p)∈R

µ(d(p))

)
·
k∏
i=1

µ(di) (distributivity)

=
∑

r∈R′,r=〈q,σ(q1,...,qk)〉
d∈DGr (h(σ)),(d(ε))1=q

∀i∈{1,...,k} :
di∈DG(h(ξ|i))

(di)1=qi

(∏
p∈pos(d)
d(p)∈R

µ(d(p))

)
·
k∏
i=1

µ(di)

=
∑

r∈R′,r=〈q,σ(q1,...,qk)〉
d∈DGr (h(ξ)),(d(ε))1=q

∏
p∈pos(d)

µ(d(p)) (Observation 3.13)

=
∑

r∈R′,r=〈q,σ(q1,...,qk)〉
d∈DG(h(ξ)),(d(ε))1=q

∏
p∈pos(d)

µ(d(p)) (Observation 3.14)

25

3 Component Product

=
∑

r∈R′,r=〈q,σ(q1,...,qk)〉
d∈DG(h(ξ)),(d(ε))1=q

µ(d) (Definition 2.17)

=
∑

d∈DG(h(ξ))
(d(ε))1=q

µ(d).

�

Lemma 3.16. The inverse homomorphism language of a regular tree language is regular.

Proof. Let L : T∆ → R≥0 be a regular weighted tree language and h : TΣ → T∆ a tree
homomorphism. Since L is regular, there is a wRTG G = 〈Q, q0, R, µ〉 such that L = [[G]].
Let G′ = 〈Q, q0, R

′, µ′〉 be the inverse homomorphism wRTG of G. We show that the
weighted tree language h−1(L) : TΣ → R≥0 is regular by showing that for every ξ ∈ T∆,
the equation [[G′]](ξ) = (h−1(L))(ξ) holds.

[[G′]](ξ) =
∑

d∈Dc
G′ (ξ)

µ′(d) (Definition 2.18)

=
∑

d∈DG′ (ξ)
(d(ε))1=q0

µ′(d) (Definition 2.12)

=
∑

d∈DG(h(ξ))
(d(ε))1=q0

µ(d) (Lemma 3.15)

=
∑

d∈DcG(h(ξ))

µ(d) (Definition 2.12)

= [[G]](h(ξ)) (Definition 2.18)
= L(h(ξ)) (definition of G)

= (h−1(L))(ξ) (Definition 3.11)

�

3.3 Closure under Hadamard Product

The final step is the common product construction for weighted regular tree grammars.
We will see that regular weighted tree languages are closed under Hadamard product.
Figure 3.1(c) shows the sets involved in the definition of the Hadamard product of two
weighted tree languages over the same ranked alphabet.

Definition 3.17 (Hadamard product). Let L1 and L2 be weighted tree languages. The
Hadamard product of L1 and L2 is defined by (L1 � L2)(ξ) = L1(ξ) · L2(ξ).

26

3.3 Closure under Hadamard Product

Definition 3.18 (product wRTG). Let G1 = 〈Q1, q0, R1, µ1〉 and G2 = 〈Q2, q̄0, R2,
µ2〉 be Σ-wRTGs. We define two mappings π1 : (Q1 ×Q2)×Σ(Q1 ×Q2)→ Q1 ×Σ(Q1)
and π2 : (Q1 ×Q2)× Σ(Q1 ×Q2)→ Q2 × Σ(Q2) where

π1(〈〈q, q̄〉, σ(〈q1, q̄1〉, . . . , 〈qk, q̄k〉)〉) = 〈q, σ(q1, . . . , qk)〉, (3.17)
π2(〈〈q, q̄〉, σ(〈q1, q̄1〉, . . . , 〈qk, q̄k〉)〉) = 〈q̄, σ(q̄1, . . . , q̄k)〉. (3.18)

The product of G1 and G2, denoted by G1 �G2, is the Σ-wRTG

G1 �G2 = 〈Q1 ×Q2, 〈q0, q̄0〉, R′, µ′〉,
R′ = {r ∈ (Q1 ×Q2)× Σ(Q1 ×Q2) | π1(r) ∈ R1, π2(r) ∈ R2}, (3.19)

µ′(r) = µ1(π1(r)) · µ2(π2(r))). (3.20)

Lemma 3.19. The Hadamard product of two regular tree languages is regular.

Proof. Let L1 and L2 be regular weighted tree languages over Σ. Since L1 and L2 are
regular weighted tree languages over Σ, there are two Σ-wRTGs G1 and G2 such that
the equations L1 = [[G1]] and L2 = [[G2]] hold. Let G′ be the product of G1 and G2.
We show that the weighted tree language L1 � L2 is regular by showing that for every
ξ ∈ TΣ, the equation [[G′]](ξ) = (L1 � L2)(ξ) holds.

[[G′]](ξ) =
∑

d∈Dc
G′ (ξ)

µ′(d) (Definition 2.18)

=
∑

d∈Dc
G′ (ξ)

∏
p∈pos(d)

µ′(d(w)) (Definition 2.17)

=
∑

d∈Dc
G′ (ξ)

∏
p∈pos(d)

µ1(π1(d(w))) · µ2(π2(d(w))) (Equation 3.20)

=
∑

d∈Dc
G′ (ξ)

(∏
p∈pos(d)

µ1(π1(d(w)))

)
·

(∏
p∈pos(d)

µ2(π2(d(w)))

)

=
∑

d∈Dc
G′ (ξ)

d1=π1(d)
d2=π2(d)

(∏
p∈pos(d1)

µ1(d1(w))

)
·

(∏
p∈pos(d2)

µ2(d2(w))

)

(π1, π2 preserve positions)

=
∑

d∈Dc
G′ (ξ)

d1=π1(d)
d2=π2(d)

µ1(d1) · µ2(d2) (Definition 2.17)

=
∑

d1∈DcG1
(ξ)

d2∈DcG2
(ξ)

µ1(d1) · µ2(d2) (Equation 3.19)

27

3 Component Product

=
∑

d1∈DcG1
(ξ)

∑
d2∈DcG2

(ξ)

µ1(d1) · µ2(d2)

=

(∑
d1∈DcG1

(ξ)

µ1(d1)

)
·

(∑
d2∈DcG2

(ξ)

µ2(d2)

)
(distributivity)

=[[G1]](ξ) · [[G2]](ξ) (Definition 2.18)
=L1(ξ) · L2(ξ) (definition of G1 and G2)
=(L1 � L2)(ξ) (Definition 3.17)

�

3.4 Component Product

By combining Theorem 3.10 and Lemmas 3.16 and 3.19, we can show that the component
product of a regular weighted tree language and an n-gram language model is regular.

Definition 3.20 (component product language). Let L be a weighted tree language over
Σ, N an n-gram language model over Γ, ∆ some ranked alphabet, h : TΣ → T∆ a tree
homomorphism and A a ∆-string algebra with carrier set Γ∗. The component product
language of L and N (regarding h and A) is the weighted tree language L � h−1(ϕN).

Theorem 3.21. The component product language of a regular weighted tree language
and an n-gram model is regular.

Proof. Let L be a regular weighted tree language over Σ, N : Γ∗ → R≥0 be an n-gram
model, A be the ∆-string algebra over Γ and h : TΣ → T∆ be a tree homomorphism.
We show that the component product language of L and N regarding h and A, i.e.,
the weighted tree language L � h−1(ϕN), is regular. The weighted tree language ϕN is
regular due to Theorem 3.10; h−1(ϕN) is regular since ϕN is regular and Lemma 3.16;
and L � h−1(ϕN) is regular due to Lemma 3.19 and the fact that L and h−1(ϕN) are
regular. �

28

4 Algorithm

This section provides an algorithmic view on Definitions 3.5, 3.12 and 3.18. Each algo-
rithm is shown as a deduction system (Figure 4.1). A deduction system consists of rules
of form

I1 . . . Ikr1
I

where I1, . . . , Ik are propositions, r1 is the name of the rule in the deduction system and
I is a weighted rule in the generated wRTG. For every combination of interpretations of
the propositions I1, . . . , Ik, the rule r1 in the deduction system emits the weighted rule
I; I is a rule in the generated wRTG.

4.1 n-Gram wRTG

The algorithm shown in Figure 4.1(a) represents the construction described in Defini-
tion 3.5. The functions f (Equation 3.4) and g (Equation 3.5) are used.

Input The n-gram model N : Γ∗ → R≥0 and the ∆-string algebra A with carrier set Γ∗.

Output A ∆-wRTG G.

Relation For all ξ ∈ T∆ : [[G]](ξ) = N(ξA).

The run time of the construction depends on the size of Γ (rule i1). The number of
states directly corresponds to Γ; there are |Γ≤n−1 ∪ (Γn−1 × Γn−1)| states. The con-
struction is not feasible since the size v of the alphabet is usually high. Therefore in the
implementation, we avoid the calculation of the whole ∆-wRTG G. Instead, the rules
are generated when they are needed by the construction in Definition 3.12.

4.2 Inverse Homomorphism wRTG

The construction described in Definition 3.12 is represented by the algorithm shown in
Figure 4.1(b). The wRTG Gr (Equation 3.13) is used.

Input The ∆-wRTG G and the tree homomorphism h : TΣ → T∆.

Output A Σ-wRTG G′.

Relation For all ξ ∈ TΣ : [[G′]](ξ) = [[G]](h(ξ)).

29

4 Algorithm

γ ∈ Γ
i1
〈γ〉 1−→ γ

2 ≤ j ≤ k
q1 → ζ1

...
qk → ζj

c1

f(q1 . . . qj)
g(q1...qj)−−−−−→ •j(q1, . . . , qj)

(a) Deduction system for an n-gram wRTG.

1 ≤ j ≤ max{rk(σ) | σ ∈ ∆} q ∈ Q
q1 → ζ1

...
qk → ζj

σ ∈ Σ(j)

c2

q
[[G〈q,σ(q1,...,qj)〉]](h(σ))

−−−−−−−−−−−−−−→ σ(q1, . . . , qj)

(b) Deduction system for the inverse homomorphism wRTG.

G1 : q
µ1−→ σ(q1, . . . , qk)

〈q1, q
′
1〉 → ζ1
...

〈qk, q′k〉 → ζk

G2 : q′
µ2−→ σ(q′1, . . . , q

′
k)

c3

〈q, q′〉 µ1·µ2−−−→ σ(〈q1, q
′
1〉, . . . , 〈qk, q′k〉)

(c) Deduction system for the product wRTG.

G : q
µ1−→ σ(q1, . . . , qk)

〈q1, q̄1〉 → ζ1
...

〈qk, q̄k〉 → ζk

q̄ = (h(σ)[x1/q̄1, . . . , xk/q̄k])
A

c

〈q, f(q̄)〉 µ1·g(q̄)−−−−→ σ(〈q1, q̄1〉, . . . , 〈qk, q̄k〉)
〈q0, q〉 ∈ Q′

e
q′0

1−→ 〈q0, q〉
(d) Deduction system used by the implementation.

Figure 4.1: Deduction systems for the component product of an IRTG and an n-gram
model.

30

4.3 Product wRTG

This construction is also unfeasible since the number m of states may be very high.
In fact, the number of states generated by the previous construction in the magnitude of
O(u2(n−1)) where n is the degree of the original n-gram model and u the size of the alpha-
bet Γ (see Section 4.1). We avoid calculating the whole regular weighted tree grammar
by calculating only the rules that are needed by the construction in Definition 3.18.

4.3 Product wRTG

The algorithm described here represents the weighted product of two wRTGs, as de-
scribed in Definition 3.18. The deduction system is shown in Figure 4.1(c).

Input The Σ-wRTGs G1 and G2.

Output A Σ-wRTG G′.

Relation G′ = G1 �G2.

The time complexity of this algorithm, as implied by Definition 3.18, is O(|R1| · |R2|).
To improve the average runtime, we execute the algorithm bottom-up and guided by G1.
That means, we start with the nullary rules of G1 and G2, generating nullary rules in G′,
and then continuously generate new rules: We select a rule r in G1. Then select rules
r1, . . . , rk that have already been generated such that the right-hand side of r match the
first items of the states on the left-hand side of r1, . . . , rk. Now we select a rule r′ in G2

where the states on the right-hand side of r′ match the second items of the states on the
left-hand side of r1, . . . , rk. When intersection two wRTGs, one should define the wRTG
with less rules as G1.

4.4 Component Product

The implementation uses a combination of the rules described in the previous sections
of this chapter. The deduction system is shown in Figure 4.1(d).

Input An n-gram model N and a component C = 〈G, h,A〉 where G = 〈Q, q0, R, µ〉.

Output A wRTG G = 〈Q′, q′0, R′, µ′〉.

Relation The wRTG G′ is the component product of C and N .

The calculation of G′ is done bottom-up and guided by G since it has less rules (as sug-
gested in Section 4.3). The rule c is used until no more weighted rules can be generated;
then the rule e is used.

31

5 Implementation

I implemented the component product of an IRTG and an n-gram model in Haskell for
the machine translation toolkit Vanda. This chapter describes how the implementation
works.

5.1 The Class LM

The class LM represents a language model. It contains all functions necessary to evaluate
sequences of words. The following code represents the class LM:

1 class LM a where
2 order :: a → Int
3 indexOf :: a → T.Text → Int
4 getText :: a → Int → T.Text
5 score :: a → [Int] → Double

The function order returns the degree of the language model, e.g., the degree of a
3-gram model is 3. In a language model, every word is usually represented by a natural
number (for short: number). The conversion between numbers and words is done by
the functions indexOf (word to number) and getText (number to word). The function
score takes a sequence of numbers, each number representing a word, and returns the
score according to the language model.
I implemented an instance of the class LM, called NGrams. Further instances, e.g., a

Haskell interface for KenLM 1, can be derived from LM in the future.
The data type (for short: type) NGrams is polymorphic; it takes one type argument.

Only the type NGrams T.Text is an instance of LM; T.Text is a specific implementation
of strings provided by a Haskell library. The type NGrams v is declared as follows:

1 data NGrams v
2 = NGrams
3 { dict :: M.Map v Int
4 , dLength :: Int
5 , order :: Int
6 , weights :: M.Map [Int] (Double , Maybe Double)
7 }

The type variable v denotes the type of the elements of the vocabulary. The field dict
contains data for the mapping from words to numbers and the mapping from numbers
to words. The first mapping is implemented by the function indexOf:

1 indexOf
2 :: Ord v
3 ⇒ NGrams v

1KenLM is a high performance library, written in C++, for querying and training n-gram models
(see http://kheafield.com/code/kenlm/).

33

http://kheafield.com/code/kenlm/

5 Implementation

4 → v
5 → Int
6 indexOf lm x
7 = M.findWithDefault (-1) x . dict $ lm

The second mapping is implemented within the instance declaration of LM at lines 5 to
11. The field dLength contains the size of the vocabulary and is only necessary for the
import of NGrams from file; we skip this feature since it is not important for the product
construction. As indicated by the instance declaration, order contains the degree of the
n-gram model. The field weights contains the n-gram weights and backoff weights of all
known m-grams for 1 ≤ m ≤ n; it is queried by findInt:

1 -- | Determines the weight of a single n-gram using Katz Backoff.
2 -- P_katz(w0...wn) = / P(w0...wn) if C(w0...wn) > 0
3 -- \ b(w0...wn -1) ∗ P_katz(w1...wn) otherwise.
4 findInt
5 :: NGrams v -- ^ NGrams on which to base the evaluation
6 → [Int] -- ^ sequence to evaluate
7 → Double -- ^ single NGram probability
8 findInt n is
9 = if hasWeightInt n is -- if C(w0...wn) > 0

10 then fst . getWeightInt n $ is
11 else let is1 = L.take (L.length is - 1) is -- w0...wn -1
12 is2 = L.drop 1 is -- w1...wn
13 (_, b) = getWeightInt n is1
14 in b + findInt n is2

The function findInt is defined for sequences of length smaller or equal to n and
implements the smoothing technique Katz backoff (Section 2.4.4). The then-value is
used if the m-gram has a weight greater zero in the model, otherwise the weight is
approximated by the else-value. The function evaluateInt is defined for sequences of
arbitrary length; it is the implementation of Definition 2.7:

1 evaluateInt
2 :: (Show v, Ord v)
3 ⇒ NGrams v
4 → [Int]
5 → Double
6 evaluateInt lm is
7 = if (order lm) ≥ L.length is
8 then findInt lm is
9 else findInt lm (L.take (order lm) is) + evaluateInt lm (L.drop 1 is)

The function evaluateInt decomposes the input sequence into sub-sequences of at
most length n and then sums up the values of the sub-sequences under findInt.
The instance declaration shown below represents the mapping from functions of the

class LM to functions of the instance NGrams.
1 instance LM (VN.NGrams T.Text) where
2 indexOf = VN.indexOf
3 order = VN.order
4 score = VN.evaluateInt
5 getText lm i
6 = M.findWithDefault (T.pack "<unk>") i
7 . M.fromList
8 . map swap
9 . M.toList

10 . VN.dict
11 $ lm

34

5.2 The Module WTA

5.2 The Module WTA

The module Vanda.Grammar.NGrams.WTA is the implementation of the n-gram wRTG
(Definition 3.5). The functions and types provided by the module are declared as follows:

1 module Vanda.Grammar.NGrams.WTA
2 (NState (Unary , Binary)
3 , mkNState
4 , mergeNStates
5) where

The algebraic data type NState represents the set Q of states declared in Definition 3.5;
the constructors of NState, Unary and Binary represent the partition of Q into Q1

(Equation 3.1) and Q2 (Equation 3.2), respectively. The type NState has a generic type
argument v that represents the elements of the used vocabulary.

1 data NState v
2 = Unary [v]
3 | Binary [v] [v]
4 deriving (Eq , Ord)

Two functions are exported; they are only defined for a vocabulary of Ints. The
function mkNState turns a list of Ints into the state that would be returned by the
function f (Equation 3.4) and the weight that would be returned by g (Equation 3.5).

1 mkNState
2 :: LM a
3 ⇒ a
4 → [Int]
5 → (NState Int , Double)
6 mkNState lm s
7 = let n = order lm
8 in if n ≤ (length s)
9 then (Binary (take (n - 1) s) (last’ (n - 1) s)

10 , score lm s
11)
12 else (Unary s, 0)

The function mergeNStates is exported by the module Vanda.Grammar.NGrams.WTA;
the function takes a list of states and merges them such that the resulting state is the
state that would be returned by the function f (Equation 3.4). It returns the state
as first item of a tuple; the second item is the weight that would be calculated by g
(Equation 3.5).

1 mergeNStates
2 :: LM a
3 ⇒ a
4 → [NState Int]
5 → (NState Int , Double)
6 mergeNStates lm (x:xs)
7 = foldl (mergeNStates’ lm) (x, 0) xs
8 mergeNStates _ []
9 = (Unary [], 0)

The given list of states is traversed by mergeNStates in the same fashion as ι (Equa-
tion 3.3) traverses a given sequence of states. While traversing the list, mergeNStates
provides a pair and a state that is to be processed for the function mergeNStates’. The

35

5 Implementation

left item of the pair represents the already accumulated state, the right item represents
the accumulated weight. The function mergeNStates is a combination of the functions
f (Equation 3.4) and g (Equation 3.5).

1 mergeNStates’
2 :: LM a
3 ⇒ a
4 → (NState Int , Double)
5 → NState Int
6 → (NState Int , Double)
7 mergeNStates’ lm (Unary s1, w1) (Unary s2)
8 = (\ (x, w2) → (x, w1 + w2))
9 . mkNState lm

10 $ (s1 ++ s2)
11 mergeNStates’ lm (Unary s1, w1) (Binary s2 s3)
12 = (Binary (take ((order lm) - 1) (s1 ++ s2)) s3
13 , w1 + (score lm (s1 ++ s2))
14)
15 mergeNStates’ lm (Binary s1 s2, w1) (Unary s3)
16 = (Binary s1 (last’ ((order lm) - 1) (s2 ++ s3))
17 , w1 + (score lm (s2 ++ s3))
18)
19 mergeNStates’ lm (Binary s1 s2, w1) (Binary s3 s4)
20 = (Binary (take ((order lm) - 1) (s1 ++ s2))
21 (last’ ((order lm) - 1) (s3 ++ s4))
22 , w1 + (score lm (s1 ++ s2))
23 + (score lm (s3 ++ s4))
24)

We differentiate four cases of tuples of states: two Unary states, two Binary states, and
one Unary and one Binary state in both orders. Each case is matched by mergeNStates’.

Unary - Unary (lines 7 to 10) If the sum of the lengths of the states is greater or equal
to n, the states are combined to a Binary state and the combination weight is
added, otherwise, they are concatenated to a Unary state and a weight of zero is
added.

Unary - Binary (lines 11 to 14) and Binary - Unary (lines 15 to 18) The concatena-
tion of Unary and the adjoining side of Binary is scored by the language model.
The score is added to the weight. A Binary state is returned that contains the
left and the right n − 1 symbols of the concatenation of Unary and both items of
Binary in the order of their occurence in the function call.

Binary - Binary (lines 19 to 24) A Binary state containing the first item of the first
input state and the second item of the second state is returned. The concatenation
of the adjoining sides of the states is scored by the language model. The score is
added to the input weight.

5.3 Product Construction

In Vanda, RTGs are represented by hypergraphs; the states and the rules correspond to
the nodes and edges in the hypergraph respectively. In order to perform computations
on hypergraphs efficiently, the nodes are numbers. However the product construction

36

5.3 Product Construction

requires the nodes to be tuples. Since that can not be achieved by the type hypergraph
available in Vanda, I use the type Item to represent rules; states are represented by the
type CState.

1 data CState i
2 = Unary i
3 | Binary i (WTA.NState i)
4 deriving (Eq , Ord)

1 data Item s l w
2 = Item { _to :: s
3 , _wt :: w
4 , _from :: [s]
5 , _lbl :: l
6 } deriving (Eq , Ord , Show)

Both types have generic type arguments.
In contrast to the product construction shown in Chapter 3 which is divided into three

sub-constructions, the implementation only has two sub-constructions. The first has
already been described in Section 5.2; it represents the construction in Definition 3.5.
The second sub-construction is a combination of the constructions in Definitions 3.12 and
3.18; it is described in this section. For a given IRTG G, let 〈G, h,A〉 be a component
of G where A is the string algebra, and let G1 be the n-gram wRTG of an n-gram
model. The function intersect’ calculates a list of items for G,G1 and h. This list is
transformed into the product of G and the inverse homomorphism wRTG of G1 under h
by the function intersect.

1 -- | Intersects an IRTG and an n-gram model.
2 intersect
3 :: LM a
4 ⇒ a -- ^ language model
5 → I.XRS -- ^ translation model
6 → (I.XRS , V.Vector (CState Int)) -- ^ product translation model , new states
7 intersect lm I.XRS{ .. }
8 = let I.IRTG{ .. }
9 = irtg

10 hom = V.toList . (V.!) h2 . I._snd . HI.label
11 -- prepare h2
12 mu = log . (VU.!) weights . HI.ident -- prepare weights
13 its = intersect’ lm mu hom rtg -- generate items
14 (h1’ , l1)
15 = addToVector h1 (T.Nullary (NT 0))
16 (h2’ , l2)
17 = addToVector h2 (V.fromList [NT 0])
18 its’ = makeSingleEndState
19 ((==) initial . _fst)
20 (Unary 0)
21 (I.SIP l1 l2)
22 its
23 (its’’ , vtx , states) -- integerize Hypergraph
24 = integerize (Unary 0) its’
25 (hg , mu’)
26 = itemsToHypergraph its’’
27 irtg’ = I.IRTG hg vtx h1’ h2’
28 xrs’ = I.XRS irtg’ mu’ -- build XRS
29 in (xrs’ , states)

37

5 Implementation

The function intersect is passed the language model lm and the IRTG I.XRS{irtg,
weights}. It computes a new IRTG and Vector of states by the following steps:

lines 8 and 9 Provide the contents of irtg.

lines 10 to 12 Turn the homomorphism and the weights Vector into functions.

line 13 Calculate a list of Items for the product construction; intersect’ is called.

lines 14 to 17 Add the the label for the rules that have the new start symbol on the left-
hand side to the domain of the homomorphisms; at lines 15 and 17, addToVector
is called.

lines 18 to 22 Connect end states from the list of Items to the new (single) end state;
makeSingleEndState is called.

lines 23 and 24 Replaces all states by numbers, provides the old states as Vector;
integerize is called.

lines 25 to 29 Constructs and returns the resulting IRTG and the Vector of states.

1 -- | Intersects IRTG and n-gram model , emits ’Item’s.
2 intersect’
3 :: (Ord l, Show l, Show i1, LM a)
4 ⇒ a -- ^ language model
5 → (HI.Hyperedge l i1 → Double) -- ^ rule weights
6 → (HI.Hyperedge l i1 → [NTT]) -- ^ homomorphism
7 → HI.Hypergraph l i1 -- ^ RTG hypergraph
8 → [Item (CState Int) l Double] -- ^ resulting list of ’Items’
9 intersect’ lm mu h2 hg

10 = let es0 = filter ((==) 0 . HI.arity) . HI.edges $ hg
11 is0 = M.fromListWith (++)
12 . map (\x → (HI.to x, [initRule mu h2 lm x]))
13 $ es0
14 es = filter ((/=) 0 . HI.arity) . HI.edges $ hg
15 go !its
16 = let l = [(HI.to e, lst)
17 | e ← es
18 , let lst = L.nub
19 $ [r
20 | let ss = sequence
21 $ [M.findWithDefault [] t1 its
22 | t1 ← HI.from e
23]
24 , not . L.null $ ss
25 , s ← ss
26 , let r = blowRule mu h2 lm e s
27 , not . elem r
28 . flip (M.findWithDefault []) its
29 . HI.to
30 $ e
31]
32 , not . L.null
33 $ lst
34]
35 in if L.null l

38

5.3 Product Construction

36 then concat . map snd
37 . M.toAscList
38 $ its
39 else go
40 . foldl (\ m (k, v) → M.insertWith (++) k v m) its
41 $ l
42 in go is0

The function intersect’ is passed a wRTG, a tree homomorphism and a language
model; the function is the implementation of the rule combine (Figure 4.1(d)). It calcu-
lates a list of items, each item represents a rule in the product wRTG G′.

lines 10 to 13 Calculate the initial Items from the rules in G with a rank of zero. The
function initRule is called.

line 14 Select the rules in G with a rank greater than zero.

lines 15 to 41 The function go is passed a list of items (line 15); go tries to find a
sequence of Items such that the sequence of left-hand sides of the states q1 . . . qk in
the left-hand side of those rules match the states on the right-hand side of a rule
r in G where r1 = q (lines 16 to 34). If it finds such a sequence, a new Item is
added to the list that represents the rule 〈〈p, p′〉, σ(q1, . . . , qk)〉 in G′ where p′ is the
result of mergeNStates for the sequence of right-hand sides of the states q1 . . . qk
(line 26). The function blowRule is called. If there exists such a sequence, go calls
itself with the updated list of Items, otherwise, the current list of Items is returned
(lines 35 to 41).

line 42 Returns the result of go for the initial list of Items.

Three small functions vital to the product construction are described below.

initRule Takes the homomorphism and a rule in G with rank 0. Generates an Item
that represents a rule in G′ with rank 0.

1 -- | Emits an initial ’Item’.
2 initRule
3 :: LM a
4 ⇒ (HI.Hyperedge l i1 → Double) -- ^ rule weights
5 → (HI.Hyperedge l i1 → [NTT]) -- ^ tree homomorphism
6 → a -- ^ language model
7 → HI.Hyperedge l i1 -- ^ rule
8 → Item (CState Int) l Double -- ^ resulting ’Item’
9 initRule mu h2 lm he

10 = let f (T x) = x
11 f (NT _) = 0
12 (st , w1) = WTA.mkNState lm . map f . h2 $ he
13 in Item
14 (Binary (HI.to he) st)
15 (w1 + (mu he))
16 []
17 (HI.label he)

blowRule Takes a rule in G and a list of Items. Returns a new Item.

39

5 Implementation

1 -- | Combines ’Item’s by a rule. The ’Item’s and the rule must
2 -- match (not checked).
3 blowRule
4 :: LM a
5 ⇒ (HI.Hyperedge l i1 → Double) -- ^ rule weights
6 → (HI.Hyperedge l i1 → [NTT]) -- ^ tree homomorphism
7 → a -- ^ language model
8 → HI.Hyperedge l i1 -- ^ rule
9 → [Item (CState Int) l Double] -- ^ ’Item’s

10 → Item (CState Int) l Double -- ^ resulting ’Item’
11 blowRule mu h2 lm he is
12 = let xs = map _to is
13 (x, w1) = toNState lm (map _snd xs) (h2 he)
14 in Item (Binary (HI.to he) x) (mu he + w1) xs (HI.label he)

toNState Takes a list of states and a reordering (defined by the homomorphism). It
combines the states using the reordering to a new state.

1 toNState
2 :: LM a
3 ⇒ a
4 → [WTA.NState Int]
5 → [NTT]
6 → (WTA.NState Int , Double)
7 toNState lm m xs
8 = let f (T i) = WTA.mkNState lm [i]
9 f (NT i) = (m !! i, 0)

10 in (\ ((x, w1), w2) → (x, w1 + w2))
11 . (\ (xs’ , w) → (WTA.mergeNStates lm xs’ , sum w))
12 . unzip
13 . map f
14 $ xs

Four additional functions are used to generate a normalized wRTG, i.e., a wRTG with
one start state and numbers for states.

addToVector Adds a given element to the end of a given Vector.
1 -- | Adds a value to a vector.
2 addToVector
3 :: V.Vector t
4 → t
5 → (V.Vector t, Int)
6 addToVector h e
7 = (V.fromList . flip (++) [e] . V.toList $ h, V.length h)

makeSingleEndState This function implements the rule final (Figure 4.1(d)). Given a
start state, a function f to determine if a state should be connected to the start
state, a label for the new Items and a list of Items, adds Items to connect the
states selected by f to the start state.

1 -- | Adds some ’Item’s such that ’Item’s produced from the former
2 -- final state are connected to the new final state.
3 makeSingleEndState
4 :: (Eq i, Fractional w)
5 ⇒ (i → Bool) -- ^ is a end state
6 → i -- ^ new end state

40

5.3 Product Construction

7 → l -- ^ label of new rules
8 → [Item i l w] -- ^ old ’Item’s
9 → [Item i l w] -- ^ new ’Item’s

10 makeSingleEndState p vInit lbl es
11 = (++) es
12 . map (\x → Item vInit 0 [x] lbl)
13 . L.nub
14 . filter p
15 . map _to
16 $ es

integerize Replaces the states in the given Items by numbers. Returns the new list of
Items, the number of states and a vector that contains the old states.

1 -- | Takes ’Hyperedge’s with arbitrary vertex type and returns
2 -- ’Hyperedges’ with vertex type ’Int’.
3 integerize
4 :: (Hashable v, Eq v)
5 ⇒ v
6 → [Item v l d]
7 → ([Item Int l d], Int , V.Vector v)
8 integerize vtx is
9 = let mi = In.emptyInterner

10 f (m, xs) e
11 = let (m1, t’) = In.intern m (_to e)
12 (m2 , f’) = In.internList m1 (_from e)
13 in (m2, (Item t’ (_wt e) f’ (_lbl e)):xs)
14 (mi’ , is’)
15 = foldl f (mi , []) is
16 in (is’
17 , snd . In.intern mi’ $ vtx
18 , V.fromList . A.elems . In.internerToArray $ mi’
19)

itemsToHypergraph Generates a wRTG containing the rules defined by a given list of
Items. The wRTG is represented by a tuple of a hypergraph and a Vector or
weights.

1 -- | Converts an ’Item’ to a Hyperedge.
2 itemsToHypergraph
3 :: [Item Int l Double]
4 → (HI.Hypergraph l Int , VU.Vector Double)
5 itemsToHypergraph xs
6 = let (wts , xs’)
7 = groupByWeight xs
8 mu = VU.fromList . map exp $ wts
9 es = map (uncurry (\ (a, b, c) d → HI.mkHyperedge a b c d))

10 . concat
11 . map (\(ix, arr) → zip arr (repeat ix))
12 . zip [0 ..]
13 $ xs’
14 in (HI.mkHypergraph es, mu)

Figure 5.1 shows a call graph of the code that was added to Vanda. The cloud at the
top (labelled Vanda-Studio) represents the system Vanda-Studio. Dashed boxes represent
the modules; each dashed box is labelled with the module name directly above the dashed
rectangle; the module prefix is omitted. Solid boxes represent functions; each solid box

41

5 Implementation

contains the function name. Arrows denote function calls; an arrow from a box labelled
a to a box labelled b denotes that the function a calls the function b. Functions that are
not described in this chapter are left out from the call graph.

42

5.3 Product Construction

intersect

intersect’

initRule blowRule

toNState

mkNState mergeNStatesmergeNStates’

order score

order evaluateInt

findInt

addToVector

makeSingleEndState

integerize

itemsToHypergraph

IntersectWithNGrams

WTA

LM

NGrams

Vanda-Studio

Figure 5.1: Call graph of implementation of the component product in Vanda/Vanda-
Studio.

43

6 Conclusion

It has been shown that the product of a regular weighted tree language and an n-gram
model is regular. The regular weighted tree language is represented by an interpreted
regular tree grammar. This result consists of three parts: (1) the backward application
of the algebras evaluation function (in the special case of a string algebra) is regular,
(2) the backward application of a homomorphism is regular and (3) the product of two
regular weighted tree languages is regular. Although the latter two parts already are
established facts, all three parts are shown by constructive proof.
The product of a weighted context-free grammar and an n-gram model has already

been proposed and implemented [Chi07]. This work generalizes their result.
I implemented an n-gram model using Katz backoff and the construction of the product

of an interpreted regular tree grammar and an n-gram model in Haskell. The implemen-
tations was tested on small grammars (approximately 30 rules) and n-gram models of
degree 2 to 4. Despite the use of a bottom-up strategy, the calculation of the complete
product grammar is unfeasible. It should be considered to purge rules with low weights
from the product grammar by pruning or cube pruning.

45

Bibliography

[BR82] J. Berstel and C. Reutenauer. “Recognizable formal power series on trees”. In:
Theoretical Computer Science 18.2 (1982), pp. 115–148. issn: 0304-3975.

[Bra69] Walter S. Brainerd. “Tree Generating Regular Systems”. In: Information and
Control 14.2 (1969), pp. 217–231.

[BT73] T.L. Booth and R.A. Thompson. “Applying Probability Measures to Abstract
Languages”. In: Computers, IEEE Transactions on C-22.5 (1973), pp. 442–
450. issn: 0018-9340.

[CG99] Stanley F. Chen and Joshua Goodman. “An empirical study of smoothing
techniques for language modeling”. In: Computer Speech & Language 13.4
(1999), pp. 359–393. issn: 0885-2308.

[Chi07] David Chiang. “Hierarchical Phrase-Based Translation”. In: Comput. Linguist.
33.2 (June 2007), pp. 201–228. issn: 0891-2017.

[FMV10] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. Weighted Extended Tree
Transducers. 2010.

[KK11] Alexander Koller and Marco Kuhlmann. “A generalized view on parsing and
translation”. In: Proceedings of the 12th International Conference on Parsing
Technologies (IWPT). Dublin, 2011.

[MJ09] James H. Martin and Daniel Jurafsky. Speech and language processing. Ed.
by Tracy Dunkelberger. 2nd ed. Prentice Hall Series in Artificial Intelligence.
Previous ed.: Upper Saddle River, N.J.: Prentice Hall, 2000. Upper Saddle
River, N.J.: Pearson Education International/Prentice Hall, 2009, p. 1024.

[Pre04] Detlef Prescher. “A Tutorial on the Expectation-Maximization Algorithm In-
cluding Maximum-Likelihood Estimation and EM Training of Probabilistic
Context-Free Grammars”. In: CoRR abs/cs/0412015 (2004), p. 49.

47

Index

add-one smoothing, 8
algebra, 5
alphabet, 3

carrier set, 5
component, 17
component product, 17
component product language, 28
corpus, 5

derivation weight, 11
derivations, 11
derivations of a state, 11
derivations of a tree, 11
derived tree, 11
domain, 3

empty sequence, 3

generalized bimorphism, 12
Good-Turing discount, 9

Hadamard product, 26

indexed symbol, 4
indexed tree, 4
initial state, 10
interpretation mapping, 5
interpreted regular tree grammar, 13
inverse homomorphism language, 23
inverse homomorphism wRTG, 23
item, 3

Katz backoff, 9
KenLM, 33

label, 3

language
component, 17
IRTG, 13
RTG, 11
wRTG, 12

Laplace smoothing, 8
length, 3
likelihood, 7
linear, 12

n-gram, 6
n-gram corpus, 5
n-gram model, 6
n-gram score function, 6
n-gram tree language, 18
n-gram weight function, 6
n-gram wRTG, 18
non-deleting, 12

operations, 5

positions, 3
pre-order, 4
product wRTG, 27

rank, 3
ranked alphabet, 3
regular, 12
regular tree grammar, 10
relative frequency estimation, 7
remaining probability mass, 9
replacement, 4
rule, 10
rule rank, 10

sentence corpus, 5

49

Index

sequence, 3
sparse-data problem, 8
state, 10
string algebra, 5
string language, 5
sub-sequence, 3
subtree, 3
support, 3
symbol, 3

term algebra, 5
tree, 3
tree homomorphism, 12
tree language, 5
tree substitution, 4

Vanda, 1
Vanda Studio, 1
variables, 3
vocabulary, 7

weighted regular tree grammar, 11
weighted string language, 5
weighted tree language, 5

50

	Introduction
	Preliminaries
	Trees
	Algebras
	Corpora and Languages
	n-Gram Models
	Application
	Training
	Limitation
	Smoothing

	Interpreted Regular Tree Grammars
	Regular Tree Grammars
	Interpreted Regular Tree Grammars

	Component Product
	n-Gram Tree Language
	Closure under Inverse Homomorphism
	Closure under Hadamard Product
	Component Product

	Algorithm
	n-Gram wRTG
	Inverse Homomorphism wRTG
	Product wRTG
	Component Product

	Implementation
	The Class LM
	The Module WTA
	Product Construction

	Conclusion

