
Extracting and Binarizing probabilistic
linear context-free rewriting systems

Bachelorarbeit
(revised version)

Lehrstuhl Grundlagen der Programmierung, Institut für Theoretische
Informatik, Fakultät Informatik, Technische Universität Dresden

2015-07-12

Sebastian J. Mielke
Matrikelnr.: 3849072

Verantwortlicher Hochschullehrer Prof. Dr.-Ing. habil. Heiko Vogler
Betreuer Dipl.-Inf. Tobias Denkinger

Aufgabenstellung

Regelextraktion und Binarisierung

Unter Regelextraktion versteht man das Gewinnen von Regeln (einer Grammatik) aus,
üblicherweise von Linguisten erstellten, Baumkorpora. Von jedem Baum eines Baumkorpus
lässt sich eine Ableitung in einer Grammatik ablesen, die Regeln der entsprechenden
Ableitungen aller Bäume des Baumkorpus werden dann zu einer Grammatik vereint. Die
Regelwahrscheinlichkeit geht aus der Anzahl der Regelvorkommen im Baumkorpus hervor.
Siehe dazu [KS09; MS08].

Eine Regel ist binär, wenn nur maximal zwei Nichtterminale auf der rechten Regelseite
vorkommen. Unter Binarisierung versteht man die Überführung einer Grammatik in eine
Grammatik mit binären Regeln, die die gleiche (gewichtete) Sprache erzeugt. Siehe dazu
[GS09; Góm+09].

Linear context-free rewriting systems

Natürliche Sprachen weisen Merkmale auf, die von kontextfreien Grammatiken nicht
darstellbar sind, z.B. kann ein Teilsatz eine Lücke haben, in die vom Kontext abhängiger
Inhalt eingefügt wird. Um allerdings die hohe Parsingkomplexität bei kontextsensitiven
Grammatiken (nämlich PSPACE-complete) zu vermeiden, betrachtet man Formalismen, die
diese Lücken zwar darstellen können, aber dennoch polynomielles Parsing zulassen. Man
fasst solche Formalismen unter dem Begriff mildly context-sensitive formalisms zusammen.
Dazu gehören z.B. head grammars, tree adjoining grammars, combinatory categorial
grammars, linear indexed grammars, multiple context-free grammars, und minimalist
grammars. Linear context-free rewriting systems (kurz: LCFRS) wurden von Vijay-Shanker,
Weir, and Joshi [VWJ87] eingeführt, um mildly context-sensitive formalisms einheitlich
darzustellen. Es hat sich herausgestellt, dass alle oben genannten (und noch einige weitere)
Formalismen bzw. deren Frontsprachen eine kleinere oder die gleiche Sprachklasse wie
LCFRS erzeugen [Sek+91; VWJ86; WJ88; Vij87; Mic01a; Mic01b]. Das Parsing von
LCFRS ist daher von besonderer Bedeutung für die Verarbeitung natürlicher Sprache
[Eva11].

I

II

Vanda und Vanda-Studio1

Vanda ist ein am Lehrstuhl für Grundlagen der Programmierung entwickeltes System zur Ver-
arbeitung natürlicher Sprachen. Es besteht aus einer Bibliothek von allgemein spezifizierten
Datenstrukturen und Algorithmen und einer Sammlung von spezialisierten Programmen für
verschiedene Teilaufgaben in der Verarbeitung natürlicher Sprache.

Die graphische Oberfläche Vanda Studio bietet eine Nutzerschnittstelle, mit der solche
Teilaufgaben zu einem Workflow kombiniert und auf verschiedene Datensätze (z.B. Textko-
rpora und Grammatiken) angewendet werden können. Neben den Programmen aus Vanda
stehen dabei weitere, nicht am Lehrstuhl entwickelte, Programme zur Verfügung.

Aufgaben

Der Student soll probabilistische LCFRS formal einführen und einen Algorithmus zur
Extraktion von Regeln aus einem Korpus von Konstituentenbäumen, deren Blattknoten eine
zusätzliche Ordnung haben, angeben. Ebenso soll er einen Algorithmus zur Binarisierung
von extrahierten probabilistischen LCFRS angeben; dabei sollen Heuristiken entwickelt
werden, die den Fan-out der entstehenden probabilistischen LCFRS möglichst klein halten.
Es soll gezeigt werden, dass der Extraktionsalgorithmus dem Yield des Korpus, aus dem die
probabilistische LCFRS extrahiert wurde, eine Likelihood größer 0 zuordnet. Außerdem soll
der Student zeigen, dass der Binarisierungsalgorithmus die generierte gewichtete Sprache
erhält.

Die beiden oben genannten Algorithmen sollen in Vanda implementiert und in Vanda-
Studio zugänglich gemacht werden. Die Baumkorpora werden dafür aus den Formaten des
TIGER-2 und des NeGra-Korpus3 eingelesen. Der Student soll die Verteilung von Rang und
Fan-out nach der Regelextraktion, nach der naiven Binarisierung (ohne die Heuristiken),
und nach der Binarisierung mit den Heuristiken vergleichen.

Form

Die Arbeit muss den üblichen Standards wie folgt genügen: Die Arbeit muss in sich
abgeschlossen sein und alle nötigen Definitionen und Referenzen enthalten. Die Struktur
der Arbeit muss klar erkennbar sein, und der Leser soll gut durch die Arbeit geführt werden.
Die Darstellung aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Für
jeden wichtigen Begriff sollen Beispiele angegeben werden, ebenso für die Abläufe der

1http://www.inf.tu-dresden.de/index.php?node_id=2550
2http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
3http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

http://www.inf.tu-dresden.de/index.php?node_id=2550
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

III

beschriebenen Verfahren. Wo es angemessen ist, sollen Illustrationen die Darstellung vervoll-
ständigen. Schließlich sollen alle Lemmata und Sätze möglichst lückenlos bewiesen werden.
Die Beweise sollen leicht nachvollziehbar dokumentiert sein.

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Bachelorarbeit selbstständig und nur unter
Zuhilfenahme der angegebenen Literatur verfasst habe.

Dresden, 2015-07-12 Unterschrift

IV

Contents

1 Introduction and intuition of LCFRS 1
1.1 Outline of the thesis . 1
1.2 Intuition of LCFRS . 1

2 Definitions 3
2.1 Preliminaries . 3
2.2 Defining LCFRS (on string tuples) . 6
2.3 Derivations . 6
2.4 Probabilities . 8

3 Extraction from a treebank 9
3.1 Treebanks . 9
3.2 Transforming input trees into rules . 11
3.3 Extracting a PLCFRS from the transformed trees 19

4 Binarization 23
4.1 Fusion of NTs . 23
4.2 Complete binarization of a rule . 30
4.3 Naive binarization . 32
4.4 Simulating binarization blueprints . 32
4.5 Optimal binarization . 34
4.6 Complete binarization of a PLCFRS . 35

5 Implementation 37
5.1 Representing a PLCFRS . 37

5.1.1 Rules . 37
5.1.2 IRTGs . 38

5.2 Extraction . 38
5.2.1 Cleaning and preparing input trees . 39
5.2.2 Reading off rules . 40

5.3 Binarization . 40
5.3.1 ProtoRules . 40
5.3.2 NT fusion . 41
5.3.3 Binarizing a rule . 41
5.3.4 Binarizing a PLCFRS . 42

6 Evaluation 43
6.1 Extraction and naive binarization . 43

V

Contents VI

6.2 Optimal binarization . 43

7 Conclusion 48

Bibliography 49

1 Introduction and intuition of LCFRS

1.1 Outline of the thesis

This thesis concerns itself with two tasks, the extraction and the binarization of probablistic
linear context-free rewriting systems (short: PLCFRS or probabilistic LCFRS).

After understanding the intuitive idea behind this grammar formalism in chapter 1, we will
formally define it in chapter 2. In chapter 3 we will see how a PLCFRS can be extracted from
an annotated corpus of natural language by reading off rules from nodes and combining
them into the extracted grammar, such that their probability depends on how often they
were read off in the corpus (see [KS09; MS08]). Chapter 4 will be about the idea of
binarization where we try to break down rules with more than two non-terminal symbols
on the right-hand side into smaller rules by fusing two non-terminal symbols into a new
one, thereby generating a new rule (see [GS09; Góm+09]). We will prove that this
process does not change the semantics of the PLCFRS. After defining this simple fusion
process we will introduce a framework that allows us to plan and execute such fusions
to binarize rules and whole grammars. Using this framework we will define both a naive
approach that generates inferior rules and an approach that generates optimal rules (see
[Góm+09]).

A possible implementation of these processes is sketched in chapter 5, the results of
applying the processes defined in earlier chapters to real natural language corpora using
this implementation are presented in chapter 6. Finally we will draw a short conclusion in
chapter 7.

1.2 Intuition of LCFRS

Linear context-free rewriting systems (introduced by Vijay-Shanker, Weir, and Joshi [VWJ87])
are rewriting systems where no information is lost or copied. The generated languages
and the data the rewriting process happens on can take various forms, e.g. string tuples,
trees and graphs. In this thesis we will focus on LCFRS over string tuples, since this is the
instance that is usually used when extracting a formal language from an annotated corpus
of natural language [KS09; Eva11].

1

1.2 Intuition of LCFRS 2

S

A

a
a

a

S

B

b
b

b

b

C

c
c

c

abc
This is an example for a parse tree of a con-
text free grammar. We can imagine that each
node has a yield (here shown as the labels of
the edges going to the parents), the terminal
symbols that are created by it and its children.
The root node S receives multiple yields from
its children, its own yield is the concatenation
of all children’s yields in order (see this process
on the right).

A a S b C c

a b c

S

X

A

a
(a)

(a)

D

d
(d)

e
(e)

(de)

(a, de)

B

b
(b)

(b)

(abc,de)
In LCFRS nodes do not just yield strings, but
string tuples. Here nodes can recombine the
components of the yields of their children how-
ever they like (copying or deleting is forbidden,
though) and yield a string tuple themselves.
The generated tuple can even contain new ter-
minal symbols (like the c in our example, which
is inserted into the first component of the result
tuple).

X a d e B b

a b c d e

LCFRS are an example of mildly context-sensitive formalisms, some other examples of such
formalisms are head grammars, tree adjoining grammars, combinatory categorial grammars,
linear indexed grammars, multiple context-free grammars, and minimalist grammars - but
all these grammars (and some more) can actually be represented by LCFRS [Sek+91;
VWJ86; WJ88; Vij87; Mic01a; Mic01b].

2 Definitions

2.1 Preliminaries

Basic definitions

LetN be the set of positive natural numbers (without 0) andN0 = N∪{0}.

We will denote the set of all numbers up to some n ∈ N by [n] = {1, ... , n}.

For some totally ordered set S with a, b ∈ S let [a; b] denote the closed interval and (a; b]
the left-open interval. Every finite subset S′ ⊆ S can be expressed as the union of maximal
intervals in the order of their smallest elements: S′ = [s1; s1]∪ · · · ∪ [sm; sm] such that for
all i ∈ [m]: si ≤ si and for all i ∈ [m− 1] there is a s ∈ S such that si < s < si+1. We can
obtain the number of these intervals with a function: fanout(S′) = m (we explicitly stress
that fanout(;) = 0).

For tuples of the form (x1, ... , xn) we define projection functions π(n)i for all i ∈ [n], such
that π(n)i (x1, ... , xn) = x i. Since the superscript (n) can be easily inferred from context, we
leave it out in the notation.

Let ε be the empty string, such that for every string s : sε = s = εs.

For a function f : S → R≥0 the support of f is defined by supp(f) = {s | s ∈ S, f (s) >
0}.

For some set S with s ∈ S and µ ∈ R≥0 the expression µ.s is a function f : S→ R≥0 defined
by:

f (s′) =

¨

µ if s = s′

0 otherwise

The sum of unary functions is defined (f + g)(x) = f (x) + g(x), the multiplication with a
scalar (c · f)(x) = c · f (x).

3

2.1 Preliminaries 4

Special sets

An alphabet is a finite non-empty set. We call the elements of an alphabet symbols.

Let S be any non-empty set. An S-sorted set is a tuple M = (A, sort), where A is some set and
sort : A→ S assigns a sort to each a ∈ A. We will let a ∈ M mean a ∈ A.

Let M be such an S-sorted set and s ∈ S. Then Ms = {m | m ∈ M , sort(m) = s}.

An S-ranked set M is an (S∗ × S)-sorted set. We define the rank of an element of such a set
by rank(a) = |π1(sort(a))|.

Trees

Unranked trees

We define the set UΣ of all unranked trees over some alphabetΣ recursively:

UΣ = {r(ξ1, ... ,ξk) | r ∈Σ, k ≥ 0, ∀i ∈ [k]: ξi ∈ UΣ}

The number of children k will also be called the rank of a node. We call nodes with k > 0
inner nodes, nodes with k = 0 are leaves.

The positions of a tree ξ = r(ξ1, ... ,ξk) are defined as follows:

pos: UΣ → P(N∗)
pos(ξ) = {ε} ∪ {iρ | i ∈ [k], ρ ∈ pos(ξi)} ⊂ N∗

The relation < ⊆ pos(ξ)× pos(ξ) is defined as:

iρ < jρ′⇔ i < j ∨ (i = j ∧ρ < ρ′) where i, j ∈ N, ρ,ρ′ ∈ pos(ξ)

The label of a tree ξ = r(ξ1, ... ,ξk) at some positionρ is defined (and denoted):

ξ(ρ) =

¨

r if ρ = ε
ξi(ρ′) otherwise ρ = iρ′ for some i ∈ [k],ρ′ ∈ pos(ξi)

The subtree of a tree ξ = r(ξ1, ... ,ξk) at some positionρ is defined (and denoted):

ξ|ρ =

¨

ξ if ρ = ε
ξi|ρ′ otherwise ρ = iρ′ for some i ∈ [k],ρ′ ∈ pos(ξi)

We can also obtain the rank of a tree ξ= r(ξ1, ... ,ξk):

rk(ξ) = k

2.1 Preliminaries 5

Ranked trees

A ranked alphabet (Σ, rk) is a tuple consisting of an alphabet Σ and a mapping rk: Σ→
N0.

Ranked trees are defined over a ranked alphabet (Σ, rk), the definition for the set TΣ of all
ranked trees over (Σ, rk) is:

TΣ = {r(ξ1, ... ,ξk) | r ∈Σ , rk(r) = k, ∀i ∈ [k]: ξi ∈ TΣ}

Positions, labels and subtrees of ranked trees are defined just like they are for unranked
trees, the rank can be defined by:

rk(r(ξ1, ... ,ξk)) = rk(r)

Composition functions

To make them visually distinguishable from other types of tuples we will write tuples of
strings of elements of some set S like (s1, ... , sk) ∈ (S∗)k for some k ∈ N as 〈s1, ... , sk〉.

Let Σ be an alphabet and X = {x i, j | i, j ∈ N} be a set of variables that stand for strings.
We can define an N-ranked set F of composition functions over string tuples, where for any
k ∈ N0 and s, s1, ... , sk ∈ N:

F(s1···sk ,s) ⊆ { f | f : (Σ∗)s1 × · · · × (Σ∗)sk → (Σ∗)s}

such that every f ∈ F(s1···sk ,s) is defined by

f (〈x1,1, ... , x1,s1
〉, ... , 〈xk,1, ... , xk,sk

〉) = 〈y1, ... , ys〉

where for all i ∈ [s]: yi ∈ (Σ ∪ X f)∗ and X f = {x i, j | i ∈ [k], j ∈ [si]} ⊂ X and f is linear
and non-deleting.

A composition function f is linear, if every element of X f occurs at most once in y1 · · · yk. It is
non-deleting, if every element of X f occurs at least once in y1 · · · yk.

Since the arguments of a function f can always be implied from yi for i ∈ [s], we
can uniquely specify the function above with these strings of variables and terminals
alone:

f = 〈y1, ... , ys〉

2.2 Defining LCFRS (on string tuples) 6

2.2 Defining LCFRS (on string tuples)

Definition 2.1 (LCFRS). Let Σ be an alphabet. A linear context-free rewriting system (short:
LCFRS) is a tuple (N ,Σ, S, R) where

• N is a finite N-sorted set (of non-terminal symbols, short: NTs)

• S ⊆ N1 (start non-terminals)

• R is a finite N-ranked set (of rules) where for every (s1 · · · sn, s) ∈ N∗ ×N we have
R(s1···sn,s) ⊆ Ns × F(s1···sn,s) × (Ns1

× · · · × Nsn
). We will write such a tuple r ∈ R with

r = (A, f , (B1, ... , Bn)) as r = A→ f (B1, ... , Bn).

�

We will call the sort of an A∈ N its fanout. Sometimes we will refer to the fanout of a rule
r, meaning the fanout of the non-terminal π1(r).

Let A∈ N . We define the A-fragment of a set of rules R by

RA = {r | r ∈ R, π1(r) = A}.

Example 2.2. Let Σ = {a, b, c}, N = {S1, X 2, A1, B1, C1} be an N-sorted set with the super-
scripts denoting the sort of the element and S = {S1} ⊆ N1. Defining a set R as follows we
obtain an LCFRS (N ,Σ, S, R):

R= { S1 → 〈x1,1 x2,1 x1,2〉(X 2, B1),

X 2→ 〈x1,1, x2,1〉(A1, C1),

A1 → 〈a〉(),
B1 → 〈b〉(),
C1→ 〈c〉()
}

�

2.3 Derivations

Definition 2.3 (derivations of an LCFRS). Let G = (N ,Σ, S, R) be an LCFRS. Let A ∈ N .
The set of derivations of G starting in A, denoted by DG(A), is recursively defined as follows:

DG(A) = {r(d1, ... , dk) | r = A→ f (B1, ... , Bk) ∈ R,∀i ∈ [k]: di ∈ DG(Bi)} ⊆ TR

The set of derivations of G, denoted by DG, is defined as

DG =
⋃

A∈S

DG(A).

�

2.3 Derivations 7

A derivation is thus modeled to be a ranked tree of rules1.

Definition 2.4 (semantics of a derivation). Let G = (N ,Σ, S, R) be an LCFRS.
The string tuple 〈s1, ... , sl〉 ∈ (Σ∗)l generated by a derivation d = r(d1, ... , dk) ∈ DG(π1(r))
with l = sort(π1(r)) is obtained by applying the composition functions of each rule in the
derivations nodes to the strings generated by their children. We define the semantics of a
derivation:

J·K: TR→ (Σ∗)∗

Jr(d1, ... , dk)K= f (Jd1K, ... , JdkK)

where f = π2(r). �

Definition 2.5 (language of an LCFRS). The language of G, denoted by L(G), is

L(G) = {JdK | d ∈ DG}

�

Example 2.6. It is easy to see that the LCFRS constructed in Example 2.2 has exactly one
derivation d:

S1→ 〈x1,1 x2,1 x1,2〉(X 2, B1)

B1→ 〈b〉()X 2→ 〈x1,1, x2,1〉(A1, C1)

C1→ 〈c〉()A1→ 〈a〉()

We can evaluate the semantics of this derivation:

JdK= 〈x1,1 x2,1 x1,2〉
�

t X 2→ 〈x1,1, x2,1〉(A1, C1)

C1→ 〈c〉()A1→ 〈a〉()

|

, JB1→ 〈b〉()K
�

= 〈x1,1 x2,1 x1,2〉
�

〈x1,1, x2,1〉
�

JA1→ 〈a〉()K, JC1→ 〈c〉()K
�

, 〈b〉
�

= 〈x1,1 x2,1 x1,2〉
�

〈x1,1, x2,1〉
�

〈a〉, 〈c〉
�

, 〈b〉
�

= 〈x1,1 x2,1 x1,2〉
�

〈a, c〉, 〈b〉
�

= 〈abc〉

�
1for context free grammars these are known as abstract syntax trees, we build these trees of rules in the

same way

2.4 Probabilities 8

2.4 Probabilities

Definition 2.7 (PLCFRS). A probabilistic LCFRS (short: PLCFRS) is a tuple (G, p) of an
LCFRS G = (N ,Σ, S, R) as defined above and a probability assignment p : R→ (0;1] for
which

∑

r∈RA
p(r) = 1 for all A∈ N . �

If G is a PLCFRS, we will still write DG to actually mean Dπ1(G).

The following definitions are based on the usage of the probability semiring (R≥0,+, ·, 0, 1).

Definition 2.8 (probability of a derivation). Let (G, p) be a PLCFRS.
Let ep : DG → (0; 1] assign probabilities to derivations using p:

ep(r(d1, ... , dk)) = p(r) · ep(d1) · ... · ep(dk)

We will write p(d) instead of ep(d), since the argument d can only be either a rule or a tree
of rules. �

A sentence can be generated by no derivation, one derivation or many derivations.

Definition 2.9 (probability of a sentence / semantics of a PLCFRS). Let G = ((N ,Σ, S, R), p)
be a PLCFRS.
We define the probability of a sentence:

JGK: Σ∗→ R≥0

JGK(w) =
∑

d∈DG : JdK=w

p(d)

�

The fact that the probability of a sentence is defined as the sum of the probabilities of its
possible derivations implies that a sentence that cannot be generated with a given LCFRS
has a probability of 0.

3 Extraction from a treebank

3.1 Treebanks

The treebanks from which we want to extract a PLCFRS (like NEGRA and TIGER) contain
representations of natural language sentences in formats like XML (unranked trees) or
the export format1 (which too can be interpreted as describing unranked trees). We can
interpret these representations as unranked trees with an additional order (where each
tree with its order represents a sentence in a natural language and its parse), which we
will define as follows:

Definition 3.1 (positions of leaves of ξ). Let ξ be a tree.
Then the set {ρ1, ... ,ρl} ⊆ pos(ξ) is the set of positions of leaves of ξ, defined such that for
all i ∈ [l]:

rk(ξ|ρi
) = 0 and there is no ρ ∈ pos(ξ) with ρ /∈ {ρ1, ... ,ρk} ∧ rk(ξ|ρ) = 0

�

Definition 3.2 (tree with leaf order). Let ξ ∈ UΣ be a tree and � be a total order over
positions of leaves of ξ.
Then the tuple (ξ,�) is a tree with leaf order over the alphabet Σ. The set of all such trees
is denoted by

−→
UΣ. �

It is important to note that in the input treebanks like NEGRA and TIGER the leaves of a
tree ξ have no siblings, i.e. all positions of leaves end with 1. The functions we define in
this chapter will make use of this property. This is why they will not work on trees where
this is not the case.

The additional leaf order � describes the order the words of the natural language have in
the sentence that ξ represents.

Definition 3.3 (corpus). A corpus over some set S is a function C : S → R≥0 that assigns
each element of S a frequency inside the corpus. �

Definition 3.4 (treebank). A treebank is a corpus over
−→
UΣ for some alphabet Σ. �

1http://www.coli.uni-sb.de/~thorsten/publications/Brants-CLAUS98.ps.gz

9

http://www.coli.uni-sb.de/~thorsten/publications/Brants-CLAUS98.ps.gz

3.1 Treebanks 10

The alphabet Σ over which the trees are defined contains both the part-of-speech tags of
the natural language sentence with which the inner nodes of trees are labeled (they will
eventually become the non-terminals of the extracted LCFRS) as well as the words of the
natural language themselves with which the leaves are labeled (which will become the
terminal alphabet of the LCFRS).

We define the treebank as a function in order to allow duplicates2 (which is no longer the
case in its support).

Since each tree with leaf order represents a natural language sentence, we can read off the
generated string:

Definition 3.5 (yield of (ξ,�)). Given a pair (ξ,�) as defined above, let {ρ1, ... ,ρl} ⊆
pos(ξ) be the positions of leaves of ξ such that ρ1 � · · · � ρl .
The yield of ξ is defined with yield� : UΣ →Σ∗:

yield�(ξ) = ξ(ρ1) · · ·ξ(ρl)

�

Definition 3.6 (sentence corpus). A sentence corpus is a corpus over Σ∗ (sentences) for
some alphabet Σ. �

Definition 3.7 (yield of a treebank). Let C be a treebank over some alphabet Σ. The yield
of this treebank is a sentence corpus eC over the alphabet Σ:

eC(w) =
∑

(ξ,�)∈supp(C):
yield�(ξ)=w

C(ξ,�)

�

Definition 3.8 (likelihood). Let S be a set, p : S→ [0,1] be a probability distribution for
this set and C : S → R≥0 a corpus over this set. The likelihood is a function L: (S →
[0, 1])× (S→ R≥0)→ [0,1] defined by:

L(p, C) =
∏

s∈supp(C)

p(s)C(s)

�

Definition 3.9 (likelihood of a sentence corpus with some PLCFRS). Let C be a sentence
corpus and G be a PLCFRS. We define the likelihood of the sentence corpus C with the
PLCFRS G as L(JGK, C). �

2also, this way different parts of a tree corpus could be given different weights

3.2 Transforming input trees into rules 11

SQε

NP3

PRP31

I311

MD2

should21

VP1

VB12

do121

WP11

What111

What111 should21 I311 do121

inner nodes of ξ representing
part-of-speech tags

(not ordered) leaves of ξ

yield�(ξ)

Figure 3.1: An example tree with leaf order, superscripts indicate the position of a node

Example 3.10. Figure 3.1 shows an example tree with leaf order (ξ,�) (taken from Evang
[Eva11] and slightly simplified).

The tree ξ = SQ
�

VP
�

WP(What), VB(do)
�

,MD(should), NP
�

PRP(I)
�

�

and the ordering � is
defined such that 111� 21� 311� 121.

�

3.2 Transforming input trees into rules

To extract rules from a treebank we apply a series of transformations to this sequence of
trees.

Calculate spans

Each node of a derivation eventually yields a string tuple containing some words in the target
string. For every position ρ of such a derivation we can say which words of the target string
will be generated by the part of the derivation beginning at ρ.

Definition 3.11 (spans of a position). Let (ξ,�) be a tree with leaf order.
For all positions ρ ∈ pos(ξ) define the spans of the node (yielded positions in target string):

spans(ξ,�) : pos(ξ)→ P
�

[|yield�(ξ)|]
�

spans(ξ,�)(ρ) =

¨�

|{ρ′ | ρ′ ∈ pos(ξ), rk(ξ|ρ′) = 0, ρ′ � ρ}|
	

if rk(ξ|ρ) = 0
⋃

i∈[rk(ξ|ρ)]
spans(ξ,�)(ρi) otherwise

�

3.2 Transforming input trees into rules 12

To explain the very specific codomain of spans(ξ,�) we will make some observations.

Observation 3.12. Let (ξ,�) ∈
−→
UΣ be a tree with leaf order.

Then spans(ξ,�)(ε) ⊇ spans(ξ,�)(ρ) for every ρ ∈ pos(ξ). �

Proof. From the definition it follows directly that for all i ∈ [rk(ξ|ρ)]: spans(ξ,�)(ρ) ⊇
spans(ξ,�)(ρi).

Because ⊇ is transitive and reflexive, spans(ξ,�)(ε) ⊇ spans(ξ,�)(ρ
′) holds for all ρ′ ∈

pos(ξ). �

Observation 3.13. Let (ξ,�) ∈
−→
UΣ be a tree with leaf order.

Then for any ρ ∈ pos(ξ): |spans(ξ,�)(ρ)| ≤ l where l is the number of leaves of ξ. �

Lemma 3.14. spans(ξ,�)(ε) = [l] where l = |yield�(ξ)|.

Proof.

|yield�(ξ)|= l
⇔ ξ has l leaves (by Def. 3.5)

⇔ ρ1 · · ·ρl are positions of leaves of ξ such that ρ1 � · · · � ρl

(by order � being total on positions of leaves, see Def. 3.2)

⇒ ρ1 · · ·ρl are positions of leaves of ξ such that ρ1 � · · · � ρl :

∀i ∈ [l]: spans(ξ,�)(ρi) = {|{ρ′ | ρ′ ∈ {ρi′ | i′ ≤ i}}|} (by Def. 3.11)

⇒ ρ1 · · ·ρl are positions of leaves of ξ such that ρ1 � · · · � ρl :

∀i ∈ [l]: spans(ξ,�)(ρi) = {i}
⇒ ∀i ∈ [l]: spans(ξ,�)(ε) ⊇ {i} (by obs. 3.12)

⇔ spans(ξ,�)(ε) ⊇ [l]
⇔ spans(ξ,�)(ε) = [l] (by obs. 3.13)

�

Observation 3.15. Let (ξ,�) ∈
−→
UΣ be a tree with leaf order.

From Lemma 3.14 and Observation 3.12 follows that for all ρ ∈ pos(ξ): spans(ξ,�)(ρ) ⊆ [l]
where l = |yield�(ξ)|.

Thus the codomain of spans(ξ,�) given in Definition 3.11 is indeed correct. In fact, Lemma
3.14 even shows that spans(ξ,�) is surjective. �

3.2 Transforming input trees into rules 13

Add fanouts and annotate with spans

As explained above, the labels of the inner nodes of the trees will become non-terminals
of an LCFRS, but since non-terminals are kept in a sorted set, we have to make sure that
each non-terminal will only be associated with one sort. This is not necessarily the case for
the inner nodes in the current trees with leaf order, therefore we add the future fanouts
(which are the ranks of NTs) to the existing labels.

For this we can make use of the newly defined spans, interpreted as the union of maximal
intervals in the order of their smallest elements, since the number of such intervals will be
exactly the fanout to associate with this label.

We will also annotate each node with these intervals themselves. This will make working
with subtrees a lot easier, because we no longer need to use the order of a tree with leaf
order to get the spans of a position but can instead use the annotated spans immedi-
ately.

Definition 3.16 (add fanouts, annotate with spans). Let Σ be an alphabet.
We can define a transformation annotate� : UΣ ×N∗→ U(Σ×N)×P(N) as follows:

annotate�(ξ,ρ)

=
�

(ξ(ρ), m), spans(ξ,�)(ρ)
��

annotate�(ξ,ρ1), ... , annotate�(ξ,ρ rk(ξ|ρ))
�

where m= fanout(spans(ξ,�)(ρ)).
We can see that annotate� is partial, since it is only defined for ρ ∈ pos(ξ) ⊂ N∗. Instead
of annotate�(ξ,ε) we will just write annotate�(ξ) to obtain an annotated tree. �

Example 3.17. We apply this transformation to the tree from Example 3.10 and we recall
that � was defined such that 111� 21� 311� 121.

First let us try to evaluate spans(ξ,�)(ε):

spans(ξ,�)(ε)

= spans(ξ,�)(1)∪ spans(ξ,�)(2)∪ spans(ξ,�)(3)

= spans(ξ,�)(1)∪ spans(ξ,�)(21)∪ spans(ξ,�)(3)

= spans(ξ,�)(1)∪
�

|{ρ | ρ ∈ pos(ξ), rk(ξ|ρ) = 0, ρ � 21}|
	

∪ spans(ξ,�)(3)

= spans(ξ,�)(1)∪
�

|{111, 21}|
	

∪ spans(ξ,�)(3)

= spans(ξ,�)(1)∪ {2} ∪ spans(ξ,�)(3)

= spans(ξ,�)(1)∪ {2} ∪ spans(ξ,�)(31)

= spans(ξ,�)(1)∪ {2} ∪ spans(ξ,�)(311)

= spans(ξ,�)(1)∪ {2} ∪
�

|{ρ | ρ ∈ pos(ξ), rk(ξ|ρ) = 0, ρ � 311}|
	

= spans(ξ,�)(1)∪ {2} ∪
�

|{111,21, 311}|
	

= spans(ξ,�)(1)∪ {2} ∪ {3}

3.2 Transforming input trees into rules 14

=
�

spans(ξ,�)(11)∪ spans(ξ,�)(12)
�

∪ {2} ∪ {3}

=
�

spans(ξ,�)(111)∪ spans(ξ,�)(121)
�

∪ {2} ∪ {3}

=
�

�

|{ρ | ρ ∈ pos(ξ), rk(ξ|ρ) = 0, ρ � 111}|
	

∪
�

|{ρ | ρ ∈ pos(ξ), rk(ξ|ρ) = 0, ρ � 121}|
	

�

∪ {2} ∪ {3}

=
�

�

|{111}|
	

∪
�

|{111,21, 311,121}|
	

�

∪ {2} ∪ {3}

=
�

{1} ∪ {4}
�

∪ {2} ∪ {3}
= [4]

As expected, spans(ξ,�)(ε) = [4] holds. We can now use these spans to compute the
annotated tree:

annotate�(ξ,ε)

= annotate�





















SQ

NP

PRP

I

MD

should

VP

VB

do

WP

What

, ε





















=

�

�

SQ, fanout(spans(ξ,�)(ε))
�

, spans(ξ,�)(ε)
�

annotate�(ξ, 3)annotate�(ξ, 2)annotate�(ξ, 1)

=

�

�

SQ, fanout([4])
�

, [4]
�

annotate�(ξ, 3)annotate�(ξ, 2)annotate�(ξ, 1)

=

�

(SQ, 1), [4]
�

annotate�(ξ, 3)annotate�(ξ, 2)annotate�(ξ, 1)

3.2 Transforming input trees into rules 15

=

�

(SQ, 1), [4]
�

annotate�(ξ, 3)annotate�(ξ, 2)

annotate�





















SQ

NP

PRP

I

MD

should

VP

VB

do

WP

What

, 1





















=

�

(SQ,1), [4]
�

annotate�(ξ, 3)annotate�(ξ, 2)
�

�

VP, fanout(spans(ξ,�)(1))
�

, spans(ξ,�)(1)
�

annotate�(ξ, 12)annotate�(ξ, 11)

=

�

(SQ, 1), [4]
�

annotate�(ξ, 3)annotate�(ξ, 2)
�

�

VP, fanout({1, 4})
�

, {1,4}
�

annotate�(ξ, 12)annotate�(ξ, 11)

=

�

(SQ, 1), [4]
�

annotate�(ξ, 3)annotate�(ξ, 2)
�

(VP,2), {1, 4}
�

annotate�(ξ, 12)annotate�(ξ, 11)

= · · ·

=

�

(SQ, 1), [4]
�

�

(NP, 1), {3}
�

�

(PRP,1), {3}
�

�

(I, 1), {3}
�

�

(MD,1), {2}
�

�

(should,1), {2}
�

�

(VP,2), {1, 4}
�

�

(VB,1), {4}
�

�

(do, 1), {4}
�

�

(WP,1), {1}
�

�

(What,1), {1}
�

�

3.2 Transforming input trees into rules 16

Definition 3.18 (yield of an annotated tree). Let Σ be an alphabet. Given an annotated
tree ξ ∈ U(Σ×N)×P(N), let {ρ1,1, ... ,ρ1,l1 , ... ,ρm,1, ... ,ρm,lm} ⊆ pos(ξ) be the set of positions of
leaves of ξ for some m, l1, ... , lm ∈ N such that the following holds:

fπ2(ξ(ρi,1))< · · ·<fπ2(ξ(ρi,li)) for all i ∈ [m]
and for all i ∈ [m− 1] there is an s ∈ N: fπ2(ξ(ρi,li))< s <fπ2(ξ(ρ(i+1),1))

where fπ2((t, m), {i}) = i.
Then the yield of the annotated tree ξ is defined by:

yfield: U(Σ×N)×P(N)→ (Σ∗)∗

yfield(ξ) =
�

π1(π1(ξ(ρ1,1))) · · ·π1(π1(ξ(ρ1,l1))) , ... ,

π1(π1(ξ(ρm,1))) · · ·π1(π1(ξ(ρm,lm)))
�

�

Lemma 3.19. Let (ξ,�) be a tree with leaf order.

Then yfield
�

annotate�(ξ)
�

= yield�(ξ).

Proof. Given a tree with leaf order (ξ,�) we can interpret the leaves of annotate�(ξ) as
being ordered by the single element in their second component (the annotated spans).

yfield will return the sequence of leaves in this order (it is just a simple sequence, since
spans(ξ,�)(ε) = [l] (see Lemma 3.14), where l is the number of leaves of ξ).

It is easy to see that this order implied by the spans and � describe exactly the same order
(since we defined the spans using �).

We can thus conclude that the sequence generated by yield�(ξ) is equal to the one generated
by yfield

�

annotate�(ξ)
�

. �

Read off rules

First we define a function puzzle, that, given a totally ordered set of elements X and a
sequence of intervals S1 · · ·Sk ∈ (P(X))∗ (whose pairwise intersections must be empty
and whose union must be equal to X), tries to arrange the intervals such that they are in
the order of their smallest elements and returns the composition function that represents
exactly this rearrangement.

3.2 Transforming input trees into rules 17

Definition 3.20 (interval puzzler). Let E be some ordered set and F the set of all composi-
tion functions.
The function puzzle: P(E)×P(E)∗→ F is defined by:

puzzle(E′, (E1, ... , Ek))

= 〈puzzle′([s1, s1], (E1, ... , Ek)), ... , puzzle′([sm, sm], (E1, ... , Ek)) 〉

with

puzzle′([s, s], ([s1
1, s1

1]∪ · · · ∪ [s
m1
1 , sm1

1], ... , [s1
k, s1

k]∪ · · · ∪ [s
mk
k , smk

k]))

=











x i, j if [s, s] = [s j
i , s j

i] for some i ∈ [k], j ∈ [mi]
x i, j puzzle′([s̃, s], (E1, ... , Ek)) otherwise with s j

i = s and s̃ being the smallest

s′ ∈ E with s′ > s j
i for some i ∈ [k], j ∈ [mi]

where [s1, s1]∪ · · · ∪ [sm, sm] is the union of maximal intervals in the order of their smallest
elements that is equal to E′ and [s1

i , s1
i]∪ · · · ∪ [s

mi
i , smi

i] is the union of maximal intervals in
the order of their smallest elements that is equal to Ei for all i ∈ [k]. �

Definition 3.21 (rule readoff at a node). We define a partial function readoff: ((Σ ×N)×
P(N))× (((Σ ×N)×P(N))×N0)∗→Σ × F ×Σ∗ a that generates a rule from a root label
and a sequence of child labels coupled with their rank:

readoff
�

((t, 1), S),
�

((w, 1), S), 0
�

�

= (t, 1)→ 〈w〉()

readoff
�

((t, m), S),
�

�

((t1, m1), S1), k1

�

, ... ,
�

((tk, mk), Sk), kk

�

�

�

= (t, m)→ f
�

(t1, m1), ... , (tk, mk)
�

with f = puzzle
�

S, (S1, ... , Sk)
�

�
aThis set is defined like the set of rules on an LCFRS and in fact the elements of this set will be the rules of

the extracted LCFRS.

Example 3.22. Continuing with the annotated tree ξ′ = annotate�(ξ) from Example 3.17
we will now try to read off rules at the positions 31 and 1:

readoff from ξ′ at position 31:

readoff
�

ξ(31),
�

�

ξ(311), rk(ξ|311)
�

, ... ,
�

ξ(31 rk(ξ|31)), rk(ξ|31 rk(ξ|31))
�

�

�

= readoff
�

((PRP,1), {3}),
�

((I, 1), {3}), 0
�

�

= (PRP, 1)→ 〈I〉()

3.2 Transforming input trees into rules 18

readoff from ξ′ at position 1:

readoff
�

ξ(1),
�

�

ξ(11), rk(ξ|11)
�

, ... ,
�

ξ(1 rk(ξ|1)), rk(ξ|1 rk(ξ|1))
�

�

�

= readoff
�

�

(VP, 2), {1,4}
�

,
�

�

((WP, 1), {1}), 1
�

,
�

((VB, 1), {4}), 1
�

�

�

= (VP, 2)→
�

puzzle
�

{1,4}, ({1}, {4})
�

�

�

(WP, 1), (VB, 1)
�

= (VP, 2)→ 〈puzzle′
�

{1}, ({1}, {4})
�

, puzzle′
�

{4}, ({1}, {4})
�

〉
�

(WP, 1), (VB, 1)
�

= (VP, 2)→ 〈x1,1, x2,1〉
�

(WP, 1), (VB, 1)
�

�

Definition 3.23 (lifting readoff onto trees). Let Σ be an alphabet and ξ ∈ U(Σ×N)×P(N). F
is the set of composition functions.
We define the function recadoff: U(Σ×N)×P(N)→ (Σ × F ×Σ∗→ R≥0) by:

recadoff(ξ) =
∑

ρ∈pos(ξ):
rk(ξ|ρ)>0

1.readoff
�

ξ(ρ),
�

�

ξ(ρ1), rk(ξ|ρ1)
�

, ... ,
�

ξ(ρ rk(ξ|ρ)), rk(ξ|ρ rk(ξ|ρ))
�

�

�

�

Definition 3.24 (lifting readoff into the treebank). Let C be a treebank.
We define the function extract: (

−→
UΣ → R≥0)→ (Σ × F ×Σ∗→ R≥0) by:

extract(C) =
∑

(ξ,�)∈supp(C)

C(ξ,�) · recadoff
�

annotate�(ξ)
�

�

So readoff transforms a node of a tree into a rule and recadoff transforms a tree into a
function. Much like the treebank definition this function assigns each possible rule the
value of how often it was read off from this tree. The function extract applies this idea to a
whole treebank.

3.3 Extracting a PLCFRS from the transformed trees 19

3.3 Extracting a PLCFRS from the transformed trees

Definition 3.25 (extracting a PLCFRS from a treebank). Let C be a treebank. We can
define the following sets:

R= {r with sort (m1 · · ·mk, m) |
r = (t, m)→ f ((t1, m1), ... , (tk, mk)) ∈ supp(extract(C))}

N = {(t, m) with sort m | (t, m)→ f (B1, ... , Bk) ∈ R}

Σ = { f () | A→ f () ∈ R}

S = {π1(r) | r(ξ1, ... ,ξk) = annotate�(ξ), (ξ,�) ∈ supp(C)}

Then G = (N ,Σ, S, R) is the LCFRS extracted from the treebank C .

The probability of a rule r = (A→ f (B1, ... , Bk)) ∈ R is defined by:

p(r) =
extract(C)(r)

∑

r ′∈RA
extract(C)(r ′)

(G, p) is the PLCFRS extracted from the treebank C . �

Observation 3.26. For all r ∈ R: p(r) ∈ (0; 1]. �

Observation 3.27. For all A∈ N :
∑

r∈RA

p(r) = 1

�

Proof.
∑

r∈RA

p(r)

=
∑

r∈RA

extract(C)(r)
∑

r ′∈RA
extract(C)(r ′)

(by Def. 3.25)

=

∑

r∈RA
extract(C)(r)

∑

r ′∈RA
extract(C)(r ′)

= 1

�

To prove that the extracted PLCFRS G does in fact assign the yield of the corpus C (from
which it was extracted) a likelihood LG(eC)> 0, we need to introduce another readoff-based
transformation.

3.3 Extracting a PLCFRS from the transformed trees 20

Definition 3.28 (transforming an annotated tree into a derivation). Let Σ be an alphabet
and ξ ∈ U(Σ×N)×P(N) an annotated tree. For readability, let ζi = (ξ(i), rk(ξ|i)).
Then we can construct a new tree refadoff(ξ) ∈ TΣ×F×Σ∗ as follows.

refadoff(ξ) =
�

readoff
�

ξ(ε), (ζ1, ... ,ζrk(ξ))
�

�

�

refadoff(ξ|i1), ... , refadoff(ξ|ik′)
�

where {i1, ... , ik′}= {i | i ∈ [rk(ξ)], rk(ξ|i)> 0} with i1 < · · ·< ik′

�

Lemma 3.29. Let Σ be an alphabet and ξ ∈ U(Σ×N)×P(N) be an annotated tree.

Then yfield(ξ) = Jrefadoff(ξ)K.

Proof. We prove by induction.

Base case: Let ξ= ((t, 1), S)
�

((w, 1), S)
�

∈ U(Σ×N)×P(N).

s
refadoff

�

((t, 1), S)
�

((w, 1), S)
�

�

{

=
s

readoff
�

�

(t, 1), S
�

,
�

((w, 1), S), 0)
�

)
�

{
(by Def. 3.28)

= J(t, 1)→ 〈w〉()K (by Def. 3.21)

= w (by Def. 2.4)

= yfield
�

((t, 1), S)
�

((w, 1), S)
�

�

(by Def. 3.18)

Induction hypothesis: Let ξ ∈ U(Σ×N)×P(N). Then yfield(ξ) = Jrefadoff(ξ)K.

Induction step: Let for all i ∈ [k]: ξi ∈ U(Σ×N)×P(N) for some k with
⋂

i∈[k]
π2(ξi(ε)) = ;.

Let ξ = ((t, m), S)
�

ξ1, ... ,ξk

�

∈ U(Σ×N)×P(N) for some t ∈ Σ, S =
⋃

i∈[k]
π2(ξi(ε)) and m =

fanout(S).

Let us try to construct yfield(ξ) = (w1, ... , wm). We know that for all i ∈ [k] the sequence
wi is made up of the labels of all leaves ρ of ξ for which π2(ξ(ρ)) is a subset of the i-th
interval of S (representing S as the union of maximal intervals in the order of their smallest
elements). As a matter of fact, even the order of these leaves can be taken from the idea of
trying to puzzle them into the i-th interval of S.

This description heavily implies that we can use a composition function to obtain yfield(ξ)
from the yfields of the children of ξ. This function is f = puzzle

�

S,
�

π2(ξ1(ε), ... ,π2(ξk(ε)
�

�

,
so we can now say:

3.3 Extracting a PLCFRS from the transformed trees 21

−→
UΣ U(Σ×N)×P(N) TR

Σ∗

annotate� refadoff

yield�
yfield J·K

Figure 3.2: Sketch of the proof for Lemma 3.30, the left half is shown by Lemma 3.19, the
right half by Lemma 3.29

yfield(ξ) = f
�

yfield(ξ1), ... , yfield(ξk)
�

(by intuition of yfield as described above)

= f
�

Jrefadoff(ξ1)K, ... , Jrefadoff(ξk)K
�

(by induction hypothesis)

=
r
(t, m)→ f

�

π1(ξ1(ε)), ... ,π1(ξk(ε))
�

�

refadoff(ξ1), ... , refadoff(ξk)
�
z

(by Def. 2.4)

=
r

readoff
�

((t, m), S),
�

(π1(ξ1), rk(ξ1)), ... , (π1(ξk), rk(ξk))
�

�

�

refadoff(ξ1), ... , refadoff(ξk)
�
z

(by Def. 3.21)

= Jrefadoff(ξ)K (by Def. 3.28)

Note how we use the fact that the composition function f we defined to construct yfield(ξ)
is defined precisely like the composition function for the new rule in readoff. �

Lemma 3.30. Let C be a treebank, eC the yield of this treebank and G the PLCFRS extracted
from C .

Then JGK(w)> 0 for any w ∈ supp(eC).

Proof. We know that there is a (ξ,�) ∈ C , such that w = yield�(ξ) (follows from the
definitions of support and eC).

From Lemma 3.19 and Lemma 3.29 follows that we can transform this tree into a derivation
d with JdK= w (see Fig. 3.2).

This derivation d ∈ DG, because all rules used for it were read off the same way when we
extracted G.

From that follows that JGK(w)> 0. �

Theorem 3.31. Let C be a treebank, eC the yield of this treebank and G the PLCFRS
extracted from C .

Then L(JGK, eC)> 0.

3.3 Extracting a PLCFRS from the transformed trees 22

Proof.

L(JGK, eC)

=
∏

w∈supp(eC)

JGK(w)eC(w) (by Def. 3.9)

> 0 (by Lem. 3.30 and the definition of supp)

�

4 Binarization

Binarization is a process in which a PLCFRS is transformed into a new PLCFRS that contains
only rules with a rank that does not exceed 2, while generating the same weighted language
(weak equivalence1).

Grammars are often binarized rule-by-rule, meaning that we binarize each rule individually
(thus splitting it into multiple smaller rules) and are able to create the new grammar from
all these newly binarized rules.

4.1 Fusion of NTs

In the rule-by-rule binarization that we will perform here this is accomplished by fusion of
NTs (called reduction of a rule by Gómez-Rodríguez et al. [Góm+09]): given a rule r = A→
f (B1, ... , Bα, ... , Bβ , ... , Bk) we introduce a new NT C and a new rule C → ffusion(Bα, Bβ); in
the original rule these two NTs are replaced by the new NT C .

1The derivations, however, are changed, so we have no strong equivalence.

23

4.1 Fusion of NTs 24

Definition 4.1 (NT fusion inside a rule). Let G = ((N ,Σ, S, R), p) be a PLCFRS.
Let rold = A→ f (B1, ... , Bk) ∈ R with m being the sort/fanout of A, mi being the sort/fanout
of Bi for all i ∈ [k] and f being defined by:

f = 〈xϕ(1,1) · · · xϕ(1,l1), ... , xϕ(m,1) · · · xϕ(m,lm)〉 with some function ϕ : N×N→ N×N

Let α,β ∈ [k],α < β be the positions of the NTs to be fused on the right-hand side of r. In-
troduce a fresh non-terminal C /∈ N with the sort/fanout mC that is indirectly defined below.

Let u1, ... , umC
be the maximal substrings of all components of f (in shorthand form as

above) in order of their occurrence, such that for all i ∈ [mC]: ui = yi,1 · · · yi,li and then for
all j ∈ [li]: yi, j = xa,b with a ∈ {α,β} and b ∈ [ma]. Then we can specify a composition
function:

ffusion = 〈ψ(y1,1) · · ·ψ(y1,l1), ... ,ψ(ymC ,1) · · ·ψ(ymC ,lmC
)〉 withψ(xa,b) =

¨

x1,b if a = α
x2,b if a = β

We define these tuples of variables:

for all i ∈ [k]\{α,β}: t i =







〈x i+1,1, ... , x i+1,mi
〉 if i < α

〈x i,1, ... , x i,mi
〉 if i > α∧ i < β

〈x i−1,1, ... , x i−1,mi
〉 if i > β

for i ∈ {α,β}: t ′i = 〈t
′
i,1, ... , t ′i,mi

〉 and for j ∈ [mi]: t ′i, j =

¨

x1,λ ∃λ ∈ N: yλ,1 = x i, j

ε otherwise

We can define another composition function by passing these tuples as arguments to the
old composition function:

frem = f (t1, ... , tα−1, t ′
α
, tα+1, ... , tβ−1, t ′

β
, tβ+1, ... , tk)

We denote the entire fusing process by:

rulefuse(rold,α,β) = (rfusion, rrem) with

rfusion = C → ffusion(Bα, Bβ)

rrem = A→ frem(C , B1, ... , Bα−1, Bα+1, ... , Bβ−1, Bβ+1, ... , Bk)

We will call rfusion the fusion rule and rrem the remainder rule. �

Claim 4.2. Let r be some rule with k = rank(r), f = π2(r) and for some α,β ∈ [k] with
α < β : (rfusion, rrem) = rulefuse(r,α,β), frem = π2(rrem) and ffusion = π2(rfusion). Then for
correspondingly chosen string tuples t1, ... , tk the following holds:

f (t1, ... , tk) = frem(ffusion(tα, tβ), t1, ... , tα−1, tα+1, ... , tβ−1, tβ+1, ... , tk)

We will show this on the following example.

4.1 Fusion of NTs 25

f = 〈 x1,1 x2,1 x1,2 , x3,1 x3,2 〉 original composition function

maximal substrings

adjust first components of indices

fusion composition functionx1,1 , x1,2 , x2,1 x2,2ffusion = 〈 〉

t ′1 = 〈x1,1, x1,2〉 x1,1 appears as the first component of the first maximal substring and x1,2
is the first component of the second maximal substring, so the new second
components of indices are 1 and 2, respectively

t2 = 〈x2,1〉 the original variables belonging to B1 with the first component of their
indices shifted accordingly, so just ±0 here (since 2> 1∧ 2< 3)

t ′3 = 〈x1,3,ε〉 x3,1 appears as the first component of the third maximal substring (this
is where the 3 in the index comes from), but x3,2 does not, so the second
component stays empty

f (t ′1, t2, t ′3) = 〈x1,1 x2,1 x1,2, x3,1 x3,2〉
�

〈x1,1, x1,2〉, 〈x2,1〉, 〈x1,3,ε〉
�

= 〈 x1,1 x2,1 x1,2 , x1,3 ε 〉
= 〈x1,1 x2,1 x1,2, x1,3〉
= frem

Figure 4.1: Finding the new composition function in rulefuse for Example 4.3

Example 4.3. Let us consider the rule r = S2 → 〈x1,1 x2,1 x1,2, x3,1 x3,2〉(A2, B1, C2) (the
superscripts of the NTs coincide with their fanouts).

We can now fuse A2 and C2 in this rule (generating the fresh NT Z3 in the process):

rulefuse(r, 1, 3) =
�

Z3→ ffusion(A
2, C2), S2→ frem(Z

3, B1)
�

ffusion = 〈x1,1, x1,2, x2,1 x2,2〉
frem = 〈x1,1 x2,1 x1,2, x1,3〉

where we obtain ffusion and frem by applying the definition, visualized in Figure 4.1.

On this example we can now show that Claim 4.2 holds (a1, a2, b1, c1, c2 stand for some
strings):

frem(ffusion(〈a1, a2〉, 〈c1, c2〉), 〈b1〉)
= frem(〈a1, a2, c1c2〉, 〈b1〉)
= 〈a1 b1a2, c1c2〉
= f (〈a1, a2〉, 〈b1〉, 〈c1, c2〉)

�

4.1 Fusion of NTs 26

Definition 4.4 (NT fusion inside a PLCFRS). Let G = ((N ,Σ, S, R), p) be a PLCFRS.
Let rold = A→ f (B1, ... , Bk) ∈ R and α,β ∈ [k] with α < β .
We define

plcfrsfuse(G, rold,α,β) = (((N ∪{π1(rfusion)}, Σ, S, (R\{rold})∪{rfusion, rrem}), p′) , rrem)

where (rfusion, rrem) = rulefuse(rold,α,β) and p′ is the new probability assignment working
on the new rules rfusion and rrem defined by:

p′(r) =







1 if r = rfusion

p(rold) if r = rrem

p(r) otherwise

�

So plcfrsfuse(G, rold,α,β) is a tuple consisting of a new PLCFRS (where the rule rold is
split into rfusion and rrem) and the rule rrem (which we might continue to fuse in later
on).

We want to show that this fusion will not change the semantics of the PLCFRS. To do so we
define a function that transforms a derivation of the original PLCFRS into a derivation in
the new PLCFRS.

Definition 4.5 (derivation transformer φ). Let G = ((N ,Σ, S, R), p) be a PLCFRS
and rold ∈ R any rule with rank(r) > 2 of it. (G′, rrem) = plcfrsfuse(G, rold,α,β) =
(((N ′,Σ, S, R′), p′), rrem) is the PLCFRS resulting from fusing in rold to obtain rfusion, rrem ∈ R′

with frem = π2(rrem) and ffusion = π2(rfusion).
Then φ : DG → DG′ transforms a derivation of the original PLCFRS into a derivation of the
new PLCFRS.

φ(r(d1, ... , dk)) =







rrem(rfusion(φ(dα),φ(dβ)),φ(d1), ... ,φ(dα−1),φ(dα+1), if r = rold

... ,φ(dβ−1),φ(dβ+1), ... ,φ(dk))
r(φ(d1), ... ,φ(dk)) otherwise

�

Lemma 4.6. φ is a bijection.

Proof. Since we have a construction for φ itself, we only need to show the fact that an
inverse function φ−1 exists.

The construction of φ−1 is not difficult, we simply reverse the construction given above.
This is possible, because we can guarantee that rrem and rfusion can only appear in the form
given above - this is a logical consequence of the way these two rules are constructed: the
fresh NT from the fusion only appears on a right-hand side as the first NT of rrem and only
on the left-hand side of rfusion (since we made sure it was a fresh NT), so in any derivation,
rfusion must always be the first child of rrem. �

4.1 Fusion of NTs 27

DG

DG′

(0; 1] Σ∗φ

p J·K

p′ J·K

Figure 4.2: Sketch of the proof for Theorem 4.9, the left half is shown in Lemma 4.7, the
right half in Lemma 4.8

Lemma 4.7. Let G = ((N ,Σ, S, R), p) be a PLCFRS and rold ∈ R any rule of it with rank(r)>
2.

Let (G′, rrem) = plcfrsfuse(G, rold,α,β) be the PLCFRS resulting from applying a fusion in
rold for some α,β ∈ [rank(r)] with α < β . Let p′ = π2(G′).

Then for any d ∈ DG : p(d) = p′(φ(d)).

Proof. Prove that p(d) = p′(φ(d)) by induction.

Base case: Let d = r() for some r = A→ f () ∈ R. Since rank(rold) > 2, it follows that
r 6= rold and thus r ∈ R′, so:

p(r()) = p(r) (by Def. 2.8)

= p′(r) (by Def. 4.4)

= p′(r()) (by Def. 2.8)

= p′(φ(r())) (by Def. 4.5)

Induction hypothesis: Let d ∈ DG, then p(d) = p′(φ(d)).

Induction step: Let d = r(d1, ... , dk) for some r = A→ f (π1(d1(ε)), ... ,π1(dk(ε))) ∈ R.

If r = rold :

p(rold(d1, ... , dk))

= p(rold) ·
∏

i∈[k]

p(di) (by Def. 2.8)

= p(rold) · p(dα) · p(dβ) ·
∏

i∈[k],α6=i 6=β

p(di) (by commutativity of ·)

= p(rold) · 1 · p(dα) · p(dβ) ·
∏

i∈[k],α6=i 6=β

p(di) (by 1 being the neutral element of ·)

= p′(rrem) · p′(rfusion) · p(dα) · p(dβ) ·
∏

i∈[k],α6=i 6=β

p(di) (by Def. 4.4)

4.1 Fusion of NTs 28

= p′(rrem) · p′(rfusion) · p′(φ(dα)) · p′(φ(dβ)) ·
∏

i∈[k],α6=i 6=β

p′(φ(di))

(by induction hypothesis)

= p′(rrem) · p′(rfusion(φ(dα),φ(dβ))) ·
∏

i∈[k],α6=i 6=β

p′(φ(di))

(by Def. 2.8, associativity of ·)
= p′(rrem(rfusion(φ(dα),φ(dβ)),φ(d1), ... ,φ(dα−1),φ(dα+1), ... ,

φ(dβ−1),φ(dβ+1), ... ,φ(dk))) (by Def. 2.8)

= p′(φ(rold(d1, ... , dk))) (by Def. 4.5)

Otherwise (again, since r 6= rold, it follows that r ∈ R′):

p(r(d1, ... , dk)) = p(r) · p(d1) · ... · p(dk) (by Def. 2.8)

= p′(r) · p(d1) · ... · p(dk) (by Def. 4.4)

= p′(r) · p′(φ(d1)) · ... · p′(φ(dk)) (by induction hypothesis)

= p′(r(φ(d1), ... ,φ(dk))) (by Def. 2.8)

= p′(φ(r(d1, ... , dk))) (by Def. 4.5)

�

Lemma 4.8. Let G = ((N ,Σ, S, R), p) be a PLCFRS and rold ∈ R any rule of it with rank(r)>
2.

Let (G′, rrem) = plcfrsfuse(G, rold,α,β) be the PLCFRS resulting from applying a fusion in
rold for some α,β ∈ [rank(r)] with α < β .

Then for any d ∈ DG : JdK= Jφ(d)K.

Proof. Prove that JdK= Jφ(d)K by induction.

Base case: Let d = r() for some r = A→ f () ∈ R. Since the rank(rold) > 2, it follows that
r 6= rold and thus r ∈ R′, so:

Jr()K= Jφ(r())K (by Def. 4.5)

Induction hypothesis: Let d ∈ DG, then JdK= Jφ(d)K.

Induction step: Let d = r(d1, ... , dk) for some r = A→ f (π1(d1(ε)), ... ,π1(dk(ε))) ∈ R.

If r = rold :

Jrold(d1, ... , dk)K
= f (Jd1K, ... , JdkK) (by Def. 2.4)

= f (Jφ(d1)K, ... , Jφ(dk)K) (by induction hypothesis)

4.1 Fusion of NTs 29

= frem(ffusion(Jφ(dα)K, Jφ(dβ)K), Jφ(d1)K, ... , Jφ(dα−1)K, Jφ(dα+1)K,
... , Jφ(dβ−1)K, Jφ(dβ+1)K, ... , Jφ(dk)K) (by Claim 4.2)

= frem(Jrfusion(φ(dα),φ(dβ))K, Jφ(d1)K, ... , Jφ(dα−1)K, Jφ(dα+1)K,
... , Jφ(dβ−1)K, Jφ(dβ+1)K, ... , Jφ(dk)K) (by Def. 2.4)

= Jrrem(rfusion(φ(dα),φ(dβ)),φ(d1), ... ,φ(dα−1),φ(dα+1), ... ,

φ(dβ−1),φ(dβ+1), ... ,φ(dk))K (by Def. 2.4)

= Jφ(rold(d1, ... , dk))K (by Def. 4.5)

Otherwise (again, since r 6= rold, it follows that r ∈ R′):

Jr(d1, ... , dk)K= f (Jd1K, ... , JdkK) (by Def. 2.4)

= f (Jφ(d1)K, ... , Jφ(dk)K) (by induction hypothesis)

= Jr(φ(d1), ... ,φ(dk))K (by Def. 2.4)

= Jφ(r(d1, ... , dk))K (by Def. 4.5)

�

Theorem 4.9. Let G = ((N ,Σ, S, R), p) be a PLCFRS and rold ∈ R any rule of it with
rank(r)> 2.

Let (G′, rrem) = plcfrsfuse(G, rold,α,β) be the PLCFRS resulting from applying a fusion in
rold for some α,β ∈ [rank(r)] with α < β . Let p′ = π2(G′).

Then JGK= JG′K.

Proof. Since the claim JGK= JG′K is equivalent to the claim that for all w ∈Σ∗ : JGK(w) =
JG′K(w) this equality is the one we will prove:

JGK(w)

=
∑

d∈DG : JdK=w

p(d) (by Def. 2.9)

=
∑

d∈DG : JdK=w

p′(φ(d)) (by Lem. 4.7)

=
∑

d∈DG : Jφ(d)K=w

p′(φ(d)) (by Lem. 4.8)

=
∑

φ(d)∈DG′ : Jφ(d)K=w

p′(φ(d)) (by Lem. 4.6)

= JG′K(w) (by Def. 2.9)

�

4.2 Complete binarization of a rule 30

2

31 3152 21

3 2

21

Figure 4.3: ((1,3), 2), ((2, 5), (1,3)), (3, (1, 2)) and ((1,2), 2) visualized as trees

4.2 Complete binarization of a rule

We can fuse two NTs of an rule, thereby reducing its rank by 1. But, of course, we also
want to binarize rules with rank > 3, therefore we will have to define a sequence of such
fusions to describe a complete binarization of a rule. This binarization blueprint will be a
binary tree (i.e. nested 2-tuples) defined as follows.

Definition 4.10 (binarization blueprint). A binarization blueprint describes a complete
binarization for some rule r with k = rank(r)> 0. The set of all binarization blueprints for
some k ∈ N is defined by:

Θ(k) = [k]∪ {(θ1,θ2) | θ1,θ2 ∈ Θ(k), ind(θ1)∩ ind(θ2) = ;, θ1 < θ2}

with Θ =
⋃

k∈NΘ(k), the set of indices contained in a blueprint θ ∈ Θ being defined by

ind(θ) =

¨

{i} θ = i ∈ N
ind(θ1)∪ ind(θ2) θ = (θ1,θ2) ∈ Θ×Θ

and the order < is imposed on all θ /∈ N by:

θ1 < θ2 if θ1 ∈ Θ×Θ,θ2 ∈ N and (θ 1
1 ,θ 2

1)< (θ
1
2 ,θ 2

2) if θ 1
1 < θ

1
2 ∨ (θ

1
1 = θ

1
2 ∧ θ

2
1 < θ

2
2)

A binarization blueprint θ ∈ Θ(k) for some k ∈ N is total in Θ(k) if ind(θ) = [k], otherwise
it is partial. �

Example 4.11. ((1,3), 2) is a total binarization blueprint in Θ(3) and ((2,5), (1,3)) is a
partial blueprint in Θ(k) for some k > 5 while (3, (1, 2)) and ((1, 2), 2) are no binarization
blueprints at all. These examples are visualized as trees in Figure 4.3. �

The natural numbers at the leaves of these blueprints shall be indices for the NTs on the
right-hand side of a rule.

However, the problem with binarizing a rule fusion by fusion is that the positions of the NT
occurrences inside a rule’s right-hand side (and thus the indices, our only way to address
them) do not stay the same when fusing NTs in the rule.

If we for example fuse the first and second NT of some rule A→ f (B1, B2, B3) to create a
new NT C we get the new remainder rule A→ frem(C , B3). The original third NT is now the
second and any information contained in a binarization blueprint about this third NT can
no longer be associated with B3. This is why we want consistent indices for the right-hand
sides of our rules.

4.2 Complete binarization of a rule 31

Definition 4.12 (fusing with consistent indices). Let G = ((N ,Σ, S, R), p) be a PLCFRS.
We define some helper functions to associate the NTs on the right-hand side of a rule with
consistent indices (natural numbers):

indexWith(A→ f (B1, ... , Bk), (i1, ... , ik)) = A→ f ((B1, i1), ... , (Bk, ik))
deIndex(A→ f ((B1, i1), ... , (Bk, ik))) = (A→ f (B1, ... , Bk), (i1, ... , ik))
firstI(A→ f ((B1, i1), ... , (Bk, ik))) = i1

Now we can make plcfrsfuse work on these consistent indices:

plcÝfrsfuse(G,er, eα, eβ) = (G′,er ′) where

(r, (i1, ... , ik)) = deIndex(er)

(G′, r ′) = plcfrsfuse(G, r,α,β) where α,β ∈ [k] such that iα = eα and iβ = eβ

er ′ = indexWith(r ′, (max{i1, ... , ik}+ 1, i1, ... , iα−1, iα+1, ... , iβ−1, iβ+1, ... , ik))

�

Definition 4.13 (complete binarization of a rule). Let G = ((N ,Σ, S, R), p) be a PLCFRS.
The complete binarization of a rule r ∈ R with k = rank(r) > 0 given a total binarization
blueprint θ = (θ a,θ b) ∈ Θ(k) is defined as the new resulting PLCFRS binarizeBy(G, r,θ):

binarizeBy(G, r,θ) =











































G if θ ∈ [k]× [k] or θ ∈ [k]
π1(tfuse(G,er,θ a)) if θ = (θ a,θ b) ∈ Θ(k)× [k]
π1(tfuse(G′,er ′,θ b)) if θ = (θ a,θ b) ∈ Θ(k)×Θ(k)

where (G′,er ′)
= tfuse(G,er,θ a)

with er = indexWith(r, (1, ... , k))

tfuse(G,er,θ) =























































plcÝfrsfuse(G,er, eα, eβ) if θ = (eα, eβ) ∈ [k]× [k]

plcÝfrsfuse(G′,er ′, firstI(er ′), eα) if θ = (θ ′, eα) ∈ Θ(k)× [k]
where (G′,er ′) = tfuse(G,er,θ ′)

plcÝfrsfuse(G′′,er ′′, firstI(er ′′), firstI(er ′)) if θ = (θ ′,θ ′′) ∈ Θ(k)×Θ(k)
where (G′′,er ′′) = tfuse(G,er ′,θ ′′)
and (G′,er ′) = tfuse(G,er,θ ′)

�

4.3 Naive binarization 32

4.3 Naive binarization

Given a PLCFRS G = ((N ,Σ, S, R), p) naive binarization is not very difficult once we have
the concept of complete rule binarizations as explained above. For each rule r ∈ R with
rank(r) > 2 we just always fuse the last two NT occurrences on the right-hand side of
r.

Definition 4.14 (naive binarization). For every LCFRS (N ,Σ, S, R) the naive binarization
blueprint θ(k) ∈ Θ(k) is defined for each rule r ∈ R with rank(r) = k by:

θ̌(k) = θ̌(k, 1) with θ̌(k, i) =

¨

1 if k = i
(θ̌(k, i + 1), i) otherwise

�

Example 4.15. The naive binarization of a rule with rank 1 is just θ̌(1) = 1 and for rank
2 we obtain θ̌(2) = (1,2). These blueprints are obviously useless, since rules with a rank
lower than 3 do not need to be binarized, but they can still be constructed, since binarizeBy
is defined to return the given PLCFRS itself when encountering such an useless blueprint.

For rules of rank 3 the naive blueprint is θ̌(3) = ((2,3), 1), for rank 4 we have θ̌(4) =
(((3, 4), 2), 1) and so on. �

4.4 Simulating binarization blueprints

We have now established the framework for binarizing a rule according to blueprints and
have even specified the naive binarization by giving a simple blueprint we can always
use.

However, we of course want to construct better blueprints that result in a binarization
producing rules of a lower fanout.

The search for such blueprints will rate a constructed blueprint θ by calculating the fanouts
of rules θ would create in binarizeBy. It will do so by inspecting the composition function
of the rule it was made for.

To define this fanout calculation, we first need a way to locate variables belonging to specific
NT occurrences of a rule in its composition function.

4.4 Simulating binarization blueprints 33

Definition 4.16 (variable occurrences in composition functions). Given a rule r with
rank(r) = k and π2(r) = f , we can describe f as:

f = 〈xϕ(1,1) · · · xϕ(1,l1), ... , xϕ(m,1) · · · xϕ(m,lm)〉 with some function ϕ : N×N→ N×N

We can specify all occurrences of variables belonging to one NT occurrence n ∈ [k] on the
right-hand side of r by:

varpositions(r, n) =
�

{ρ | ∃i ∈ N: xϕ(1,ρ) = xn,i}, ... , {ρ | ∃i ∈ N: xϕ(m,ρ) = xn,i}
�

�

Definition 4.17 (simulating binarization blueprints). Given a rule r with rank(r) = k we
can simulate a binarization blueprint θ ∈ Θ(k):

simulate(r,θ) =

¨

varpositions(r,θ) if θ ∈ [k]
merge(simulate(r,θ1), simulate(r,θ2)) if θ = (θ1,θ2) ∈ Θ×Θ

where merge((Pa
1 , ... , Pa

m), (P
b
1 , ... , P b

m)) = (P
a
1 ∪ P b

1 , ... , Pa
m ∪ P b

m). �

Example 4.18. Recall rule r = S2→ 〈x1,1 x2,1 x1,2, x3,1 x3,2〉(A2, B1, C2) from example 4.3.

The binarization blueprint we followed in the previous example (without knowing it was
one) was ((1,3), 2). The blueprint suggested by the naive binarization would have been
((2,3), 1). Let us simulate this blueprint. We calculate simulate(r, ((2, 3), 1)) iteratively:

simulate(r, 1) = varpositions(r, 1) = ({1,3},;)
simulate(r, 2) = varpositions(r, 2) = ({2},;)
simulate(r, 3) = varpositions(r, 3) = (;, {1,2})
simulate(r, (2,3)) =merge(simulate(r, 2), simulate(r, 3))

=merge
�

({2},;), (;, {1, 2})
�

= ({2}, {1,2})
simulate(r, ((2, 3), 1)) =merge(simulate(r, (2,3)), simulate(r, 1))

=merge
�

({2}, {1, 2}), ({1, 3},;)
�

= ([3], [2])

Note that because the indices of θ span the whole right-hand side of r (thus θ is total), the
set of positions simulate(r, ((2, 3), 1)) reaches over the whole composition function. �

Our reason for defining this simulation process is that we can now easily study the fanout of
rules the binarization process would create from a binarization blueprint.

4.5 Optimal binarization 34

Definition 4.19 (fanout of a tuple of sets). Similar to the definition of fanout: P(S)→ N
for some ordered set S we can define:

facnout: (P(S))∗→ N
facnout(S1, ... , Sm) = fanout(S1) + · · ·+ fanout(Sm)

�

We can use this to check a binarization blueprint θ of a rule r ∈ R for some PLCFRS G =
((N ,Σ, S, R), p) for the maximal fanout of the new rules being created in binarizeBy(G, r,θ).

Definition 4.20 (maximal fanout of a binarization blueprint). Given a rule r and a bina-
rization blueprint θ ∈ Θ(rank(r)) we define:

maxfanout(r,θ) =







0 if θ ∈ N
max

�

facnout(simulate(r,θ)), if θ = (θ1,θ2) ∈ Θ×Θ
maxfanout(r,θ1),maxfanout(r,θ2)

	

�

Example 4.21. We continue the previous example and consider the blueprint θ = ((2, 3), 1).

maxfanout(r, ((2, 3), 1))

=max
�

facnout(simulate(r, ((2, 3), 1))), maxfanout(r, (2,3)),maxfanout(r, 1)
	

=max
�

facnout([3], [2]),maxfanout(r, (2, 3)), 0
	

=max
�

2, maxfanout(r, (2, 3)), 0
	

=max
¦

2, max
�

facnout(simulate(r, (2, 3))),maxfanout(r, 2),maxfanout(r, 3)
	

, 0
©

=max
¦

2, max
�

facnout([1; 2], [2]), 0, 0
	

©

=max
¦

2, max
�

2,0, 0
	

, 0
©

= 2

�

4.5 Optimal binarization

It is easy to see that we could list all possible binarization blueprints Θ(k) of a rule r with
rank(r) = k; the set is finite2, even if the number of elements increases rapidly with k.
We can however limit ourselves to only constructing specifically the subset of binarization
blueprints Θm(k) that contains all these θ ∈ Θ(k) for which maxfanout(r,θ) ≤ m by
introducing a constraint based on facnout into Definition 4.10:

2because ind(θ) for a blueprint θ grows with each new addition to θ , but can never exceed [k]

4.6 Complete binarization of a PLCFRS 35

Definition 4.22 (bounded binarization blueprint). Let m ∈ N and r be a rule with k =
rank(r).
The we can define the set of all binarization blueprints for the rule r bounded by m as a
subset of Θ(k):

Θm(r) = [k]∪
¦

(θ1,θ2) | θ1,θ2 ∈ Θm(r), ind(θ1)∩ ind(θ2) = ;, θ1 < θ2,

facnout
�

merge
�

simulate(r,θ1), simulate(r,θ2)
�

�

≤ m
©

with ind and < being defined like in 4.10. �

Using this construction idea we no longer have to create all blueprints, but only the ones that
do not (yet) yield a rule with a fanout larger than our target m.

We can now use this set to get the set of all optimal3 binarization blueprints:

Definition 4.23 (optimal binarization blueprints). Let ((N ,Σ, S, R), p) be a PLCFRS. We can
define the optimal binarization blueprint of any rule r ∈ R starting the search at some m ∈ N:

bθ(r, m)



















bθ(r, m+ 1) if Θ = ;
θ otherwise choose any θ ∈ Θ

with Θ = {θ | θ ∈ Θm(r), ind(θ) = [rank(r)]}

We will just write bθ(r) instead of bθ(r,π2(sort(r))). �

We can give this lower bound because the final remainder rule of the binarization (the
one that is described by the root of a blueprint) will always have the same original NT on
the the left-hand side and its fanout is π2(sort(r)), so we know that no binarization could
achieve a lower maximum fanout.

4.6 Complete binarization of a PLCFRS

Definition 4.24 (complete binarization of a PLCFRS). Let G = ((N ,Σ, S, R), p) be a PLCFRS.
Given a function eθ : R→ Θ we can define the complete binarization of this PLCFRS:

binarizeUsing(G, eθ) =











G if R′ = ;
binarizeUsing

�

binarizeBy
�

G, r, eθ (r)
�

, eθ
�

otherwise choose

any r ∈ R′

with R′ = {r | r ∈ R, rank(r)> 2}. �
3I will use the term optimal to refer to binarizations that have the lowest possible maximal fanout in all

resulting rules, other metrics are also imaginable and could be targeted with the framework of binarization
blueprints.

4.6 Complete binarization of a PLCFRS 36

Thus the naive complete binarization of a PLCFRS G is binarizeBy(G, eθ) where eθ(r) =
θ̌(rank(r)).

The optimal complete binarization is binarizeBy(G,bθ).

5 Implementation

5.1 Representing a PLCFRS

5.1.1 Rules

The PLCFRS we considered so far all worked on strings. Since working with strings tends
to be needlessly expensive in memory, we replace all strings (node labels) of our treebank
with natural numbers, and create a dictionary that will allow us to find the strings corre-
sponding to numbers again. Once we thus intified our input trees, the sets N ,Σ and S of
the resulting PLCFRS of course only consist of these natural numbers and for every rule
r = A→ f (B1, ... , Bk) we now know that A, B1, ... , Bk ∈ N. We realize that to store a PLCFRS
((N ,Σ, S, R), p) we really only need a set of rules R (with their composition functions, which
imply the alphabet Σ), the set of start non-terminals S (since R and S imply the set of all
non-terminals N) and the probability assignment p. This thought leads to the first type
definition for our implementation, the definition of an (unweighted) rule.

type Rule = ((Int, [Int]), [[NTT]])

The first component is a tuple consisting of the left-hand side NT and the NTs on the
right-hand side (here represented as a list). The second component of the tuple defines
the composition function used in the rule: The outer list represents the components of the
tuple this function returns (its length is the fanout of the NT on the left-hand side), the
inner list represents the concatenation of new terminal symbols and variables (like the
〈y1, ... , ys〉 tuple used to define a composition function), represented in the data structure
NTT:

data NTT = NT Int | T Int

This NTTs Ts are indeed the new terminal symbols, the NTs however are the variables that we
used to define a composition function, we can use a linear index here, since the number of
variables that stand for strings in the input is fixed and known.

Since p assigns each rule a probability, it makes sense to store weighted rules as tuples of
unweighted rules and probabilities, so an example weighted rule might look like this:

(((1, [2,3]), [[NT 3, NT 1], [NT 2]]), 0.4711) :: (Rule, Double)

A whole PLCFRS thus has the following type (initial NTs, rules, NT/T intification dictionar-
ies):

type PLCFRS = ([Int], [(Rule, Double)], (Array Int String, Array Int String))

37

5.2 Extraction 38

Negra

Tree (Maybe SentenceData, [Span])

Tree (Maybe SentenceData, [Span])

(Map String Int, Map String Int))

(Array Int String, Array Int String))

NT/T intification dictionaries

([Tree (Int, Maybe Int, [Span])],

Map Int (Map Rule Int),

[(Rule, Double)],

rules and their probabilities

assocs

. foldl’ union empty

. normalizeRuleProbs

([Int],

initial NTs

readoffAll

dualIntifyNegra

annotate fanout into sdPostag

map (negraToCrossedTree . sData) . sentences

invertMap invertMap

Figure 5.1: Data flow and type signatures during the extraction process

5.1.2 IRTGs

We can also express an LCFRS G as a interpreted regular tree grammar (IRTG, Koller and
Kuhlmann [KK11]), which consists of a regular tree grammar that generates derivations
and a homomorphism that assigns each node of the derivation a function that can then be
evaluated in an algebra. Our design is not so different, the generated derivations are the
set of derivations DG, the homomorphism would apply π2 to each node so that the resulting
tree of composition functions can then be evaluated in the algebra (so this process is exactly
like our definition of the semantics of a derivation).

5.2 Extraction

The extraction process works with many functions, transforming a corpus into trees and
trees into rules. The data flow is sketched in figure 5.1.

5.2 Extraction 39

This leads us to the type signature of the function that encapsulates this process:

extractPLCFRSFromNegra :: Negra -> PLCFRS

5.2.1 Cleaning and preparing input trees

Using the machine translation system Vanda1 to parse the TIGER and NEGRA treebanks
results in trees similar to the ξs we defined - the nodes of these trees are labeled with
SentenceData:

1 data SentenceData

2 = SentenceWord

3 { sdWord :: String

4 , sdPostag :: String

5 , sdMorphtag :: String

6 , sdEdge :: Edge

7 , sdSecEdges :: [Edge]

8 , sdComment :: Maybe String

9 }

10 | SentenceNode

11 { sdNum :: Int

12 , sdPostag :: String

13 , sdMorphtag :: String

14 , sdEdge :: Edge

15 , sdSecEdges :: [Edge]

16 , sdComment :: Maybe String

17 }

Listing 5.1: SentenceData as defined in Vanda.Corpus.Negra

However, the leaves of these trees (SentenceWord, inner nodes are SentenceNode) con-
tain two labels, one for an inner node (sdPostag) and one for the actual leaf (sdWord), these
would be unrolled into two separate nodes of rank 1 and 0 in our ξs:

Furthermore, they do not define an order � like we did, but in the tree representation
negraToCrossedTree gives us each node of the tree is already annotated with its spans2,
so we do not need the order.

This span-annotation was one of the two things we had to do manually using the function
annotate when formally describing the extraction process, the other thing this function
did is something that we still have left to do here: we have to add their fanouts to all
part-of-speech tags so that later we are able to distinguish between NTs of the same name
with different fanouts.

1http://www.inf.tu-dresden.de/index.php?node_id=2550
2The type [Span] stands for [(Int, Int)] and contains the representation of the spans as the union of

maximal intervals sorted by their smallest element that we used in our definitions.

http://www.inf.tu-dresden.de/index.php?node_id=2550

5.3 Binarization 40

Finally we already perform the intification described above and replace the natural language
words (becoming our terminal symbols) and the part-of-speech tags (we just enriched these
with their fanouts, so they can become proper NTs).

Now that we have properly prepared trees, we can begin the actual readoff procedure:

5.2.2 Reading off rules

Now we can apply the readoff transformation to the trees.

1 readoffAll

2 :: [(Tree (Int, Maybe Int, [Span]))]

3 -> (Set Int, M.Map Int (M.Map Rule Int))

4 readoffNode

5 :: (Tree (Int, Maybe Int, [Span]))

6 -> Rule

7 solveSpanPuzzle :: [Span] -> Span -> [Int]

Listing 5.2: Types of functions used for reading off rules as defined in Vanda.Corpus.Negra

readoffAll folds over all trees and returns a set of all NTs at the roots of these trees
(which will become the initial NTs) and a map of all rules and their counts (still categorized
by the NT on the left-hand side to make obtaining the probabilities from the counts
easier).

readoffNode reads off a single rule from a single node (we pass it the whole tree for
the sake of simplicity). Like our definition of readoff in chapter 3 it relies on a puzzle
function, which works exactly the same way, it just has flipped arguments and returns
linear indices.

The rules obtained by each readoffNode call are inserted into the rule map in readoffAll
with a count of 1 or if they already are present in the map, this entry’s count is increased
by 1.

Once we have this map of rules and counts, we can easily calculate a flat list of rules and
their probabilities.

5.3 Binarization

5.3.1 ProtoRules

To avoid ending up with many more new NTs than we need (because it is quite likely that
the same new rule and with it the same new NT on its left-hand side is created many times
when binarizing many rules like these read off from a natural language tree corpus) the
(de)duplication of equivalent NTs (and with it equivalent rules) is something that has to be
addressed by giving new NTs proper names:

5.3 Binarization 41

Instead of immediately saving the new NTs as Integers with the other intified NTs, each NT
will have to be a representation of the fusion rule (or rather its semantics) for which it was
created, so that if this rule and this NT is created once more, the created NT would be the
same (implying with it the same rule). Now we only have to check the generated rules for
duplicates and remove them to end up with a lot less NTs and rules (see the chapter 6, p.
43).

This representation shall be a binary tree where the leaves are labeled with NTs of the
original non-binarized LCFRS and an inner node is labeled with the composition functions
of the fusion rule resulting from fusing the two NT it has as children. Their structure is thus
similar to that of the binarization blueprints we defined.

Using these NTRepTrees we can define ProtoNTs 3 and with these ProtoRules that are very
similar to the normal Rules we defined above.

1 data NTRepTree = NTRepLeaf Int -- original NTs at the leaves

2 | NTRepInner [[NTT]] NTRepTree NTRepTree

3 type ProtoNT = (NTRepTree, Int) -- unintified ProtoNTs carry their fanout

4 type ProtoRule = ((ProtoNT, [ProtoNT]), [[NTT]])

Listing 5.3: ProtoRules in Vanda.Grammar.XRS.LCFRS.Binarize

It is easy to see that we can always transform a NT (represented as an Int) into a ProtoNT
and thus a Rule into a ProtoRule.

5.3.2 NT fusion

The NT fusion works with a function of a similar type signature to the one we defined in chap-
ter 4 that also extracts maximal substrings in the composition function to create a new com-
position function for the new fusion rule and rearrange holes in the remaining composition
function to obtain the composition function of the remainder rule.

1 fuseInRule

2 :: (ProtoRule, Double) -- rule

3 -> (Int, Int) -- indices of the NTs that are to be fused

4 -> ((ProtoRule, Double), (ProtoRule, Double)) -- fusion / remainder rule

Listing 5.4: Type signature of the fusion function in Vanda.Grammar.XRS.LCFRS.Binarize

5.3.3 Binarizing a rule

For binarizing a rule we have introduced two strategies: a naive binarization and an
optimal one. Both share the same type signature, requiring a dictionary to look up
the fanouts of NTs and the Rule that is to be binarized and returning a list of new
ProtoRules.

3the normal intified NTs do not carry their fanout individually, but can be looked up just like their string
origin, but these unintified ProtoNTs need to carry it themselves

5.3 Binarization 42

1 binarizeNaively, binarizeByAdjacency

2 :: Array Int Int

3 -> (Rule, Double)

4 -> [(ProtoRule, Double)]

Listing 5.5: Type signatures of the functions that compute the naive and optimal binariza-
tions of a rule in Vanda.Grammar.XRS.LCFRS.Binarize

While binarizeNaively can easily be implemented without consistent indices and bina-
rization blueprints, binarizeByAdjacency (which is our optimal binarization) makes use
of these concepts.

It is interesting to note that the two steps of constructing a binarization blueprint (us-
ing its simulation) and computing the actual binarization with the blueprint are more
intertwined in binarizeByAdjacency: the constructed blueprints do not just contain NTs,
they also contain a function binarizer that can compute the actual binarization the
blueprint represents. This means that constructing the trees involves a function compo-
sition of the children’s binarizers and obtaining a fully computed binarization from a
binarization blueprint only requires applying the root node’s binarizer to the original
rule.

1 data NTTree = NTTreeLeaf Int -- an old NT: no action required here

2 | NTTreeInner

3 ([(ProtoIndexedRule, Double)] -- binarizer

4 -> ([(ProtoIndexedRule, Double)], Int))

5 (Tree Int) -- containing all NTs like a bin. blueprint

6 type CandidateEndpoints = (NTTree, Endpoints)

Listing 5.6: Binarization blueprints in binarizeByAdjacency

5.3.4 Binarizing a PLCFRS

Since we already represent a PLCFRS as a set of rules with probabilities we can just compute
a complete binarization for each rule, properly reassigning probabilities to the resulting
rules. We will never need to update the set of initial NTs, but we will intify the new
ProtoNTs, so the intification dictionaries will change with the list of rules. This leads
us to the definition for the PLCFRS-binarizing function binarizeUsing that given a rule
binarizer (either binarizeNaively or binarizeByAdjacency) can transform a PLCFRS
into a binarized one:

1 binarizeUsing

2 :: (Array Int Int -> (Rule, Double) -> [(ProtoRule, Double)])

3 -> PLCFRS

4 -> PLCFRS

Listing 5.7: PLCFRS binarization in Vanda.Grammar.XRS.LCFRS.Binarize

6 Evaluation

We extract a PLCFRS from the German TIGER1 and NEGRA2 treebanks.

6.1 Extraction and naive binarization

We binarize this PLCFRS using the naive binarization described above.

From the diagrams in Fig. 6.1 we can see the effect the NT deduplication efforts described
in the implementation chapter have on the number of new fusion rules. If we do not filter
out duplicates, we should theoretically end up with 118883 fusion rules in TIGER and
61363 fusion rules in NEGRA. If we check for duplicates, however, we end up with only
18457 (TIGER) and 11454 (NEGRA) rules, so only 15% and 19% of the rules theoretically
expected are really generated.

Fig. 6.2 shows the fanouts before and after naive binarization. We can see the fanouts
increase for all rules with a rank greater than 1, but it is interesting to note that the highest
occurring fanout (24 in TIGER, 40 in NEGRA) stays the same, even the number of rules
with this fanout (1 in TIGER, 2 in NEGRA) does not change.

6.2 Optimal binarization

Here the computational complexity of the optimal binarization algorithm described above
makes the evaluation difficult, binarizing all rules takes a very long time. Therefore
we only binarize rules of a rank below 7 from our extracted PLCFRS (these still make
up roughly 98% of both TIGER and NEGRA). Of course, the hypothetical PLCFRS that
would contain just this subset of rules does not generate the same language at all, but
we assume that this subset is representative enough for the original full rule set. In
Fig. 6.3 we plot the fanouts of both naive and optimal binarization next to the original
distribution.

We can visualize the difference between the naive and the optimal binarization better
by plotting the ratio between the binarized fanouts and the original fanouts for both
binarization strategies, Fig. 6.4 shows the result.

1http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
2http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

43

http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

6.2 Optimal binarization 44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20

101

102

103

104

105

Rank

N
um

be
r

of
ru

le
s

in
PL

C
FR

S

Ranks of TIGER corpus

Extracted Binarized

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20

101

102

103

104

105

Rank

N
um

be
r

of
ru

le
s

in
PL

C
FR

S

Ranks of NEGRA corpus

Extracted Binarized

Figure 6.1: Ranks in the corpora before and after naive binarization

6.2 Optimal binarization 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20

100

101

102

103

104

105

Fanout

N
um

be
r

of
ru

le
s

in
PL

C
FR

S

Fanouts of TIGER corpus

Extracted Binarized

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20

100

101

102

103

104

105

Fanout

N
um

be
r

of
ru

le
s

in
PL

C
FR

S

Fanouts of NEGRA corpus

Extracted Binarized

Figure 6.2: Fanouts in the corpora before and after naive binarization

6.2 Optimal binarization 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20

100

101

102

103

104

105

Fanout

N
um

be
r

of
ru

le
s

in
PL

C
FR

S

Fanouts of TIGER corpus

Original Naive binarization optimal binarization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20

100

101

102

103

104

105

Fanout

N
um

be
r

of
ru

le
s

in
PL

C
FR

S

Fanouts of NEGRA corpus

Original Naive binarization optimal binarization

Figure 6.3: Fanouts in the filtered corpora before and after both naive and optimal
binarization

6.2 Optimal binarization 47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15

1

1.1

1.2

1.3

1.4

1.5

1.6

Fanout

R
at

io
of

nu
m

be
r

of
ru

le
s

in
bi

na
ri

ze
d/

or
ig

in
al

PL
C

FR
S

Fanouts of TIGER corpus

Naive binarization / original optimal binarization / original

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fanout

R
at

io
of

nu
m

be
r

of
ru

le
s

in
bi

na
ri

ze
d/

or
ig

in
al

PL
C

FR
S

Fanouts of NEGRA corpus

Naive binarization / original optimal binarization / original

Figure 6.4: Ratio of fanouts in the naively and optimally binarized filtered corpora to the
fanouts in the original filtered corpora

7 Conclusion

We have introduced probabilistic LCFRS over string tuples as a formalism that can be
used for natural language processing and have shown how they can be extracted from an
annotated corpus of natural language.

After defining the primitive fusing operation that our rule-by-rule binarizations rely on, we
have constructed a framework of blueprints to be able to plan a complete binarization of
rules and whole PLCFRSs. This framework allowed us to express both a naive approach
that makes no guarantees about the resulting rules and another approach where we
carefully choose the fusions such that the generated rules are optimal with regard to the
maximal fanout. The evaluation of our implementation has shown that the extraction
and the naive binarization are easily and quickly computable, but computing the optimal
binarizations has a very high complexity and thus is not feasible for rules with a very high
rank.

Future efforts might be directed to using this framework to find faster algorithms for finding
optimal binarizations or acceptable approximations.

48

Bibliography

[Eva11] Kilian Evang. “Parsing discontinuous constituents in English”. MA thesis. Uni-
versität Tübingen, Jan. 5, 2011.

[Góm+09] Carlos Gómez-Rodríguez et al. “Optimal Reduction of Rule Length in Linear
Context-free Rewriting Systems”. In: Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North American Chapter of the Associa-
tion for Computational Linguistics. NAACL ’09. Boulder, Colorado: Association
for Computational Linguistics, 2009, pp. 539–547. ISBN: 978-1-932432-41-1.
URL: http://dl.acm.org/citation.cfm?id=1620754.1620833.

[GS09] Carlos Gómez-Rodríguez and Giorgio Satta. “An Optimal-time Binarization
Algorithm for Linear Context-free Rewriting Systems with Fan-out Two”. In:
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2 - Volume 2. ACL ’09. Suntec, Singapore: Association
for Computational Linguistics, 2009, pp. 985–993. ISBN: 978-1-932432-46-6.
URL: http://dl.acm.org/citation.cfm?id=1690219.1690284.

[KK11] Alexander Koller and Marco Kuhlmann. “A Generalized View on Parsing and
Translation”. In: Proceedings of the 12th International Conference on Parsing
Technologies. IWPT ’11. Dublin, Ireland: Association for Computational Lin-
guistics, 2011, pp. 2–13. ISBN: 978-1-932432-04-6. URL: http://dl.acm.
org/citation.cfm?id=2206329.2206331.

[KS09] Marco Kuhlmann and Giorgio Satta. “Treebank Grammar Techniques for Non-
projective Dependency Parsing”. In: Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics. EACL ’09.
Athens, Greece: Association for Computational Linguistics, 2009, pp. 478–486.
URL: http://dl.acm.org/citation.cfm?id=1609067.1609120.

[Mic01a] Jens Michaelis. “Derivational Minimalism Is Mildly Context–Sensitive”. English.
In: Logical Aspects of Computational Linguistics. Ed. by Michael Moortgat.
Vol. 2014. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, pp. 179–198. ISBN: 978-3-540-42251-8. DOI: 10.1007/3-540-45738-
0_11.

[Mic01b] Jens Michaelis. “Transforming Linear Context-Free Rewriting Systems into
Minimalist Grammars”. English. In: Logical Aspects of Computational Linguistics.
Ed. by Philippe Groote, Glyn Morrill, and Christian Retoré. Vol. 2099. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2001, pp. 228–244.
ISBN: 978-3-540-42273-0. DOI: 10.1007/3-540-48199-0_14.

49

http://dl.acm.org/citation.cfm?id=1620754.1620833
http://dl.acm.org/citation.cfm?id=1690219.1690284
http://dl.acm.org/citation.cfm?id=2206329.2206331
http://dl.acm.org/citation.cfm?id=2206329.2206331
http://dl.acm.org/citation.cfm?id=1609067.1609120
http://dx.doi.org/10.1007/3-540-45738-0_11
http://dx.doi.org/10.1007/3-540-45738-0_11
http://dx.doi.org/10.1007/3-540-48199-0_14

Bibliography 50

[MS08] Wolfgang Maier and Anders Søgaard. “Treebanks and mild context-sensitivity”.
In: Proceedings of Formal Grammar. 2008, p. 61. URL: http://web.stanford.
edu/group/cslipublications/cslipublications/FG/2008/maier.pdf.

[Sek+91] Hiroyuki Seki et al. “On multiple context-free grammars”. In: Theoretical
Computer Science 88.2 (1991), pp. 191–229. ISSN: 0304-3975. DOI: 10.1016/
0304-3975(91)90374-B.

[Vij87] Krishnamurti Vijay-Shanker. “A study of tree adjoining grammars”. PhD thesis.
University of Pennsylvania, 1987.

[VWJ86] Krishnamurti Vijay-Shanker, David Jeremy Weir, and Aravind K Joshi. “Tree
adjoining and head wrapping”. In: Proceedings of the 11th coference on Compu-
tational linguistics. Association for Computational Linguistics. 1986, pp. 202–
207. DOI: 10.3115/991365.991425.

[VWJ87] Krishnamurti Vijay-Shanker, David Jeremy Weir, and Aravind K. Joshi. “Charac-
terizing Structural Descriptions Produced by Various Grammatical Formalisms”.
In: Proceedings of the 25th Annual Meeting on Association for Computational
Linguistics. ACL ’87. Stanford, California: Association for Computational Lin-
guistics, 1987, pp. 104–111. DOI: 10.3115/981175.981190.

[WJ88] David Jeremy Weir and Arvind K Joshi. “Combinatory categorial grammars:
Generative power and relationship to linear context-free rewriting systems”.
In: Proceedings of the 26th annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics. 1988, pp. 278–285.
DOI: 10.3115/982023.982057.

http://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
http://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.3115/991365.991425
http://dx.doi.org/10.3115/981175.981190
http://dx.doi.org/10.3115/982023.982057

	Introduction and intuition of LCFRS
	Outline of the thesis
	Intuition of LCFRS

	Definitions
	Preliminaries
	Defining LCFRS (on string tuples)
	Derivations
	Probabilities

	Extraction from a treebank
	Treebanks
	Transforming input trees into rules
	Extracting a PLCFRS from the transformed trees

	Binarization
	Fusion of NTs
	Complete binarization of a rule
	Naive binarization
	Simulating binarization blueprints
	Optimal binarization
	Complete binarization of a PLCFRS

	Implementation
	Representing a PLCFRS
	Rules
	IRTGs

	Extraction
	Cleaning and preparing input trees
	Reading off rules

	Binarization
	ProtoRules
	NT fusion
	Binarizing a rule
	Binarizing a PLCFRS

	Evaluation
	Extraction and naive binarization
	Optimal binarization

	Conclusion
	Bibliography

