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1 Introduction

In natural language processing, syntactical structures are often represented as
trees. However, in some languages, it is possible to splice a syntactical structure
and put the words belonging to it at separate positions in the sentence. This
phenomenon is called discontinuity. A classical parse tree cannot represent a
discontinuous structure.

Example 1.1. In the German sentence ”Das Buch gab sie ihm” (”She gave
him the book.”, literally ”The book gave she him”), the verb phrase ”gab
ihm das Buch” is broken by the subject of the sentence. The tree that rep-
resents the syntactic structure of the sentence does not represent that fact:
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Nederhof and Vogler [7] introduce the concepts of hybrid trees and hybrid
grammars which can represent discontinuity by coupling a tree and a string.

Example 1.2. A hybrid tree that represents both the sentence from Exam-
ple 1.1 with its correct word order and its parse tree.
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Gebhardt et al. [5] formally introduce algorithms for the induction of hy-
brid grammars using recursive partitionings. The properties of the recursive
partitioning influence the properties of the resulting grammar. Therefore, they
also introduce an algorithm for the transformation of recursive partitionings in
order to induce a grammar with more desirable properties. In this thesis, I
explore different instances of that algorithm and how these instances influence
the resulting hybrid grammar.

In Section 2 I will give basic notations and definitions. In Section 3 I will
show the transformation algorithm from [5]. Then I will give an overview of my
implementation (Section 4), which is based on the implementation by Gebhardt
et al. [5]. Finally, I will give my experimental results in Section 5.

2 Preliminaries

Let N = {0, 1, 2, ...}. For each k ∈ N, let [k] = {1, 2, ..., k} and [k]0 = [k] ∪ {0}.
A ranked alphabet is a tuple (Σ, rk), where Σ is a finite set and rk is a

mapping rk : Σ→ N. Instead of (Σ, rk), we will just write Σ. Let k ∈ N. Then
Σ(k) is the set of all σ ∈ Σ with rk(σ) = k. An alphabet is a ranked alphabet
Σ, where for all σ ∈ Σ, rk(σ) = 0.

We define X = {x1, x2, ...} as a set of variables. For all k > 0 Xk =
{x1, ..., xk}.

Let Σ be a ranked alphabet, Y ⊆ X. The set of all trees over Σ and Y ,
denoted TΣ(Y ), is the smallest set S such that,

i) Y ⊆ S, and

ii) for all k ∈ N, σ ∈ Σ(k) and ξ1, ..., ξk ∈ S, σ(ξ1, ..., ξk) ∈ S.

Instead of TΣ(∅), we will write TΣ.
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Let k ∈ N, Σ a ranked alphabet, σ ∈ Σ(k), Y ⊆ X, and ξ, ξ1, ..., ξk ∈ TΣ(Y ).
Then the set of positions of ξ is defined as

pos(ξ) =

{
{ε} if ξ ∈ Y , and

{ε} ∪
⋃k
i=1{iw|w ∈ pos(ξi)} if ξ = σ(ξ1, ..., ξk).

I will also call a position of ξ a node of ξ. Let p, q ∈ pos(ξ). q is a child of p if
there is an i ∈ N such that q = pi. Then p is called the parent of q. A leaf is a
node of ξ that has no children. Let p ∈ pos(ξ). The subtree of ξ at position p,
denoted by ξ|p, is defined recursively as

ξ|p =

 ξ if p = ε, and
ξi|w if for some i ∈ [k]

and w ∈ pos(ξi), p = iw and ξ = σ(ξ1, ..., ξk).

The label of ξ at position p, denoted by ξ(p), is defined as

ξ(p) =

 σ if p = ε and ξ = σ(ξ1, ..., ξk), and
ξi|w if for some i ∈ [k]

and w ∈ pos(ξi), p = iw and ξ = σ(ξ1, ..., ξk).

Let Y ⊆ X, ξ = σ(ξ1, ..., ξk), ζ ∈ TΣ(Y ), and p ∈ pos(ξ). Then the substitution
of ξ at position ζ with ζ, denoted by ξ[ζ]p, is defined as

ξ[ζ]p =

 ζ if p = ε, and
σ(ξ1, ..., ξj−1, ξj [ζ]q, ξj+1, ...ξk) if for some j ∈ [k]

and q ∈ pos(ξj), p = jq.

Hybrid trees are introduced by Nederhof and Vogler [7]. We will be using
a notation without s-terms. Let Σ be a ranked alphabet and Γ ⊆ Σ. A hybrid
tree over (Γ,Σ) is a tuple h = (ξ,≤ξ) where ξ ∈ TΣ and ≤ξ is a total order on
posΓ(ξ) = {p ∈ pos(ξ)|ξ(p) ∈ Γ}. A hybrid tree h is a dependency structure
if Γ = Σ. Let posΓ(ξ) = {p1, ..., pn} with pi ≤ξ pi+1 for i ∈ [n − 1]. Then
str(h) = ξ(p1)...ξ(pn).

Example 2.1. This is an example for a hybrid tree h = (ξ,≤ξ) where ξ is the
tree from Example 1.1 and ≤ξ is represented by the string ”Das Buch gab sie
ihm” at the bottom.
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2.1 Hybrid grammars

Let Σ be a ranked alphabet and Γ ⊆ Σ. A hybrid grammar over (Γ,Σ) combines
a tree grammar and a string grammar such that for each tree ξ produced by
the tree grammar, the string grammar produces a string s with s = str(h) for
a hybrid tree h = (ξ,≤ξ).

Gebhardt et al. [5] describe several possible combinations of string and tree
grammars for hybrid grammars. We will be focusing on hybrid grammars,
that combine linear context-free rewriting systems (LCFRS) and simple definite
clause programs (sDCP), here, since that is the type of hybrid grammar used
in the implementation. In order to define this special kind of hybrid grammar,
I first recall the definitions of LCFRS and sDCP.

2.1.1 Linear context-free rewriting systems

LCFRS were first introduced by Vijay-Shanker et al. [10]. We will be using the
notation of [5] here.

A linear context-free rewriting system (LCFRS) is a tuple G = (N,Σ, S,R)
where

• N is a ranked alphabet of nonterminals,

• Σ is a ranked alphabet of terminals with Σ ∩ N = ∅ and for all σ ∈ Σ
rk(σ) = 0,

• S ∈ N (1) is the initial nonterminal, and

• R is a finite set of rules, specified in the following.
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Each rule is of the form

A0(s1, ..., sk0)→ A1(x1, ..., xm1), A2(xm1+1, ..., xm2), ..., An(xmn−1+1, ..., xmn)

where n ∈ N, i ∈ [n]0, ki = rk(Ai), mi =
∑
i′∈[i] ki′ , j ∈ [k0], sj ∈ (Σ∪(Xmn))∗,

and for each l ∈ [mn], xl occurs exactly once in s1, ..., sk0 .
Let m ∈ N and ρ ∈ R such that ρ contains m variables. A rule instance of

ρ can be obtained by choosing an ri ∈ Σ∗ for each i ∈ [m] and replacing both
occurences of xi in ρ with ri.

Let s1, s2 ∈ (Σ ∪X)∗, ρ ∈ R, and t → r be a rule instance of ρ. Then the
derivation relation is defined as s1 · t · s2 ⇒ρ

G s1 · r · s2.
The string language produced by an LCRFS G = (N,Σ, S,R) is L(G) =

{s ∈ Σ∗|S(s)⇒∗G ε}.
Let A ∈ N . We call rk(A) the fanout of A. The fanout of the LCFRS G is

the maximal fanout of its nonterminals.

Example 2.2. The following LCFRS G produces the string ”Das Buch gab sie
ihm”. G = (N,Σ, S,R), where

• N = {S,NP, V P, V,Det,N} with rk(V P ) = 2 and for all A ∈ N \{V P} :
rk(A) = 1,

• Σ = {Buch, sie, ihm, gab,Das}, and

• R = {ρ1, ..., ρ8} as specified in the following.

ρ1 = S(x2x1x3)→ NP (x1)V P (x2, x3)

ρ2 = V P (x3x1, x2)→ V (x1)NP (x2)NP (x3)

ρ3 = NP (x1x2)→ Det(x1)N(x2)

ρ4 = NP (sie)→ ε

ρ5 = V (gab)→ ε

ρ6 = Det(Das)→ ε

ρ7 = N(Buch)→ ε

ρ8 = NP (ihm)→ ε

The string can be derived as follows:

S(Das Buch gab sie ihm)

⇒ρ1
G NP (sie)V P (Das Buch gab, ihm)

⇒ρ4
G V P (Das Buch gab, ihm)

⇒ρ2
G V (gab)NP (Das Buch)NP (ihm)

⇒ρ5
G NP (Das Buch)NP (ihm)

⇒ρ8
G NP (Das Buch)

⇒ρ3
G Det(Das)N(Buch)

⇒ρ6
G N(Buch)

⇒ρ7
G ε
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2.1.2 Simple definite clause programs

Definite clause programs are introduced in [3]. We will use a notation based on
the one in [7].

A simple definite clause program (sDCP) is a tuple G = (N,Σ, S, P ) where

• N is a ranked alphabet of nonterminals,

• Σ is a ranked alphabet of terminals,

• S ∈ N is the initial nonterminal, and

• P is a set of rules, described in the following.

Each A ∈ N is assigned a number of synthesized arguments (its s-rank, de-
noted by s-rk(A)) and a number of inherited arguments (its i-rank, denoted
by i-rk(A)) where rk(A) = s-rk(A) + i-rk(A). For the initial nonterminal we
demand rk(S) = s-rk(S) = 1. Each rule has the form

A0(x
(0)
1 , ..., x

(0)
k0
, s

(0)
1 , ..., s

(0)
k′0

)→

A1(x
(1)
1 , ..., x

(1)
k1
, s

(1)
1 , ..., s

(1)
k′1

)...An(x
(n)
1 , ..., x

(n)
kn
, s

(n)
1 , ..., s

(n)
k′n

)

where n ∈ N, ki = rk(Ai) (i ∈ [n]0), m =
∑
i∈[n]0

ki,
⋃n
j=0

⋃kj
i=1 x

(j)
i = Xm,

s
(i)
1 , ..., s

(i)
k′i
∈ TΣ(Xm) (i ∈ [n]0) such that all s

(i)
j (i ∈ [n]0, j ∈ [k′i]) together

contain each variable in Xm exactly once.
Let ρ ∈ P and m ∈ N such that ρ contains m variables. A rule instance of

ρ can be obtained by choosing an ri ∈ TΣ for each variable xi (i ∈ [m]) and
replacing all occurences of xi with ri.

Let m ∈ N, s1, s2 ∈ TΣ(Xm), ρ ∈ P , and t → r a rule instance of ρ. Then
the derivation relation can be defined as s1ts2 ⇒ρ

G s1rs2

The language accepted by an sDCP G is L(G) = {s ∈ TΣ|s⇒∗G ε}.

Example 2.3. The following sDCP G accepts the tree from Example 1.1.
G = (N,Σ, S, P ), where

• N = {S,NP, V P, V,Det,N} where for all A ∈ N : rk(A) = 1,

• Σ = {S,NP,VP,V,Det,N,Das,Buch,gab, sie, ihm}, and

• P = {ρ1, ..., ρ8}, as specified in the following.

ρ1 = S
(
S(x1x2)

)
→ NP (x1)V P (x2)

ρ2 = V P
(
VP(x1x2x3)

)
→ V (x1)NP (x2)NP (x3)

ρ3 = NP
(
NP(x1x2)

)
→ Det(x1)N(x2)

ρ4 = NP
(
NP(sie)

)
→ ε

6



ρ5 = V
(
V(gab)

)
→ ε

ρ6 = Det
(
Det(Das)

)
→ ε

ρ7 = N
(
N(Buch)

)
→ ε

ρ8 = NP
(
NP(ihm)

)
→ ε

The tree can be derived as follows:

S
(
S(NP(sie),VP(V(gab),NP(ihm),NP(Det(Das),N(Buch))))

)
⇒ρ1
G NP

(
NP(sie)

)
, V P

(
VP(V(gab),NP(ihm),NP(Det(Das),N(Buch)))

)
⇒ρ4
G V P

(
VP(V(gab),NP(ihm),NP(Det(Das),N(Buch)))

)
⇒ρ2
G V

(
V(gab)

)
NP

(
NP(ihm)

)
NP

(
NP(Det(Das),N(Buch))

)
⇒ρ5
G NP

(
NP(ihm)

)
NP

(
NP(Det(Das),N(Buch))

)
⇒ρ8
G NP

(
NP(Det(Das),N(Buch))

)
⇒ρ3
G Det

(
Det(Das)

)
N
(
N(Buch)

)
⇒ρ6
G N

(
N(Buch)

)
⇒ρ7
G ε

2.1.3 LCFRS/sDCP hybrid grammars

Hybrid grammars are introduced by [7]. Here, we are using the notation of [5]
In order to link an LCFRS and an sDCP together we index the terminals

and nonterminals of both grammars. Let Ω be a ranked alphabet. The ranked
alphabet I(Ω) is defined as I(Ω) = {ω u |ω ∈ Ω, u ∈ N+} with rkI(Ω)(ω

u ) =
rkΩ(ω). Let ∆ be a ranked alphabet such that ∆∩Ω = ∅ and Y ⊆ X. We define
IΩ,∆(Y ) as the set of all t ∈ TI(Ω)∪∆(Y ) where each index occurs at most once.
Instead of IΩ,∆(∅), I will be writing IΩ,∆. The deindexing function D removes
all indices from a tree t ∈ TI(Ω)∪∆(Y ). For a tree t ∈ TI(Ω)∪∆(Y ), ind(t) is
the set of all indices occuring in t. Let k ∈ N and t1, ..., tk ∈ TI(Ω)∪∆(Y ).
Then, D(t1...tk) = D(t1)...D(tk) and ind(t1...tk) =

⋃
i∈[k] ind(tk). For a string

s ∈ (I(Ω) ∪∆)∗, D(s) and ind(s) are defined in the same way.
An LCFRS/sDCP hybrid grammar is a tuple G = (N,S, (Γ,Σ), P ) where

• N is an alphabet of nonterminals,

• Γ,Σ are ranked alphabets of terminals with Γ ⊆ Σ(0),

• S ∈ N is the initial nonterminal, and

• P is a set of rules, described in the following.
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Let ∆ be the ranked alphabet Σ \ Γ, where for each δ ∈ ∆, rk∆(δ) =
rkΣ(δ). Let n, k, l,m, p, q ∈ N, Y,Z ⊆ X, s1, ..., sk ∈ (Γ ∪ Y )∗, t1, ..., tl ∈
IΓ,Σ(Z), i1, ..., ip ∈ IN,∅(Y ), r1 = i1...ip, i

′
1, ..., i

′
q ∈ IN∪Γ,∆(Z), and r2 =

i′1...i
′
q. Each rule is of the form [A(s1, ..., sk) → r1, A(t1, ..., tl) → r2] such that

D(A(s1, ..., sk))→ D(r1) has the form of an LCFRS rule and D(A(t1, ..., tl))→
D(r2) has the form of an sDCP rule. We also demand that each index couples
two identical symbols. Let P1 be the set of all D(A(s1, ..., sk)) → D(r1) where
A(s1, ..., sk)→ r1 is the first component of a rule in P. P2 is similarly defined for
the second component of rules. We demand that (N,S,Γ, P1) is an LCFRS and
(N,S,Σ, P2) is an sDCP. These two grammars are called the first and second
component of the hybrid grammar.

In order to define the derivation relation, we need to define reindexing func-
tions for terminals and nonterminals. The reason for this is that one rule can
be applied multiple times during the derivation of a word. This can lead to
a situation where, in a sentential form of the first or second component of a
hybrid grammar, there are multiple occurrences of the same symbol with the
same index. To avoid such a situation the indices need to be reassigned when
applying a rule. For the nonterminal reindexing function we define a set U ⊆ N+

of existing indices. The nonterminal reindexing function f replaces indices in
each rule such that the new indices are not already contained in U . A terminal
reindexing function replaces the indices at the terminals in the rule with the
indices of the corresponding nonterminals in the sentential form.

We can now define the derivation relation as follows. We let

[s′′1 ...s
′′
isA

u (s′1, ..., s
′
k)s′′is+1...s

′′
js , t
′′
1 ...t

′′
itA

u (t′1, ..., t
′
k)t′′it+1...t

′′
jt ]⇒

u,g
G

[s′′1 ...s
′′
is · r

′
1 · s′′is+1...s

′′
js , t
′′
1 ...t

′′
itr
′
2t
′′
it+1...t

′′
jt ]

for every is, js, it, jt ∈ N (with is ≤ js, it ≤ jt), s
′′
1 , ..., s

′′
js
∈ IN∪Γ,∅, t

′′
1 , ..., t

′′
jt
∈

IN∪Γ,∆, s′1, ..., s
′
k ∈ I(Γ)∗, t′1, ..., t

′
k ∈ IΓ,∆, if:

• [A(s1, ..., sk)→ r1, A(t1, ..., tl)→ r2] ∈ P ,

• ∃U ⊆ N, such that U = ind(s′′1 ...s
′′
is
Au (s′1, ..., s

′
k)s′′is+1...s

′′
js

) \ {u} =

ind(t′′1 ...t
′′
it
Au (t′1, ..., t

′
k)t′′it+1...t

′′
jt

) \ {u},

• there is a terminal reindexing function g such that g(s1, ..., sk) = (s′1, ..., s
′
k),

• A(s′1, ..., s
′
k)→ r′1 is obtained from g(fU (A(s1, ..., sk)→ r1)) by replacing

variables with strings in I(Γ)∗, and

• A(t′1, ..., t
′
k) → r′2 is obtained from g(fU (A(t1, ..., tk) → r2)) by replacing

variables with trees in IΓ,∆.

The language accepted by an LCFRS/sDCP hybrid grammar G is the set of
all hybrid trees h = (ξ,≤ξ) with [str(ξ), ξ]⇒∗G [ε, ε]
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Example 2.4. We can obtain a hybrid grammar that accepts the hybrid tree
from Example 2.1 by combining the LCFRS from Example 2.2 and the sDCP
from Example 2.3. I will only give the set P of hybrid rules here.

ρ1 = [S(x2x1x3)→ NP 1 (x1)V P 2 (x2, x3), S
(
S(x1x2)

)
→ NP 1

(
x1)V P 2

(
x2)]

ρ2 = [V P (x3x1, x2)→ V 1 (x1)NP 2 (x2)NP 3 (x3),

V P
(
VP(x1x2x3)

)
→ V 1

(
x1

)
NP 2

(
x2

)
NP 3

(
x3

)
]

ρ3 = [NP (x1x2)→ Det1 (x1), N 2 (x2), NP
(
NP(x1x2)

)
→ Det1

(
x1

)
N 2

(
x2

)
]

ρ4 = [NP (sie1 )→ ε,NP
(
NP(sie1 )

)
→ ε]

ρ5 = [V (gab1 )→ ε, V
(
V(gab1 )

)
→ ε]

ρ6 = [Det(Das1 )→ ε,Det
(
Det(Das1 )

)
→ ε]

ρ7 = [N(Buch1 )→ ε,N
(
N(Buch1 )

)
→ ε]

ρ8 = [NP (ihm1 )→ ε,NP
(
NP(ihm1 )

)
→ ε]

The hybrid tree can be derived as follows (the words in the string are ab-
breviated by their first letter):

[S 1 (D2 B3 g 4 s5 i6 ),

S 1
(
S(NP(s5 ),VP(V(g 4 ),NP(i6 ),NP(Det(D2 ),N(B3 ))))

)
]

⇒1 ,ρ1
G [NP 1 (s5 )V P 7 (D2 B3 g 4 , i6 ),

NP 1
(
NP(s5 )

)
V P 7

(
VP(V(g 4 ),NP(i6 ),NP(Det(D2 ),N(B3 )))

)
]

⇒1 ,ρ4
G [V P 7 (D2 B3 g 4 , i6 ),

V P 7
(
VP(V(g 4 ),NP(i6 ),NP(Det(D2 ),N(B3 )))

)
]

⇒7 ,ρ2
G [V 1 (g 4 )NP 8 (D2 B3 )NP 9 (i6 ),

V 1
(
V(g 4 )

)
NP 9

(
NP(i6 )

)
NP 8

(
NP(Det(D2 ),N(B3 ))

)
]

⇒1 ,ρ5
G [NP 8 (D2 B3 )NP 9 (i6 ),

NP 9
(
NP(i6 )

)
NP 8

(
NP(Det(D2 ),N(B3 ))

)
]

⇒9 ,ρ8
G [NP 8 (D2 B3 ), NP 8

(
NP(Det(D2 ),N(B3 ))

)
]

⇒8 ,ρ3
G [Det1 (D2 )N 10 (B3 ), Det1

(
Det(D2 )

)
N 10

(
N(B3 )

)
]
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⇒1 ,ρ6
G [N 10 (B3 ), N 10

(
N(B3 )

)
]

⇒10 ,ρ7
G [ε, ε]

Here we used the following reindexing functions:
rule used nonterminal reindexing terminal reindexing

ρ1 f{2,...,6}(2) = 7 g identity
ρ4 f{2,...,7} identity g(1) = 5

ρ2
f{2,3,4,6,7}(2) = 8
f{2,3,4,6,7}(3) = 9

g identity

ρ5 f{2,3,6,8,9} identity g(1) = 4
ρ8 f{2,3,6,8} identity g(1) = 4
ρ3 f{2,3,8}(2) = 10 g identity
ρ6 f{1,2,3,10} identity g(1) = 2
ρ7 f{3,10} identity g(1) = 3

2.2 Induction of hybrid grammars

Gebhardt et al. [5] formalize probabilistic hybrid grammars (already mentioned
in [7]) by assigning probabilities to rules. Let G = (N,S, (Γ,Σ), P ) be a hybrid
grammar, A ∈ N , and PA ⊆ P the set of all ρ ∈ P where A is the nonterminal
in the left-hand sides of the first and second component of ρ. G is proper if for
all B ∈ N ,

∑
ρ∈PB

p(ρ) = 1, where p(ρ) is the probability of ρ. We demand
that a probabilistic hybrid grammar is proper.

In order to induce a hybrid grammar on a corpus of hybrid trees (ξ,≤ξ) they
define recursive partitionings as a way to add structural information to str(ξ).

2.2.1 Recursive Partitionings

Recursive partitionings were introduced by Nederhof and Vogler [7].
A recursive partitioning is a tree π ∈ TP (N) whose nodes are labeled with

sets of natural number, such that

1. the root is labeled with {1, ..., n} for some n ∈ N,

2. all leaves are labeled with a set of size one,

3. the label of each non-leaf node is the union of the labels of its children,

4. the labels of the children of each non-leaf node are disjoint, and

5. each non-leaf node has at least two children.

Let n,m ∈ N with n < m. The span of n and m, denoted by span(n,m), is
the set {n, n+ 1, ...,m}.

Let J be the label of a node of a recursive partitioning. The fanout of J is the
smallest number k of sets Ji such that J =

⋃k
i=1 Ji and for each i ∈ [k], there

are n,m ∈ N, such that Ji = span(n,m). The fanout of a recursive partitioning
is the maximal fanout of the labels of its nodes.
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2.2.2 Extraction of a recursive partitioning from a hybrid tree

In order to obtain a recursive partitioning π that reflects the structure of a hybrid
tree (ξ,≤ξ), Gebhardt et al. [5] introduce an extraction algorithm (Algorithm
6.2 in [5]).

Let Γ,Σ be ranked alphabets, such that Γ ⊆ Σ(0), and h = (ξ,≤ξ) a hybrid
tree over Γ and Σ. The algorithm replaces the label of each node whose label is
in Γ with a number according to the order imposed on these nodes by ≤ξ. The
label of each non-leaf node is replaced by the union of the numbers assigned
to its children (and to itself, if its label is in Γ as well). Non-leaf nodes whose
labels have size one are removed.

Example 2.5. This is the hybrid tree from Example 2.1 and the recursive
partitioning extracted from it.

S

NP

sie

VP

V

gab

NP

ihm

NP

Det

Das

N

Buch

Das Buch gab sie ihm

{1, 2, 3, 4, 5}

{4} {1, 2, 3, 5}

{3} {5} {1, 2}

{1} {2}

2.2.3 Induction of a hybrid grammar from a hybrid tree and a re-
cursive partitioning

For the induction of hybrid grammars, Gebhardt et al. [5] introduce algorithms
for the induction of an LCFRS and an sDCP that each contains indices that
couple the two grammars.

Algorithm 6.1 in [5] induces an LCFRS from a string s with length l and a
recursive partitioning π where the label of the root of π is [l]. The labels of the
nodes of π become the nonterminals of the LCFRS. The algorithm creates one
rule out of each node of the recursive partitioning. The label of the node is made
the nonterminal in the left-hand side, while the labels of the children of that node
become the nonterminals in the right-hand side. The variables in the left-hand
side argument are ordered in a way that in a derivation step each terminal of s is
assigned to the corresponding nonterminal in the left-hand side. Corresponding
means here that the nonterminal contains the number corresponding to the
position of the terminal in s. For the leaves, the nonterminals in the left-hand
side of the rule take one argument which is the terminal in s that corresponds
to the number in the nonterminal. The right-hand side of these rules is just ε.

Example 2.6. With the recursive partitioning from Example 2.5 and the string
”Das Buch gab sie ihm”, Algorithm 6.1 from [5] induces the following LCFRS:
G = (N,Σ, S,R), where

• N = {L{1, 2, 3, 4, 5}M, L{4}M, L{1, 2, 3, 5}M, L{3}M, L{5}M, L{1, 2}M, L{1}M, L{2}M},
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• Σ = {Buch, sie, ihm, gab,Das},

• S = L{1, 2, 3, 4, 5}M,

• R = {ρ1, ..., ρ8} as specified in the following.

ρ1 = L{1, 2, 3, 4, 5}M(x2x1x3)→ L{4}M(x1)L{1, 2, 3, 5}M(x2, x3)

ρ2 = L{1, 2, 3, 5}M(x3x1, x2)→ L{3}M(x1)L{5}M(x2)L{1, 2}M(x3)

ρ3 = L{1, 2}M(x1x2)→ Det(x1)L{2}M(x2)

ρ4 = L{4}M(sie)→ ε

ρ5 = L{3}M(gab)→ ε

ρ6 = L{1}M(Das)→ ε

ρ7 = L{2}M(Buch)→ ε

ρ8 = L{5}M(ihm)→ ε

Notice that the nonterminal L{1, 2, 3, 5}M has a fanout of two. This is because
the label of the corresponding node in the recursive partitioning also has fanout
two. Therefore, we can induce an LCFRS with a lower fanout by using a different
recursive partitioning. This is desirable because a lower fanout leads to a lower
parsing complexity.

Take, for example, the following recursive partitioning which has a fanout of
one instead of two.
{1, 2, 3, 4, 5}

{5} {1, 2, 3, 4}

{4} {1, 2, 3}

{3} {1, 2}

{1} {2}

With it, the algorithm returns the following LCFRS which has a fanout of
one. (I give only the rules of the LCFRS here):

ρ1 = L{1, 2, 3, 4, 5}M(x2x1)→ L{5}M(x1)L{1, 2, 3, 4}M(x2)

ρ2 = L{1, 2, 3, 4}M(x2x1)→ L{4}M(x1)L{1, 2, 3}M(x2)

ρ3 = L{1, 2, 3}M(x2x1)→ L{3}M(x1)L{1, 2}M(x2)

ρ4 = L{1, 2}M(x1x2)→ L{1}M(x1)L{2}M(x2)

ρ5 = L{4}M(sie)→ ε

ρ6 = L{3}M(gab)→ ε
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ρ7 = L{1}M(Das)→ ε

ρ8 = L{2}M(Buch)→ ε

ρ9 = L{5}M(ihm)→ ε

Algorithm 6.5 in [5] induces an sDCP from a dependency structure h =
(ξ,≤ξ) and a recursive partitioning π. It uses a construction similar to the
algorithm for induction of LCFRS.

When inducing a grammar from a corpus of trees, the nonterminals pro-
duced from each tree are renamed in order to make rules and nonterminals less
dependent on one specific tree. For this, Nederhof and Vogler [7, page 1376]
introduce strict and child labeling as naming strategies. These can be used in
combination with POS, DEPREL, and POS+DEPREL labeling.

3 The algorithm for the transformation of re-
cursive partitionings

Gebhardt et al. [5] introduce an algorithm for the transformation of recursive
partitionings, such that an arbitrary recursive partitioning is transformed into
a recursive partitioning with a fanout less than or equal to a given value k
(Algorithm 6.3 in [5]). The goal is to obtain a recursive partitioning that has
the required fanout (to lead to a grammar with lower parsing complexity) but
also retains the structure of the original recursive partitioning as far as possible.
I slightly adapted this algorithm to fit my definition of recursive partitionings
without s-terms in Algorithm 1.

The algorithm takes a recursive partitioning π = J(π1, ..., πn), where J is
the label of the root and π1, ..., πn are the subtrees of the root. It performs a
search among the positions of π until it finds a p ∈ pos(π) such that the sets
π(p) and J \ π(p) each have a fanout less than or equal to k (line 5). Such a
position always exists ([5, page 29]).

When the algorithm has found such a p ∈ pos(π), it creates a new tree π′′ by
removing all elements of π(p) from π (line 7). For this, the function REMOVE
(line 10 - line 23) is called. It then obtains the transformed recursive partitioning
by recursively transforming π|p and π′′ and using them as subtrees (line 8).

In line 5, Gebhardt et al. [5] choose p according to a breadth-first search.
However, it is also possible to use another strategy for choosing p. My task is
to implement different strategies for choosing p and to compare the grammars
induced with the recursive partitionings obtained with these strategies.

4 Implementation

For their implementation of the induction of hybrid grammars, Gebhardt et al.
[5] implemented Algorithm 1 with right-to-left breadth-first search for line 5.
Recursive partitionings are implemented as tuples consisting of the label of the
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Algorithm 1 Transformation of a recursive partitioning

Require:
a recursive partitioning π
a maximal fanout k ∈ N

Ensure: a recursive partitioning with fanout ≤ k

1: function transform(π = J(π1, ..., πn), k)
2: if |J | = 1 then
3: return π
4: end if
5: p← breadth-first search for some p ∈ pos(π) \ {ε}

↪→ such that π(p) and J \ π(p) each have fanout ≤ k
6: π′ ← π|p
7: π′′ ← Remove(π, π(p))
8: return J(transform(π′, k), transform(π′′, k))
9: end function

10: function remove(π = J(π1, ..., πk), I)
. Removes all occurences of members of the set I from π.

11: J ′ ← J\I
12: j ← 0
13: for i = 1, ..., k do
14: π′ ← remove(πi, I)
15: if π′(ε) = J ′ then
16: return π′

17: else if π′(ε) 6= ∅ then
18: j + +
19: π′j ← π′

20: end if
21: end for
22: return J ′(π′1, ..., π

′
j)

23: end function
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root and a list of the children of the root, which are recursively implemented in
the same way. I adapt this implementation to include transformations

• with left-to-right breadth-first search,

• with choosing p such that p = argmaxp∈pos(π)|π(p)| (meaning such that
π at position p has the label with the most elements),

• with choosing p randomly, and

• with choosing p such that no new nonterminals are added if possible. If
that is not possible, p is chosen according to one of the other strategies.

The functions implementing the transformations can be found in the file
lcfrs-sdcp-hybrid-grammars/decomposition.pyx. For running the experi-
ment, one needs to install a number of prerequisites, for which there is a wiki
by Gebhardt and Teichmann [4]. Then on needs to execute the file
lcfrs-sdcp-hybrid-grammars/playground/play_recursive_partitioning.py.
Assuming one is in the playground directory, it can be called with
PYTHONPATH=.. python2.7 play_recursive_partitioning.py.

4.1 Command-line options

I have implemented command line options for play_recursive_partitioning.py
that determine the transformation strategy and hyperparameters. Some option
can be passed multiple arguments separated by whitespace. These are -s, -l,
-t, -f, -n, and -r. A call could look like this: PYTHONPATH=.. python2.7

play_recursive_partitioning.py -s rtl argmax -l child -f 2 3.
Table 1 provides an overview over the command line options.

4.2 Output file

The output is saved in the file results.txt. For each combination of trans-
formation strategy, labeling strategy, and maximal fanout, the file contains a
number of lines. These lines contain:

• the current strategy, labeling, and fanout,

• the number of nonterminals and rules of the induced grammar, and

• the average number of derivation trees per sentence and the maximal
number of derivation trees of any sentence.

• The next three lines contain labeled and unlabeled attachment scores with
and without punctuation.

• The last line shows the parse time.
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Table 1: Command line options

Option Meaning Possible choices Default

-s strategy for choosing p

• rtl for right-to-left
breadth-first search

• ltr for left-to-right
breadth-first search

• argmax for choosing p =
argmaxp∈pos(π)|π(p)|

• random for random choice

• nnont for no new nonter-
minals if possible

rtl

-l labelling strategy strict, child strict

-t also labelling strategy pos, deprel, pos+deprel pos

-f maximal fanout 1

-n
fallback strategy for no-new-
nonterminals strategy

rtl, ltr, random, argmax rtl

-r random seed for random choice 1

-c language polish, german german

-d
whether or not to count deriva-
tion trees

yes, no, y, n yes

-q
use shortened version of german
dev-corpus

yes, no yes

-e
whether or not to determine at-
tachment scores and parse times

yes, no yes
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The numbers for the derivation trees and/or the attachment scores and the
parse time can be missing, if play_recursive_partitioning.py was called
with the respective command-line options or if the RAM was insufficient. If
the RAM is insufficient for counting the derivation trees, the file also does not
show the attachment scores and parse times since these are determined later in
play_recursive_partitioning.py. In that case play_recursive_

partitioning.py needs to be run again with the option ’-d no’.

4.3 Common elements of the transformation functions

The functions implementing the various strategies share common elements which
were introduced in the implementation by Gebhardt et al. [5]. I will give an
overview over these common elements before describing the individual strategies.

All of the functions take a recursive partitioning (called part) and the max-
imal fanout (called fanout) as arguments. They search for a subtree of part
such that the label of the root of that subtree (saved in the variable subroot)
and the label of the root of part, with the elements of subroot removed, have
a fanout less than or equal to fanout. I will refer to that condition as the target
condition.

To do that, the functions first copy the children of the root of part into the
list agenda and perform a breadth-first search on agenda. The label of the root
of part is held in the variable root. For each element of agenda (child1) they
check, whether the label of the root of child1 (subroot) and root fulfill the
target condition.

4.4 Right-to-left breadth-first search

This strategy was implemented by Gebhardt et al. [5]. The implementation can
be found in the function fanout_limited_partitioning() from lines 76 - 101.
Like the functions for the other transformation strategies it performs a breadth-
first search over agenda, but before that, it reverses agenda for right-to-left
branching (line 85).

If the target condition is fulfilled, the function restrict_part() is called,
which deletes all elements of subroot from part (line 94, corresponding to line 7
of Algorithm 1). Then fanout_limited_partitioning_left_to_right() is
called recursively on child1 and the result of restrict_part(), yielding trans-
formed trees which are respectively saved in child1_restrict and
child2_restrict. The function then returns a recursive partitioning with root

as the label of its root and with child1_restrict and child2_restrict as
children of its root (lines 95 - 97, corresponding to line 8 of Algorithm 1).

If the target condition is not fulfilled, the children of child1 are, in right-
to-left order, added to the end of the queue for the breadth-first search (line
99).
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4.5 Left-to-right breadth-first search

This strategy is implemented in the function fanout_limited_partitioning

_left_to_right() (lines 104 - 130). It works almost the same as the imple-
mentation for right-to-left breadth-first search, except that the lists children

and subchildren are not reversed when added to agenda (lines 114 and 128).

4.6 Choice of p = argmaxp∈pos(π)|π(p)|
This strategy is implemented in the function fanout_limited_partitioning

_argmax() (lines 133 - 165). Like the other functions it performs a breadth-
first search through the subtrees of part, however, instead of using the first
solution, all positions are checked. If child1 fulfills the target condition, the
function determines, whether one of the previous possible solutions is better
than child1. For this strategy, better means that subroot has more elements
than argroot, which is the label of the root of the previous best solution. If
so, child1 is copied into the variable argmax (lines 144 and 156-157). That
way argmax holds the subtree with the most elements in the label of its root.
After having searched through all subtrees, the function calls itself recursively
on argmax to create the transformed partitioning (lines 161 - 165).

4.7 Random Choice

This strategy is implemented in the function fanout_limited_partitioning

_random_choice() (lines 343 - 373). Like the previous functions, it performs
a breadth-first search among the subtrees of the recursive partitioning. If it
finds one that fulfills the target condition (line 360), the function adds it to the
list possibleChoices (lines 352 and 361). After all items in agenda have been
processed, an element from possibleChoices is randomly selected (line 366)
and then used to create the transformed partitioning (lines 369 - 373).

A random seed can be set through the command line in order to ensure
repeatability of the experiments.

4.8 No new nonterminals

In this strategy, p ∈ pos(π) is chosen, such that it does not require a new
nonterminal if such a p exists. The idea behind this strategy is that p could
be chosen in a way that minimizes the number of nonterminals and/or rules of
the resulting grammar. However, since the number of nonterminals/rules also
depends on the recursive processing of the children and the processing of the
other trees in the corpus, one needs to use a simplified approach.

This strategy is implemented in the function fanout_limited_partitioning

_no_new_nont() (lines 169 - 213). It takes four extra arguments besides part

and fanout. These are the current tree in the corpus (tree), for which the recur-
sive partitioning is to be transformed, the previously generated nonterminals of
the hybrid grammar (nonts), the nonterminal labelling strategy currently being
used (nont_labelling), and the strategy to be used as fallback (fallback).
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It performs a left-to-right breadth-first search on part. If it finds a subtree
that fulfills the target condition (line 189), it also checks, whether subroot

requires a new nonterminal (lines 190 - 198). If so, the function continues
to search for a subtree which does not require a new nonterminal. If not, the
subtree is used to create the transformed recursive partitioning (lines 202 - 205).

It is possible (and in the case of the first tree in the corpus inevitable) that
all positions in part require a new nonterminal. In that case, the breadth-first
search will not return a subtree of part to use for the transformation. Therefore
the function then calls a fallback function (depending on the fallback parame-
ter). These functions (fallback_rtl(), fallback_ltr(), fallback_argmax(),
fallback_random()) (lines 215 - 339) each work like their counterpart for the re-
spective strategy, except that they call fanout_limited_partitioning_no_new
_nont() for the recursive transformation of the subtrees instead of themselves.

5 Experiments

In this section, I show experimental results for the training of hybrid grammars
with the various transformation strategies.

I ran most of the experiments on a computer with a 2.5 GHz Intel Core
i5-7200U CPU and 8GB of RAM. For some experiments, the RAM was not
sufficient. I ran those on a server with 32 GB RAM (capped at 15 GB) and
two Dual-Core AMD Opteron(tm) Processor 2224 SE CPUs, which had a clock
rate of 1 GHz and 3.2 GHz, respectively. Therefore, the parse times for these
experiments cannot be compared to the other results. They are marked in yellow
in the table for parse times. For some experiments even the higher RAM was
not sufficient, therefore, the table entries for these read ”insuff. RAM”.

For the no-new-nonterminals strategy, I list the results for different fallback
strategies in separate columns.

For the random-choice strategy (and no-new-nonterminals with random choice
as fallback) I ran three experiments with random seeds 1, 10, and 20. The results
given here are the arithmetic mean of these experiments.

As terminal labeling strategy, I used POS for all experiments.
The first three columns in every table show the used nonterminal labeling

strategy (strict or child and POS, DEPREL or POS+DEPREL) and the maxi-
mal fanout.

I use the same parsers as Gebhardt et al. [5]. For LCFRS parsing with
maximal fanout one this is the OpenFST framework ([1]) with python bindings
by Gorman [6]. For LCFRS parsing with a higher maximal fanout this is an
LCFRS parser by Angelov and Ljunglöf [2], which is part of the Grammatical
Framework ([8]).

Since Gebhardt et al. [5] did not find any grammar to have a fanout higher
than four in their experiments, I did not include transformations for maximal
fanout four or higher in my experiments.

In each table, the best entry is marked in green and in italics and the worst
entry in red and bold. For the tables for the parse times, the marked results are
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the best and worst results not computed on the server.
In the following sections I will be using abbreviations for the strategies.

• rtl for right-to-left breadth-first search

• ltr for left-to-right breadth-first search

• argmax for choosing p such that p = argmaxp∈pos(π)|π(p)|

• random for choosing p randomly

• nnont(fallback) for choosing p sucht that no new nonterminal is created
if possible. fallback stands for the abbreviation of the respective fallback
strategy

5.1 Criteria

In this section, I will give an overview over the criteria according to which I
compared the transformation strategies.

The number of nonterminals and rules in the induced grammar influences
the parsing complexity. Therefore, a smaller number of nonterminals and rules
is better.

The number of derivation trees for a sentence in the corpus indicates the
ambiguity of the grammar. If the number is high, there are more ways to syn-
tactically interpret the sentence. This can make semantic analysis of a sentence
harder. Therefore, smaller numbers are better as well.

The unlabeled attachment score is the percentage of words for which the
string parser found the correct HEAD, meaning the parent of that word in a
dependency structure. The labeled attachment score also takes into account
whether the parser found the correct label for that word (according to the ter-
minal labeling strategy). For attachment scores, higher numbers are better since
they mean that more words were correctly placed in relation to the grammatical
structure of the sentence.

The parse time here is the time that was necessary for the string parser to
parse the corpus and calculate the attachment scores.

5.2 Corpora

I am using corpora in the conll format from the SPMRL Shared Task [9]. Specif-
ically, I use the German and the Polish Predicted training corpora for training
of the grammars and counting of the number of derivation trees per sentence.
For calculating the attachment scores and measuring the parse times, I used
the development corpora. I shortened the German development corpus to the
length of the Polish corpus in order to make parse times comparable. This is
done by the script smallCorpus.py.
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5.3 Number of nonterminals and rules

The results for random and nnont(random) were rounded to whole numbers.

Table 2: Number of nonterminals - Polish
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child pos 1 539 530 844 591 586 591 2985 2929
2 538 528 1339 591 589 591 6061 5966
3 538 528 1429 589 586 588 7767 7661

deprel 1 284 272 445 310 328 330 2001 1980
2 281 268 695 331 305 306 4802 4778
3 281 268 768 330 335 311 6482 6453

pos+deprel 1 1622 1623 2196 1902 1931 1916 5669 5399
2 1621 1624 3063 1916 1912 1906 9491 9064
3 1621 1624 3158 1934 1941 1917 10992 10519

strict pos 1 3670 3744 3989 5129 5127 5124 7846 6969
2 3669 3741 4819 5119 5129 5127 11482 10357
3 3669 3741 4880 5129 5111 5127 12923 11729

deprel 1 2209 2290 2476 3241 3184 3268 5382 4908
2 2206 2286 3047 3187 3192 3189 9009 8407
3 2206 2286 3119 3186 3251 3253 10585 9940

pos+deprel 1 5868 6041 6377 8556 8508 8500 11868 10276
2 5866 6040 7462 8606 8533 8621 15903 13841
3 5866 6040 7511 8471 8544 8664 17111 14936
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Table 3: Number of nonterminals - German
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child pos 1 1701 1598 1898 1135 1134 1139 7039 6660
2 1016 1078 2500 1140 1139 1140 13567 13315
3 978 1050 2854 1139 1138 1142 17660 17394

deprel 1 1240 1104 1456 755 755 749 5752 5502
2 715 687 1997 748 752 753 11806 11659
3 682 656 2245 737 739 753 15781 15642

pos+deprel 1 3730 3534 4762 3282 3280 3286 12047 11007
2 2873 2941 5947 3294 3274 3286 19658 18596
3 2830 2903 6230 3285 3288 3277 23114 21966

strict pos 1 9090 8365 8660 9700 9694 9611 18213 15597
2 8082 7593 8740 9640 9696 9617 24871 22011
3 8000 7496 8768 9606 9652 9615 27958 24951

deprel 1 6275 5779 6143 6853 6891 6997 13972 12302
2 5503 5200 6637 7122 6866 6871 20578 18774
3 5439 5142 6722 6977 6921 6928 23856 21948

pos+deprel 1 12749 11982 12964 15075 15050 15148 24725 14257
2 11703 11232 13309 15253 15119 14995 31806 27139
3 11620 11134 13216 15150 15212 15214 34293 29424

In general, the strategies rtl and ltr produce the lowest number of nonter-
minals. For the German corpus, ltr is often slightly better than rtl, especially
for strict labeling. The strategies random and nnont(random) lead in all but one
case to the highest numbers. The reason for this is that with rtl and ltr, the
recursive partitionings of similar hybrid trees are transformed in a similar way,
whereas with random they can result in very different transformed partitionings
which in turn lead to more different nonterminals.

The nnont strategies lead to higher numbers of nonterminals than the cor-
responding fallback strategies, with the exception of child labeling with fanout
one for fallback rtl, ltr and with any fanout for fallback argmax. In these
cases the numbers for nnont are between 7% and 66% lower than for the fall-
back strategies.For the German corpus, the strategies nnont(rtl), nnont(ltr)
and nnont(argmax) lead to the overall lowest numbers for child labeling with
maximal fanout one. For nnont(random), the numbers with child labeling are
also better than with strict labeling, although they are higher than the numbers
for random in all but one case. The reason for these observations is presumably
that with child labeling, different nodes in recursive partitionings are assigned
the same label. This makes it more likely that a node results in a nonterminal
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that already exists.
For the Polish corpus, the different maximal fanouts do not lead to different

results for the strategies ltr, rtl and their corresponding nnont strategies. For
argmax, random and nnont(random) a higher maximal fanout leads to more
nonterminals. This is due to the fact that, with a higher fanout, there are more
nodes in a recursive partitioning that fulfill the target condition and could be
randomly chosen or have the longest label. Therefore, there are more possi-
bilities to transform recursive partitionings, which leads to more nonterminals.
Interestingly, for nnont(argmax) the maximal fanout has no influence on the
number of nonterminals. For the German corpus, the results are similar, except
that the number of nonterminals is lower for fanouts two and three than for
fanout one for the strategies rtl and ltr.

The German corpus leads to a higher number of nonterminals than the Polish
corpus, depending on the strategy and the hyperparameters between 39% and
337% higher.

Similar observations can be made by considering the number of rules.

Table 4: Number of rules - Polish
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child pos 1 2981 2912 3647 2983 2982 2983 10366 9069
2 2983 2905 5134 2983 2984 2983 14696 12918
3 2983 2905 5237 2982 2982 2982 15580 13740

deprel 1 1949 1885 2491 1936 1958 1962 8105 7321
2 1950 1879 3557 1960 1927 1932 12633 11603
3 1950 1879 3685 1962 1963 1939 13716 12644

pos+deprel 1 5171 5083 5830 5376 5411 5383 14593 11750
2 5171 5078 7548 5388 5386 5383 18497 14901
3 5171 5078 7626 5404 5416 5397 19105 15422

strict pos 1 7093 7127 7481 8819 8820 8817 15691 12655
2 7095 7121 8593 8814 8820 8820 19818 16023
3 7095 7121 8654 8820 8801 8820 20530 16664

deprel 1 4938 4971 5306 6258 6211 6282 12406 10439
2 4939 4967 6247 6207 6216 6217 16801 14335
3 4939 4967 6341 6213 6261 6266 17691 15169

pos+deprel 1 9620 9781 10167 12164 12131 12118 20007 15446
2 9620 9776 11384 12222 12151 12231 23839 18217
3 9620 9776 11434 12102 12152 12266 24359 18638
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Table 5: Number of rules - German
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child pos 1 6243 5940 7129 5546 5546 5551 20434 17260
2 5354 5434 9238 5551 5553 5552 29021 25287
3 5302 5392 9554 5551 5553 5554 26516 27063

deprel 1 5069 4694 5915 4296 4296 4292 17998 15521
2 4278 4185 7495 4291 4296 4295 26511 23672
3 4219 4130 7859 4275 4277 4296 28640 25722

pos+deprel 1 9902 9610 11340 9634 9630 9634 27930 21731
2 9048 9176 13536 9636 9625 9629 35468 28307
3 8988 9136 13680 9632 9635 9633 36703 29405

strict pos 1 14887 14206 14717 15951 15952 15863 31240 24521
2 14006 13551 15268 15900 15949 15868 38670 31030
3 13949 13467 15353 15864 15913 15867 40153 32393

deprel 1 11044 10443 11126 11909 11944 12030 26106 21127
2 10257 9856 12084 12154 11920 11926 33719 28072
3 10194 9790 12217 12012 11966 11977 35427 29699

pos+deprel 1 18378 17717 18823 20666 20632 20767 37572 28271
2 17581 17172 19629 20846 20723 20620 44379 33786
3 17526 17093 19610 20772 20810 20840 45356 34628

5.4 Number of derivation trees

For random and nnont(random) both the average and the maximal number of
derivation trees varied widely for the different random seeds. I, therefore, include
both the arithmetic mean and the median for the results of these strategies.

5.4.1 Average number of derivation trees

Most of the numbers in these tables were rounded to two decimal places. In the
polish table, I did not round the numbers in the columns ltr and rtl, because
for some of these their difference to one would otherwise not have been visible.

5.4.2 Maximal number of derivation trees

The results for random and nnont(random) were rounded to whole numbers,
since they are the average of three different runs.
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The strategies rtl and ltr lead to the grammars with the lowest ambigu-
ity. For the Polish corpus, the average number of derivation trees is only in
five cases for ltr and three cases for rtl higher than one. All of these eight
cases are for maximal fanout one. The strategies random and nnont(random)

lead to the highest numbers of parse trees. For these two strategies, there are
large differences between the labeling strategies with POS+DEPREL leading
to results that are orders of magnitude lower than the results for either POS or
DEPREL labeling.

The average number of derivation trees for the nnont strategies is often
higher than that of the corresponding fallback strategies. Exceptions from this
are the argmax and nnont(argmax) strategies where nnont(argmax) results in
a lower average number in most cases (in 14 out of 18 cases for the Polish corpus
and in 16 out of 18 cases for the German corpus), especially with child labeling.

For argmax, a maximal fanout higher than one leads in most cases to more
derivation trees (for the German corpus, fanout two always leads to a higher
number than fanout three). For nnont(argmax), ltr, rtl, and their respective
nnont strategies, the maximal fanout has no influence on the average number of
derivation trees, for the Polish corpus. For the German corpus, a higher fanout
leads to a higher ambiguity for ltr and rtl. For random and nnont(random)

a higher maximal fanout leads to a lower average number of derivation trees.
The numbers for the German corpus are in all but four cases higher than

the numbers for the Polish corpus.
Similar observations can be made for the maximum number of derivation

trees, except that argmax and nnont(argmax) do not show as much of a differ-
ence with strict labeling.

For the Polish corpus, almost all the maximal numbers of derivation trees
for nnont with fallback strategies rtl, ltr and argmax are powers of two, with
only one exception.

5.5 Labelled attachment score

The results for random and nnont(random) were rounded to two decimal places,
since the individual results for the different random seeds had the same accuracy.

Since the observations for the Labelled Attachment Score and the Unlabelled
Attachment Score are similar with and without punctuation, I put the tables for
the LAS with punctuation and all tables for the UAS in Appendix appendix A.
The difference is that the UAS is higher than the LAS.
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Table 10: Labelled Attachment Score (no punctuation) - Polish
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child pos 1 44.19 45.13 44.59 44.59 44.58 44.58 45.45 41.91
2 44.08 44.72 41.84 44.69 44.68 44.69 45.26 36.78
3 44.08 44.72 41.89 44.69 44.70 44.73 45.36 33.33

deprel 1 58.05 57.81 56.73 58.01 57.84 57.81 54.21 51.72
2 57.95 58.29 56.71 58.35 58.60 58.56 52.50 49.31
3 57.95 58.29 56.60 58.40 58.36 58.57 52.40 48.70

pos+deprel 1 56.12 57.91 55.14 56.80 56.79 56.86 61.02 47.84
2 56.18 57.79 45.61 57.23 57.21 57.21 60.53 32.80
3 56.18 57.79 44.90 56.98 57.16 57.10 59.86 26.69

strict pos 1 34.50 35.39 35.80 31.47 31.47 31.50 37.34 31.92
2 34.61 35.52 34.63 34.26 34.24 34.24 36.75 22.92
3 34.61 35.52 34.54 34.23 34.27 34.27 36.72 19.38

deprel 1 59.27 59.07 57.82 58.43 58.42 58.50 56.96 54.13
2 59.23 59.41 57.20 58.75 58.73 58.63 57.05 52.63
3 59.23 59.41 57.16 58.69 58.76 58.75 57.37 51.25

pos+deprel 1 34.26 34.57 34.54 26.02 25.89 25.95 37.68 25.34
2 34.34 34.55 31.27 31.64 31.54 31.33 35.37 17.19
3 34.34 34.55 31.29 32.18 31.47 31.40 35.37 14.28

random almost always results in the lowest labeled attachment score, how-
ever, nnont(random) results in much higher labeled attachment scores and the
highest of all strategies with POS and POS+DEPREL labeling.

The other results are close together with the exception of the nnont strategies
with fallback rtl, ltr and argmax for strict/POS and strict/POS+DEPREL
labeling. For these combinations, the values for fanout one are lower than the
corresponding values of the fallback strategies and also lower than the values for
maximal fanouts two and three. nnont(argmax) results in higher values than
argmax for child/POS and child/POS+DEPREL labeling and maximal fanouts
two and three.

For random a higher maximal fanout leads to a lower score. random with
strict/POS+DEPREL labeling and maximal fanout three leads to the lowest
score overall.

Both corpora lead to these observations, however, they sometimes differ in
their scores depending on the labeling strategy.
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5.6 Parse time

The values in these tables are in seconds and all numbers are rounded to two
decimal places.

Table 12: Parse time in seconds - Polish
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child pos 1 1.49 1.76 1.49 1.70 1.70 1.69 10.45 6.09
2 12.58 4.65 23.07 4.95 4.89 4.81 122.43 117.34
3 12.63 4.63 24.85 4.88 4.89 4.90 118.25 114.92

deprel 1 32.61 30.75 42.77 30.21 30.49 30.53 305.82 258.23
2 23.92 15.30 95.17 16.06 15.44 15.62 617.71 511.81
3 23.93 15.31 102.87 15.84 15.64 15.61 630.02 643.21

pos+deprel 1 1.30 1.43 1.21 1.40 1.42 1.40 4.72 2.19
2 12.17 6.21 16.08 8.31 7.50 7.57 38.17 18.61
3 12.12 6.19 13.29 7.51 7.56 7.54 32.48 15.11

strict pos 1 1.85 1.88 1.78 2.13 2.13 2.14 4.01 2.88
2 27.23 8.89 24.19 15.20 15.31 15.30 85.35 77.58
3 27.12 8.90 25.71 15.25 15.31 14.84 86.36 77.27

deprel 1 10.78 9.93 7.64 10.85 9.50 9.70 67.76 50.58
2 16.88 9.33 22.45 13.94 13.91 14.10 125.33 112.76
3 16.98 9.26 23.56 13.85 14.17 14.04 115.93 110.17

pos+deprel 1 2.25 2.22 2.16 2.33 2.40 2.39 3.30 2.47
2 18.52 8.95 15.55 12.28 12.28 12.07 26.45 9.76
3 18.59 8.93 15.56 12.35 12.12 11.94 24.63 9.51

ltr leads to the shortest parse times for maximal fanouts two and three. For
maximal fanout one, the results for the strategies are close together, except for
random and nnont(random), which lead to longer parse times. nnont(random)
results always in the longest parse time. random usually leads to parse times
only slightly shorter than nnont(random). The exception from this is strict/-
POS+DEPREL labeling where random leads to parse times that are almost as
short as the times for ltr (up to 43% longer compared to up to 4003% longer
for other labeling strategies).

nnont(rtl) and nnont(argmax) result in shorter parser than times rtl and
argmax for maximal fanouts two and three. nnont(ltr) results in longer parse
times than ltr for child labeling with maximal fanouts two and three.

The parse times for fanout two and three are longer than for fanout one,
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wich is at least partially due to the different parsers. The only exceptions from
this occur for DEPREL labeling in the Polish corpus. This is unclear for the
German corpus since for child/DEPREL labeling and fanouts two and three,
the RAM was insufficient in all but one case.

Induction using the German corpus leads to longer parse times than using
the Polish corpus.

5.7 Conclusions

Considering all criteria, ltr produces the overall best results. While nnont(random)
often leads to a higher LAS, it also leads to considerably longer parse times and
a higher ambiguity. rtl leads to results similar to the ones of ltr with the
exception of parse time for maximal fanouts two and three. random leads gen-
erally to worse results than most other strategies. The nnont strategies only
minimize the number of nonterminals under specific circumstances and seem to
work better for German than for Polish.

Some further questions that remain are

• Is there a better strategy for minimizing the number of nonterminals?

• How do the various transformation strategies compare to directly ex-
tracted recursive partitionings?

• Since both Polish and German have a relatively free word order, it would
be interesting to see to what results the transformation strategies lead in
languages with strict word order, such as English.
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A Attachment Scores

Table 14: Labelled Attachment Score (punctuation) - Polish
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child pos 1 47.07 47.95 47.24 47.45 47.45 47.45 47.92 44.47
2 46.87 47.58 44.38 47.57 47.57 47.57 48.06 39.34
3 46.87 47.58 44.50 47.55 47.60 47.55 48.19 35.75

deprel 1 60.28 60.13 59.04 60.39 60.22 60.19 56.77 54.21
2 60.28 60.68 59.28 60.79 60.99 61.05 55.14 52.07
3 60.28 60.68 59.20 60.83 61.02 60.79 55.29 51.61

pos+deprel 1 57.30 58.96 56.17 57.91 57.87 57.95 62.26 49.24
2 57.34 58.88 46.62 58.26 58.24 58.24 61.74 34.15
3 57.34 58.88 45.86 58.03 58.12 58.17 61.10 28.08

strict pos 1 36.60 37.59 37.72 33.24 33.24 33.26 39.35 33.89
2 36.73 37.71 36.23 36.36 36.34 36.34 38.82 24.63
3 36.73 37.71 36.14 36.33 36.36 36.38 38.85 21.05

deprel 1 61.45 61.02 59.72 60.06 60.07 60.12 59.19 56.52
2 61.38 61.47 59.33 60.81 60.73 60.80 59.4 55.27
3 61.38 61.47 59.28 60.74 60.82 60.81 59.64 53.58

pos+deprel 1 35.12 35.47 35.37 26.57 26.44 26.49 38.62 26.40
2 35.19 35.47 32.06 32.39 32.10 32.31 36.32 18.09
3 35.19 35.47 32.04 32.93 32.16 32.22 36.33 15.22
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Table 15: Unlabelled Attachment Score (punctuation) - Polish

fan
o
u

t

r
t
l

l
t
r

a
r
g
m
a
x

n
n
o
n
t
(
r
t
l
)

n
n
o
n
t
(
l
t
r
)

n
n
o
n
t
(
a
r
g
m
a
x
)

n
n
o
n
t
(
r
a
n
d
o
m
)

r
a
n
d
o
m

child pos 1 75.81 76.53 75.08 75.96 76.02 75.97 75.39 70.69
2 75.83 76.27 72.88 76.21 76.27 76.21 75.91 66.73
3 75.83 76.27 73.06 76.19 76.19 76.18 76.19 63.37

deprel 1 74.15 74.09 72.83 74.30 74.19 74.14 70.49 68.54
2 74.14 74.54 72.57 74.66 74.90 74.80 69.53 66.50
3 74.14 74.54 72.61 74.71 74.72 74.89 69.61 66.51

pos+deprel 1 73.07 74.06 72.00 73.51 73.47 73.54 76.10 67.45
2 73.10 74.02 64.96 73.82 73.86 73.86 76.08 57.48
3 73.10 74.02 64.20 73.75 73.82 73.78 75.69 53.57

strict pos 1 63.92 64.59 64.50 60.86 60.86 60.88 65.88 60.79
2 64.11 64.57 63.42 64.15 64.08 64.08 65.30 53.90
3 64.11 64.57 63.30 64.08 64.16 64.08 65.35 51.09

deprel 1 73.50 72.87 71.78 71.84 71.86 71.95 71.36 69.46
2 73.55 73.26 71.73 72.76 72.74 72.66 71.63 68.10
3 73.55 73.26 71.65 72.70 72.76 72.79 71.78 66.09

pos+deprel 1 57.25 57.77 57.52 51.15 51.03 51.07 59.27 51.68
2 57.34 57.85 55.17 55.36 55.32 55.18 58.31 46.35
3 57.34 57.85 55.18 55.70 55.17 55.19 58.18 44.58
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Table 16: Unlabelled Attachment Score (no punctuation) - Polish

fan
o
u

t

r
t
l

l
t
r

a
r
g
m
a
x

n
n
o
n
t
(
r
t
l
)

n
n
o
n
t
(
l
t
r
)

n
n
o
n
t
(
a
r
g
m
a
x
)

n
n
o
n
t
(
r
a
n
d
o
m
)

r
a
n
d
o
m

child pos 1 77.73 78.52 77.09 77.84 77.90 77.84 77.58 72.47
2 77.88 78.24 74.89 78.14 78.19 78.14 77.86 68.60
3 77.88 78.24 75.00 78.12 78.14 78.09 78.07 65.31

deprel 1 74.23 74.12 72.87 74.29 74.18 74.12 70.20 68.46
2 74.11 74.47 72.20 74.53 74.76 74.66 69.28 66.22
3 74.11 74.47 72.23 74.59 74.60 74.73 69.07 66.15

pos+deprel 1 74.11 75.04 73.21 74.52 74.49 74.55 76.93 68.80
2 74.13 74.96 66.52 74.87 74.91 74.91 76.97 59.60
3 74.13 74.96 65.80 74.82 74.90 74.84 76.60 55.93

strict pos 1 65.91 66.51 66.57 63.30 63.30 63.33 67.92 62.72
2 66.10 66.45 65.83 66.21 66.14 66.14 67.25 56.41
3 66.10 66.45 65.72 66.14 66.23 66.14 67.24 53.70

deprel 1 73.35 72.91 71.92 72.13 72.13 72.26 71.16 69.25
2 73.51 73.20 71.65 72.77 72.74 72.63 71.32 67.59
3 73.51 73.20 71.62 72.73 72.79 72.79 71.51 65.80

pos+deprel 1 59.37 59.87 59.58 53.93 53.82 53.88 61.12 54.08
2 59.47 59.95 57.45 57.69 57.65 57.51 60.35 49.31
3 59.47 59.95 57.50 58.01 57.50 57.52 60.17 47.70
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