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Im Forschungsfeld der Natürlichen Sprachverarbeitung (NLP) werden Probleme häufig in
folgenden drei Schritten bearbeitet [Lop08]:

1. Modellierung des Problems

2. Training der Modellparameter

3. Testen des Modells

Für das Training von strukturierten probabilistischen Modellen finden häufig Ausprägun-
gen des expectation maximization (EM) Algorithmus [DLR77; Pre05] Verwendung. Der
EM Algorithmus berechnet, ausgehend von einem Korpus über unvollständigen Daten
und einer initialen Wahrscheinlichkeitsverteilung über vollständigen Daten, eine Folge
von Wahrscheinlichkeitsverteilungen. Dazu wird wiederholt das Korpus über unvollstän-
digen Daten zu einem Korpus über vollständigen Daten erweitert (expectation) und
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anschließend das maximum likelihood estimate über dem vervollständigten Korpus be-
rechnet (maximization). Die Folge der Wahrscheinlichkeitsverteilungen konvergiert zu
einem lokalen Maximum der likelihood.

Beispiele für die Verwendungen des EM Algorithmus in der NLP sind u.a. das Training
des Wörterbuchs im IBM Modell 1 [Bro+93], das unüberwachte Training einer probabi-
listischen kontextfreien Grammatik [LY90] und das Training eines extended top-down
tree transducer [GK04]. Auch wenn es offensichtliche Ähnlichkeiten zwischen dem EM
Algorithmus von [DLR77] und diesen Trainingsalgorithmen gibt, wurde selten ein for-
maler Beweis erbracht, dass diese Algorithmen tatsächlich EM Algorithmen sind und
folgerichtig die gleichen Konvergenzeigenschaften gelten.

Büchse, Stüber und Vogler [BSV15] haben ein generisches Framework für EM Algo-
rithmen entwickelt und formal gezeigt, dass es sich bei ihren prototypischen Algorithmen
corpus-based EM algorithm, simple-counting EM algorithm und inside-outside EM algo-
rithm tatsächlich um EM Algorithmen handelt. Außerdem geben sie an, wie sich einige
der vorgenannten Trainingsalgorithmen in ihr Framework einbetten lassen, und erbringen
dadurch den formalen Beweis, dass diese EM Algorithmen sind.

Hidden Markov Modelle (HMM) werden in der NLP zur Modellierung von Sequenzen
eingesetzt, u.a. als Sprachmodelle. Beim Training der Übergangswahrscheinlichkeiten
zwischen den Zuständen findet der Baum-Welch Algorithmus [Bau+70] Verwendung,
welcher üblicherweise zu den EM Algorithmen gezählt wird.

Aufgabe In seiner Bachelorarbeit soll Stefan Majewsky zeigen, dass sich der Baum-
Welch Algorithmus zum Training von HMM als ein inside-outside EM Algorithmus
aus dem Framework von [BSV15] darstellen lässt. Dazu sollen folgende Teilaufgaben
bearbeitet werden.

1. Der Baum-Welch Algorithmus soll geschlossen dargestellt werden [vgl. auch Nel13],
wobei ein hohes Maß an Übereinstimmung mit der Primärliteratur [Bau+70]
anzustreben ist.

2. Anschließend sollen die Mengen (z.B. X,Y, Z,A,B,C) und Abbildungen (z.B.
q, π1, π2, K,H), die im Kontext eines inside-outside EM Algorithmus relevant sind,
passend instanziiert werden. Dabei soll formal gezeigt werden, dass die Anforderun-
gen, welche an letztere Objekte im Framework von [BSV15] gestellt werden, erfüllt
sind.

3. Es soll identifiziert werden, welche Teile des Baum-Welch Algorithmus welchen
Hilfsgrößen (z.B. χ, α, β, LµMio) eines inside-outside EM Algorithmus entsprechen.

4. Zuletzt soll bewiesen werden, dass der Baum-Welch Algorithmus und die konstru-
ierte Instanz eines inside-outside EM Algorithmus das selbe Ergebnis liefern.

Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss in
sich abgeschlossen sein und alle nötigen Definitionen und Referenzen enthalten. Die
Urheberschaft von Inhalten – auch die eigene – muss klar erkennbar sein. Fremde
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Inhalte, z.B. Algorithmen, Konstruktionen, Definitionen und Ideen, müssen durch genaue
Verweise auf die entsprechende Literatur kenntlich gemacht werden. Lange wörtliche
Zitate sollen vermieden werden. Gegebenenfalls muss erläutert werden, inwieweit und zu
welchem Zweck fremde Inhalte modifiziert wurden. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit geführt werden. Die Darstellung
aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Für jeden wichtigen
Begriff sollen Erläuterungen und Beispiele angegeben werden, ebenso für die Abläufe der
beschriebenen Verfahren sowie Konstruktionen. Wo es angemessen ist, sollen Illustrationen
die Darstellung vervollständigen. Bei Diagrammen, die Phänomene von Experimenten
beschreiben, muss deutlich erläutert werden, welche Werte auf den einzelnen Achsen
aufgetragen sind, und beschrieben werden, welche Abhängigkeit unter den Werten der
verschiedenen Achsen dargestellt ist. Schließlich sollen alle Lemmata und Sätze möglichst
lückenlos bewiesen werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.

Dresden, 11. April 2017

Unterschrift von Heiko Vogler Unterschrift von Stefan Majewsky
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1 Introduction

In natural language processing, it is frequently necessary to judge the correctness of sentences
generated by some algorithm. For example, a speech-to-text translator that only recognizes in-
dividual words might produce the following two candidate sentences for the same input audio:

He ate soup. He aid soup.

Both sentences sound the same, but the second candidate sentence should be discarded because
it is syntactically wrong. As another example, a translation algorithm that translates from an-
other language to English might generate the following two candidate sentences for some input:

This is a small red ball. This is a red small ball.

Both sentences are syntactically correct, but the first sentence should be preferred because it
conforms to the customary rules for adjective ordering in the English language. Finally, consider
a spelling correction process that is applied to the following sentence:

The design an construction of the system will take more than a year. [Kuk92]

Possible replacements for the syntactically wrong word “an” include “a” and “and”. In all these
situations, a language model can be employed to choose the best result from a set of candidates.
[S+02, YEG+05] A language model assigns a probability pω(v) to each sentence v ∈ V* (with
words from the set V), such that correct sentences receive a higher probability than incorrect
sentences, e. g.,

1 > pω

(
He ate soup.

)
> pω

(
He aid soup.

)
> pω

(
He He He soup.

)
> 0.

The probability distribution pω is determined by a model parameter ω ∈ Ω. The language model
defines Ω and describes how to obtain pω for any model parameter ω. The model parameter
is chosen by a suitable training algorithm using a training corpus c containing known good sen-
tences, such that ω maximizes the likelihood of this corpus, i. e.,

∏
v∈c

pω(v).



2 1 Introduction

Many training algorithms for language models are instances of the expectation-maximization (EM)
algorithm [DLR77]. Chapter 2 will introduce a general framework for EM algorithms that first
appeared in [BSV15].

1.1 N-gram models

One of the simplest language models is the bigram model. [JM09] It interprets the generation of a
sentence as a stochastic process, wherein each word is chosen with a probability conditional on
the word that appeared before it: (see Figure 1.1)

p(He ate soup.) = b(He|#) · b(ate|He) · b(soup|ate) · b(#|soup).

The model parameter is b, a conditional probability distribution of V ∪ {#} given V ∪ {#}, where
# is a placeholder word that stands in for the start and end of the sentence.
The model parameter can be chosen by a very simple training algorithm [JM09, pp. 123]: All
bigrams, i. e., pairs of words occurring one after the other, are counted across the corpus. This
includes bigrams containing the sentence delimiter word #. Then, the counts are normalized into
a conditional probability distribution by setting

b(w|w′) :=
count(w′w)

∑w′′∈V∪{#} count(w′w′′)
∀w, w′ ∈ V ∪ {#} .

The bigram model can be generalized to the N-gram model, wherein the next word is chosen
with a probability conditional on the n− 1 words before it. Training then counts n-grams, i. e.,
sequences of n words, hence the name N-gram model. The bigram model is recovered for n = 2.
Besides the already mentioned applications where language models augment translators and
autocorrect systems, N-gram models are useful in augmentive communication: Virtual keyboards
on smartphones and tablets predict the next word by looking at the previous n words, thus
improving typing speed and accuracy. [HH04] A similar assistive word prediction system is part
of speech synthesis programs used by disabled persons such as the physicist Stephen Hawking.
[NLH98]

#

He

She

ate

drank

soup

tea

#

0.5

0.5

0.5

0.5

0.5

1

0.3

0.7

1

1

Figure 1.1: Graphic representation of an example instance of the bigram model. The nodes are
words from the vocabulary V ∪ {#}. The start/end marker # is shown twice for readability’s
sake. Arrows v→ v′ represent a nonzero bigram probability b(v′|v).
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1.2 Hidden Markov model

A further generalization of N-gram models leads to the Hidden Markov model. In this model, the
emission probability of a word depends not on the previous words, but on the progression of a
state machine that cannot be directly deduced from the emitted words. Every time a word needs
to be emitted, the state machine progresses to a new state according to a transition probability
distribution t dependent on the previous state, and the next word is predicted by an emission
probability distribution e dependent on the new state. The symbol # is used as the initial and
final state of the state machine.

For example, if the state sequence that generated the sentence “He ate soup” was “#-noun-verb-
noun-#”, then the probability of that sentence would be

p(v|q) = t(noun|#) · e(he|noun) · t(verb|noun) · e(ate|verb)

· t(noun|verb) · e(soup|noun) · t(#|noun).

Since the state sequence is typically not known, a sum over all possible state sequences q must
be computed to obtain p(v) for a sentence v ∈ V*.

N-gram models can be interpreted a special case of the Hidden Markov model by encoding the
current N-gram in the state (Q = Vn) and defining the transmission and emission probability in
terms of the N-gram probability. For example, for bigrams,

t(v1v2|v′1v′2) :=

⎧
⎨
⎩

b(v2|v1) if v1 = v′2,

0 otherwise,
e(v|v1v2) :=

⎧
⎨
⎩

1 if v = v2,

0 otherwise.

Training for the Hidden Markov model is not as straightforward as for the bigram model, since
the training corpus typically only contains the observed sentences, not the state sequences that

# noun

verb

he

she

soup

tea

drank

ate

1

0.5

0.5

1

0.3

0.3

0.25

0.15

0.5

0.5

Figure 1.2: Graphic representation of an example instance of the Hidden Markov model, with
hidden states “noun” and “verb”; adapted from [Nel13]. Arrows q → q′ and dashed arrows
q 99K v represent nonzero transition and emission probabilities t(q′|q) and e(v|q), respectively.



4 1 Introduction

produced them. The standard training algorithm for Hidden Markov models is the Baum-Welch
algorithm. [BPSW70, Bau72]
Chapter 3 will define Hidden Markov models more formally, and discuss algorithms that act on
them. Finally, we will show that the Baum-Welch algorithm is an instance of the general EM
algorithm laid out in Chapter 2, from which follows that it exhibits the same beneficial conver-
gence properties.



2 Expectation-maximization algorithms

The generic framework for expectation-maximization (EM) algorithms introduced by [BSV15]
applies to several kinds of probability models, e. g., language models, translation models, and
parsing models. This chapter will introduce terminology and notation from [BSV15] as far as is
necessary to apply this framework to language models and, specifically, to the Hidden Markov
model in Chapter 3.

2.1 Preliminaries

The set {0, 1, 2, . . .} of non-negative integers and the set of non-negative reals shall be denoted
by N and R≥0, respectively. We assume that

00 := 1, log 0 := −∞, 0 · (−∞) = log 00 = 0.

Definition 2.1. Given a countable set X, a mapping c : X → R≥0 is called an X-corpus. Its size
and support are defined as

|c| := ∑
x∈X

c(x) and supp(c) := {x ∈ X : c(x) ̸= 0} ,

respectively. The corpus c is called empty if |c| = 0, finite if |c| < ∞, and probability distribution of
X if |c| = 1. The set of all probability distributions of X is denoted byℳ(X).

When used as input for a language model’s training algorithm, X is the set of all sentences
consisting of words from the language in question, and c(x) describes how often a sentence
x ∈ X occurs in the corpus c. Probability distributions can be derived from corpora as follows.

Definition 2.2. Given a non-empty and finite X-corpus c, the empirical probability distribution c̃ is
defined as

c̃(x) :=
c(x)
|c| .

This expression is not well-defined for |c| = 0 or |c| = ∞, hence the requirement for c to be
non-empty and finite.

Definition 2.3. Given an X-corpus c and p ∈ ℳ(X), the likelihood of c under p is

p(c) := ∏
x∈X

p(x)c(x).
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The likelihood describes the probability of observing the sentences from the corpus c when sen-
tences occur with the probability distribution described by p. A training algorithm will take c as
an input, and seek to find an admissible p such that p(c) is maximized. If any p is admissible,
then for non-empty and finite c, the optimal choice is p = c̃ because of the following lemma.

Lemma 2.4. Let c be a non-empty and finite X-corpus. Then c̃(c) ≥ p(c) for every p ∈ ℳ(X).

Proof. It suffices to show that log c̃(c) ≥ log p(c), since log is monotone. Using Gibbs’ inequality,

log c̃(c) = ∑
x∈X

c(x) · log c̃(x) = |c| · ∑
x∈X

c̃(x) · log c̃(x)

≥ |c| · ∑
x∈X

c̃(x) · log p(x) = ∑
x∈X

c(x) · log p(x) = p(c)

However, using p = c̃ directly is not useful because this probability distribution is grossly over-
fitted: It will assign zero probability to any sentence not in the observed corpus. A useful lan-
guage model thus limits the set of admissible p by describing the probability distribution in
terms of model parameters ω ∈ Ω.

Definition 2.5. Given a set Ω, an Ω-probability model for X is a mapping p : Ω→ℳ(X).

Instead of p(ω), we write pω. Training shall then find ω ∈ Ω such that pω(c) is maximized.

Definition 2.6. Let f : A→ B be a mapping from sets A to B. The argmax of f is the set

argmax
a∈A

f (a) :=
{

a ∈ A|∀a′ ∈ A : f (a) ≥ f (a′)
}

.

Definition 2.7. Given an Ω-probability model p for X, the maximum likelihood estimator for p is
the mapping

mlep : RX
≥0 → 𝒫(Ω), c ↦→ argmax

ω∈Ω
pω(c).

mlep(c) is the set of all ω with maximal likelihood, but training only needs to find a single
ω̂ ∈ mlep(c). Computing mlep(c) by brute force is typically not tractable because the set Ω is
usually countably infinite. However, there is one easily solvable special case.

Lemma 2.8. Let c be a nonempty and finite X-corpus, and p a Ω-probability model for X. If there
exists ω̂ ∈ Ω such that pω̂ = c̃, then ω̂ ∈ mlep(c).

Proof. By Lemma 2.4, pω̂(c) = c̃(c) ≥ pω(c) for every ω ∈ Ω, and thus ω̂ ∈ mlep(c).

2.2 Algorithmic skeleton

When training a language model, most of the time, not all required data is present in the cor-
pus. For example, a probabilistic context-free grammar assigns a probability distribution to its
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Algorithm 2.1 Algorithmic skeleton for EM of language models according to [BSV15]

Input: X-corpus c
Ω-probability model p for Y× X
some initial parameter ω0 ∈ Ω0 where Ω0 := {ω ∈ Ω : pω(c) ̸= 0}

Implicit: step mapping ψ : Ω0 → 𝒫(Ω)
such that ω′ ∈ ψ(ω) implies pω(c) ≤ pω′(c) (nondecreasing)

Output: sequence ω1, ω2, . . . ∈ Ω0
such that pω0(c), pω1(c), pω2(c), . . . nondecreasing

1: i← 0
2: while not converged do
3: ωi+1 ← select a member of ψ(ωi)
4: output ωi+1
5: i← i + 1
6: end while

derivation rules. [LY90] When the training data consists of full parse trees (supervised training),
the optimal probability distribution can be found by simply counting how many times each rule
is used across all these parse trees, and then computing the empirical probability distribution
for this corpus. Most of the times, however, the training data will consist only of sentences
(unsupervised training). The information about how to parse the sentences is hidden.
A similar problem arises with the Hidden Markov model: When training data is not already
annotated with state information, the information about which states correspond to which words
from the training data remains hidden. Expectation-maximization algorithms can be used when
parts of the training data are hidden in such a way. For the remainder, let

∙ X and Y be countable sets,

∙ Ω be a set,

∙ c be a finite X-corpus and

∙ p be a Ω-probability model for Y× X.

The corpus c represents the set of training data. Each x ∈ supp(c) is an observation. To judge
its probability under any pω, additional hidden information y ∈ Y is required. For notational
convenience, we define

pω(c) := ∏
x∈X

pω(x)c(x), where pω(x) := ∑
y∈Y

pω(y, x).

That is, even though pω is a probability distribution over Y× X, we allow to take the likelihood
of the X-corpus c under p by aggregating the probabilities for all hidden information y that lead
to a certain observation x according to the law of total probability.
The basic pattern for expectation maximization is outlined in Algorithm 2.1. The algorithm starts
with an initial ω0 such that pω0(c) ̸= 0. It then iteratively employs a step mapping to choose the
next ωi with a higher (or at least equal) likelihood than the one that came before.
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Definition 2.9. Let Ω0 := {ω ∈ Ω : pω(c) ̸= 0}. A step mapping is a mapping ψ : Ω0 → 𝒫(Ω)

which is nondecreasing in the following manner:

∀ω ∈ Ω0 : ∀ω′ ∈ ψ(ω) : pω(c) ≤ pω′(c).

The step mappings that we will consider consist of two steps:

1. Expectation: The training data c is converted into a complete-data corpus. Using ωi from
the previous iteration, the complete-data corpus estimates how hidden information con-
tributes to the observations in the original corpus.

2. Maximization: A suitable maximum-likelihood estimator is applied to the complete-data
corpus to choose ωi+1.

This back and forth of using the current ω to enrich the training data and using the enriched data
to find a better ω will converge towards a local maximum or saddle point of likelihood. [Wu83,
Thm. 2] The iteration is usually aborted after the desired running time has been exceeded, or
after the changes of pωi(c) per iteration have become smaller than some threshold.
[BSV15] introduce three types of step mappings that build on each other, each one more specific
than the one before it. Since the training of Hidden Markov models will be identified as an
instance of the most specific step mapping, the inside-outside step mapping, the remainder of
this chapter will introduce all these step mappings in order.

2.3 Corpus-based step mapping

The most general type of complete-data corpus can be obtained by distributing c(x) among the
hidden information y according to the probability distribution pω:

c⟨ω, p⟩(y, x) :=

⎧
⎨
⎩

c(x) · pω(y,x)
pω(x) if pω(x) ̸= 0,

0 if pω(x) = 0.

Recall that pω(x) = ∑y pω(y, x). The corpus c⟨ω, p⟩ has the correct structure for applying mlep,
yielding the corpus-based step mapping1

LpMcb : Ω0 → 𝒫(Ω), ω ↦→ mlep
(
c⟨ω, p⟩

)
= argmax

ω′
pω′

(
c⟨ω, p⟩

)
.

It is usually intractable to evaluate this argmax due to the large size of Ω. To apply Lemma 2.8,
ω̂ needs to be found such that pω̂ = c̃⟨ω, p⟩. This operation is typically hard, which is why a
more specific step mapping is helpful.

1The proof that this step mapping is nondecreasing can be found in [BSV15, pp. 10].
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2.4 Simple counting step mapping

The next such step mapping requires the language model to be described by a counting informa-
tion. Before defining this term, some additional notation needs to be introduced.

Definition 2.10. Let A and B be sets. A mapping p : B → ℳ(A) is called conditional probability
distribution of A given B. The set of all such mappings is denoted byℳ(A|B).

To simplify notation, we define p(a|b) :=
(

p(b)
)
(a).

Definition 2.11. Let C ⊆ A× B be a set. Then

ℳC(A|B) :=
{

p ∈ ℳ(A|B)
⏐⏐∀(a, b) ∈ A× B : (a, b) /∈ C ⇒ p(a|b) = 0

}

is the set of all conditional probability distributions of A given B constrained to C.

Definition 2.12. Let c be an A× B-corpus c. For any a ∈ A and b ∈ B, we define the A-corpus cb

by cb(a) := c(a, b), and the empirical conditional probability distribution c̃ ∈ ℳ(A|B) by

c̃(a|b) := c̃b(a) =
cb(a)
|cb|

=
c(a, b)

∑a′∈A c(a′, b)
.

Definition 2.13. Given a set Ω, a conditional Ω-probability model for A and B (constrained to C) is a
mapping q : Ω→ℳ(A|B) (or q : Ω→ℳC(A|B)).

When talking about counting informations (and inside-outside informations in the next section),
we assume the previously established requirements for X, Y, Ω, c and p (see page 7). Further-
more, we require that X and Y both contain a special symbol ⊥ such that c(⊥) = 0. ⊥ can easily
be added to any previously defined X and Y without affecting the requirement for countability.
The notation U̸⊥ := U ∖ {⊥} shall be defined for any set U.

Definition 2.14. Let A, B and C be sets such that C ⊆ A× B. A counting information is a triple
κ = (q, λ, π) such that

q : Ω→ℳC(A|B), λ : X ̸⊥ × Y̸⊥ → [0, 1], π : X ̸⊥ × Y̸⊥ → RC
≥0.

The motivation for this definition is to model hidden information y as consisting of countable
events c ∈ C. The mapping λ describes whether (and, possibly, with what probability2) a certain
y can be the cause for a certain observation. For λ(x, y) > 0, the C-corpus π(x, y) describes how
often each countable event occurs in this hidden information.
Following the assumption that the countable events C fully encode the hidden information Y,
we can use these intuitive notions to describe the original probability model p in terms of the
counting information.

2Most instances of λ use only integer images, i. e. λ(X ̸⊥× Y̸⊥) = {0, 1}, thus following this intuitive notion. How-
ever, the possibility of using fractional values for λ(x, y) is occasionally useful, e. g., to define a counting information
for the IBM Model 1 in [BSV15, pp. 23].
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Definition 2.15. Given κ = (q, λ, π), the induced model κ♭ : Ω→ RY×X is given by

(κ♭)ω(y, x) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

λ(x, y) · qω

(
π(x, y)

)
if x, y ̸= ⊥,

1−∑x′,y′ ̸=⊥ λ(x′, y′) · qω

(
π(x′, y′)

)
if x = y = ⊥,

0 otherwise.

This shows why the introduction of ⊥ into X and Y was useful. The definition ensures that
|(κ♭)ω| = 1. Therefore, κ♭ is an Ω-probability model for Y × X iff (κ♭)ω(⊥,⊥) ≥ 0. We call κ
proper in this case.
Since we now have a probability model p = κ♭ as required by the corpus-based step mapping,
we can lift its complete-data corpus into the domain of the counting information, obtaining a
new complete-data corpus

c⟨ω,κ⟩ : C → R≥0, (a, b) ↦→∑
x,y

c⟨ω,κ♭⟩(y, x) ·
(
π(x, y)

)
(a, b).

Definition 2.16. Given a set Ω and a conditional Ω-probability model q for A and B, the condi-
tional maximum likelihood estimator for q is the mapping

cmleq : RA×B
≥0 → 𝒫(Ω), c ↦→ argmax

ω
qω(c).

Using this definition, the simple counting step mapping3 for κ is

LκMsc : Ω0 → 𝒫(Ω), ω ↦→ cmleq
(
c⟨ω,κ⟩

)
= argmax

ω′
qω′

(
c⟨ω,κ⟩

)
.

The simple counting step mapping has two advantages over L·Mcb: First, many language models
can be described in terms of countable events only, such that Ω = C. In this case, Lemma 2.8 can
be extended to solve the argmax by computing the empirical probability distribution of c⟨ω,κ⟩.

Lemma 2.17. Let c be a non-empty and finite A× B-corpus, and q a Ω-probability model for A
given B. If there exists ω̂ ∈ Ω such that qω̂ = c̃, then ω̂ ∈ cmlep(c).

Proof. Let b ∈ B. Then q(b), defined by q(b)ω := qω(b), is an Ω-probability model for A. Since
qω̂ = c̃, we have q(b)ω̂ (a) = qω̂(a|b) = c̃b(a). From this follows ω̂ ∈ mleq(b)(cb) because of

Lemma 2.8. This means that q(b)ω̂ (cb) ≥ q(b)ω (cb) for any ω ∈ Ω. Hence, we have, for any ω ∈ Ω,

qω̂(c) = ∏
b∈B

qω̂(b)(cb) ≥ ∏
b∈B

qω(b)(cb) = qω(c).

Second, even if this lemma is not applicable, the set of countable events C is usually much smaller
than the set of all observations X or hidden information Y, making the evaluation of the argmax

3[BSV15, p. 13] show that this step mapping is equivalent to Lκ♭Mcb, and thus also nondecreasing.
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more tractable than for the corpus-based step mapping. For example, when considering prob-
abilistic context-free grammars, X (the set of all sentences) and Y (the set of all parse trees) are
both countably infinite, but C (the set of all derivation rules) is finite.

2.5 Regular tree grammars

The third and most specific type of step mapping applies to language models whose hidden
information can be described as trees, such that the countable events are labels in these trees’
nodes. We therefore need to introduce some terminology regarding alphabets and trees first.

Definition 2.18. An alphabet is a finite set. Its elements are called letters.

Terminology and notation regarding alphabets will be useful both for the definition of trees in
this chapter and for the discussion of the Hidden Markov model in the next chapter.4

Definition 2.19. Let Σ be an alphabet. For any n ∈ N, a sequence σ = σ1 · · · σn of letters
σ1, . . . , σn ∈ Σ is called a word over Σ with length |σ| = n. For n = 0, the empty word is de-
noted by ε. Given two words σ = σ1 · · · σn and τ = τ1 · · · τm, their concatenation is the word

στ := σ1 · · · σnτ1 · · · τm,

and especially σε := σ and ετ := τ. The concatenation of two sets S and T of words over Σ is

S · T := {στ|σ ∈ S, τ ∈ T} .

In this regard, the alphabet Σ can be considered to be a set of words since letters are isomorphic
to one-letter words.

Definition 2.20. Let Σ be an alphabet. The Kleene star of Σ is the set of all words over Σ, i. e.,

Σ* :=
∞⋃

i=0

Σi, where Σi :=

⎧
⎨
⎩
{ε} if i = 0,

Σi−1 · Σ otherwise.

We also use Σ+ := Σ* ∖ {ε} to refer to the set of nonempty words over Σ.

Definition 2.21. Let Σ be an alphabet and V be a set such that Σ ∩ V = ∅. The set UΣ(V) of
unranked trees over Σ indexed by V is the smallest set T such that

V ⊆ T and ∀k ∈N : ∀σ ∈ Σ, t1, . . . , tk ∈ T : σ(t1, . . . , tk) ∈ T.

4The terms “alphabet”, “letters” and “words” are commonly used in formal language theory to describe a set of
base symbols, its elements and strings of them. However, in natural language processing, the individual symbols are
words rather than letters, and their strings are sentences rather than words. These terms will consequently be applied
in Chapter 3.
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σ1

σ2 σ2

v1 σ1 v2

σ1

σ2 v1

v1 σ1 v2

!

σ1
(
σ2(v1, σ1), σ2(v2)

)
∈ UΣ(V) σ1

(
σ2(v1, σ1), v1(v2)

)
/∈ UΣ(V)

Figure 2.1: Example (left) and counter-example (right) for trees from UΣ(V), where Σ = {σ1, σ2}
and V = {v1, v2}.

The notation σ(t1, . . . , tk) refers to the tree which has the label σ at its root and the subtrees
t1, . . . , tk in that order. For k = 0, we write σ instead of σ(). For V = ∅, we write UΣ instead
of UΣ(∅). Trees from UΣ(V) have labels from Σ ∪ V at each node, but labels from V are only
permitted at leaves (see Figure 2.1). We refer to positions in the tree using Gorn notation.

Definition 2.22. Given t ∈ UΣ(V), the set of positions in t is defined recursively by

pos(t) :=

⎧
⎨
⎩
{ε} if t = v ∈ V,

{ε} ∪⋃k
i=1 {i} · pos(ti) if t = σ(t1, . . . , tk).

Positions are words from N*. Figure 2.2 illustrates the set of positions in a tree, and some of the
operations on positions as defined below.

Definition 2.23. Given t ∈ UΣ(V) and w ∈ pos(t), t(w) denotes the label in t at position w, i. e.,

t(w) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v if t = v ∈ V and w = ε,

σ if t = σ(t1, . . . , tk) and w = ε,

ti(w′) if t = σ(t1, . . . , tk) and w = iw′ where i ∈N, w′ ∈ pos(ti).

Moreover, t|w denotes the subtree in t at position w, i. e.,

t|w :=

⎧
⎨
⎩

t if w = ε,

ti|w′ if t = σ(t1, . . . , tk) and w = iw′,

and for any t′ ∈ UΣ(V), t[t′]w denotes the tree that results from replacing t|w by t′, i. e.,

t[t′]w :=

⎧
⎪⎪⎨
⎪⎪⎩

t′ if w = ε,

σ(t1, . . . , ti−1, ti[t′]w′ , ti+1, tk) if t = σ(t1, . . . , tk) and w = iw′

where i ∈N, w′ ∈ pos(ti).
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ε

1 2

1 1 1 2 2 1

σ1

σ2 σ2

v1 σ1 v2

t(2 1)t|1

Figure 2.2: Left: A tree from UN* in which every node is labeled with its position within the
tree. Right: Illustration of the operations t(w) and t|w for a tree t and positions w ∈ pos(t).

Finally, succ(t) denotes the set of successors of t, i. e.,

succ(t) :=

⎧
⎨
⎩

∅ if t = v ∈ V,

{t1, . . . , tk} if t = σ(t1, . . . , tk).

Definition 2.24. Let Σ be an alphabet and □ /∈ Σ be some symbol. A 1-context over Σ is a tree
t ∈ UΣ({□}) such that □ appears at exactly one position in t. The set of all such 1-contexts is
denoted by CΣ.

1-contexts are used to describe trees that are not fully known yet: The symbol□ is a placeholder
for a missing subtree. Given a 1-context t ∈ CΣ and a tree t′ ∈ UΣ(V), we abbreviate t[t′] := t[t′]w
where w ∈ pos(t) such that t(w) = □. In other words, t[t′] is the tree that results from t when
the node labeled with □ is replaced by t′.

Definition 2.25. A ranked alphabet is a pair (R, rk) where R is an alphabet and rk : R → N is a
mapping. rk is said to assign a rank or arity to each symbol in R.

A ranked alphabet is usually denoted only by R. The existence of rk is implied.

Definition 2.26. Let R be a ranked alphabet and V be a set. The set TR(V) of ranked trees over R
indexed by V is defined by

TR(V) :=
{

t ∈ UR(V)
⏐⏐ ∀w ∈ pos(t) : t(w) ∈ R⇒ rk

(
t(w)

)
=

⏐⏐succ
(
t|w

)⏐⏐}.

In other words, the number of subtrees of each position in t with a label from R must be equal to
the rank of that label.

Definition 2.27. Given an alphabet Σ, a regular tree grammar (RTG) over Σ is a triple 𝒢 = (Q, q0, R)
where Q is a nonempty alphabet (of grammar states), q0 ∈ Q is an initial state, and R ⊂ Q*×Σ×Q
is a finite ranked alphabet (of rules) such that

∀ρ =
(
(q1, . . . , qk), σ, q

)
in R : rk(ρ) = k.
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We will write
(
(q1, . . . , qk), σ, q

)
as q→ σ(q1, . . . , qk).

Definition 2.28. Let 𝒢 = (Q, q0, R) be an RTG. The family
(

Dq(𝒢)
⏐⏐q ∈ Q

)
of partial abstract syntax

trees of 𝒢 is the smallest Q-indexed family (Dq|q ∈ Q) such that, for all q ∈ Q,

q ∈ Dq and ∀ρ =
(
q→ σ(q1, . . . , qk)

)
in R, d1 ∈ Dq1 , . . . , dk ∈ Dqk : ρ(d1, . . . , dk) ∈ Dq.

An abstract syntax tree is a partial abstract syntax tree d ∈ Dq0(𝒢) that does not have any labels
from Q.

An RTG generates a language (i. e., a countable set) of trees. Trees are derived by starting with a
tree containing only a root node with the label q0, then successively replacing nodes with labels
from Q according to the RTG’s rule set until no such nodes are left. The resulting tree is in UΣ

and its abstract syntax tree is in TR. Partial abstract syntax trees are in TR(Q). For example,
consider the RTG 𝒢 =

(
{q0, q1} , q0, R

)
where Σ = {a, b, c} and

R = {q0 → a(q0, q1), q0 → b, q1 → c} .

The tree a(b, c) is derived like this: (Each row shows the partial tree from UΣ(Q) on the left and
the partial abstract syntax tree from TR(Q) on the right.)

q0 q0

↓ apply q0 → a(q0, q1) ↓

a

q0 q1

q0 → a(q0, q1)

q0 q1

↓ apply q0 → b ↓

a

b q1

q0 → a(q0, q1)

q0 → b q1

↓ apply q1 → c ↓

a

b c

q0 → a(q0, q1)

q0 → b q1 → c

From the (partial) abstract syntax tree on the right, the tree on the left can be derived by substi-
tuting each label ρ =

(
q = σ(q1, . . . , qk)

)
in R with the symbol σ ∈ Σ that it contains, without
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changing labels from Q. We shall call this projection πΣ : TR(Q)→ UΣ(Q).

Definition 2.29. Let 𝒢 be an RTG over Σ. The language of 𝒢 is the set

J𝒢K := {t ∈ UΣ|∃d ∈ Dq0(𝒢) : t = πΣ(d)} .

A language L ⊆ UΣ is regular if there exists an RTG 𝒢 over Σ such that J𝒢K = L.

Definition 2.30. An RTG 𝒢 over Σ is called deterministic if, for any (q1, . . . , qk) ∈ Q* and σ ∈ Σ,
there is at most one q ∈ Q such that

(
q → σ(q1, . . . , qk)

)
∈ R. A language L ⊆ UΣ is called

deterministic if there exists an RTG 𝒢 with J𝒢K = L.

Definition 2.31. An RTG 𝒢 over Σ is called unambiguous if, for every tree t ∈ J𝒢K, there exists
exactly one abstract syntax tree d ∈ Dq0(𝒢) such that πΣ(d) = t. The set of all unambiguous
RTG over Σ shall be denoted asℛ(Σ).

From determinism results unambiguity. To see why, recall the derivation of t = a(b, c) above.
Since 𝒢 in this example is deterministic, the abstract syntax tree can be recovered from t by
traversing the nodes from the bottom up and assigning the rules that are used at that position.
At each position, we know the symbol σ at this position in the tree and the states q1, . . . , qk from
the left sides of the rules used for the child nodes. Therefore, the state q (and therefore the rule
ρ) for this position can be chosen deterministically.

Definition 2.32. A probabilistic regular tree grammar (PRTG) over Σ is a pair (𝒢, p) of an RTG
𝒢 = (Q, q0, R) over Σ and a mapping p : Q→ R

Q*×Σ
≥0 constrained to R in the following way:

∀q ∈ Q, u ∈ Q* × Σ :
(

p(q)
)
(u) ̸= 0⇒ (u, q) ∈ R.

(𝒢, p) is called proper if p ∈ ℳR(Q* × Σ|Q). The meaning of (𝒢, p) is the mapping

q
(𝒢, p)

y
: UΣ → R0, t ↦→ ∑

d∈Dq0 (𝒢):πΣ(d)=t
p(d).

Herein, p(d) := p
(
π(d)

)
, where π(d) is an R-corpus with

(
π(d)

)
(p) :=

⏐⏐{w ∈ pos(d) : d(w) = p
}⏐⏐.

We usually write a PRTG (𝒢, p) as just 𝒢 and imply the existence of p. The meaning function
assigns a probability to a tree from J𝒢K by summing the probability of all derivations resulting
in that tree, where the probability of a derivation is the product of the probability of each rule
occurring in it. This implies that rule applications are statistically independent from each other.
When describing hidden information in terms of PRTG in the next section, the notion of inside
and outside weights will be useful to judge, broadly speaking, how much a certain state contributes
to the derivations of a certain observation.
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Definition 2.33. Let 𝒢 = (Q, q0, R) be a PRTG. The inside weight of a state q ∈ Q is given by

β(q) := ∑
d∈Dq(𝒢)∩TR

p(d).

The sum goes over all complete abstract syntax trees rooted at q. The inside weight thus mea-
sures the collective probability of all derivations starting at q. Inside weights are usually calcu-
lated by noting that each d ∈ Dq(𝒢) ∩ TR must have a rule of the form q → . . . at its root. The
remaining probabilities can then be expressed as the inside weights of the states that emerge
from this rule application, giving

β(q) = ∑
q1,...,qk ,σ

p
(
q→ σ(q1, . . . , qk)

)
· β(q1) · · · β(qk). (2.1)

The set of all such equations is a non-linear equation system in the variables β(q) for q ∈ Q. In
some cases, this system can be solved intuitively by starting with those equations where no β(qi)

occurs on the right-hand side, then substituting the obtained value in the other equations until
they are all solved. This is not possible, however, if states derive other states in a cyclic way, e. g.,

R =

⎧
⎪⎪⎨
⎪⎪⎩

ρ1 = q0 → σ1(q1, q1),

ρ2 = q1 → σ2(q0),

ρ3 = q1 → σ3

⎫
⎪⎪⎬
⎪⎪⎭

⇝
β(q0) = p(ρ1) · β(q1)

2

β(q1) = p(ρ2) · β(q0) + p(ρ3)

In the general case, [BSV15, pp. 6] show that the inside weights β are the least fixpoint of the
mapping F : (R≥0 ∪ {∞})Q → (R≥0 ∪ {∞})Q, given by

(
F(u)

)
(q) := ∑

q1,...,qk ,σ
p
(
q→ σ(q1, . . . , qk)

)
· u(q1) · · · u(qk).

Therefore, β = limn→∞ Fn(u0) where u0(q) := 0 ∀q ∈ Q can be approximated by performing as
many iterations of F as desired.

Definition 2.34. Let 𝒢 = (Q, q0, R) be a PRTG. The outside weight of a state q ∈ Q is given by

α(q) := ∑
d∈Dq0 (𝒢): ∃d′∈CR : d=d′[q]

p(d).

The sum goes over all partial abstract syntax trees starting from q0, where only one unexpanded
state is left, and that state is q. The outside weight measures the collective probability of all
derivations that use q, but without considering derivations at or below q. Similar to what we did
with inside weights, we can expand this definition into

α(q) = δ
q
q0 + ∑

q′,q1,...,qk ,σ,m: qm=q
α(q′) · p

(
q′ → σ(q1, . . . , qk)

)
·∏

l ̸=m
β(ql). (2.2)
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In this formulation, the sum goes over all rules that derive q, that is, q is among the states
q1, . . . , qk on the right hand side of the rule, at index m. The outside weight α(q) considers the
outside weight α(q′) of the previous state and the inside weight of all states adjacent to q, but
not the inside weight of q itself. Finally, we need to account for q = q0, in which case the trivial
tree d containing only a q0-labeled root node must be considered. Since p(d) = 1 for this tree, it
is accounted for in the above formula through the Kronecker symbol

δ
q
q0 :=

⎧
⎨
⎩

1 if q0 = q,

0 otherwise.

Assuming that the inside weights β(q) have already been calculated, the equations for α(q) form
a linear equation system that can be solved efficiently with the standard algorithms for linear
equation systems.

2.6 Inside-outside step mapping

We can now resume the task of describing hidden information in terms of trees, such that the
countable events, as introduced by the counting information, are labels in these trees’ nodes.
Similar to how a language model can be described as a counting information for use with the
simple counting step mapping, a language model may also be described as an inside-outside
information, for use with the inside-outside step mapping.
Again, we assume the previous definitions of X, Y, c, A, B and C throughout this section.

Definition 2.35. An inside-outside (IO) information is a quadruple5 µ = (q, π1, K, H) where

∙ C ⊆ A× B is a ranked alphabet such that Y̸⊥ ⊆ TC contains ranked trees over C,

∙ q : Ω→ℳC(A|B) as for counting informations,

∙ π1 : Y̸⊥ → X ̸⊥ maps hidden information to observations,

∙ K ∈ ℛ(C) is a unambiguous RTG with JKK = Y̸⊥ and

∙ H : X ̸⊥ → ℛ(C) assigns an unambiguous RTG to every observation such that

∀x ∈ X ̸⊥ : JH(x)K = π−1
1 (x).

Furthermore, we require that, for every ω ∈ Ω, the PRTG (K, p′ω) is proper, where

p′ω(ρ) :=

⎧
⎨
⎩

qω(a|b) if ρ =
(
q→ (a, b)(q1, . . . , qk)

)
in R(K),

0 otherwise.

5The definitions in this chapter have previously diverged from [BSV15] by omitting the set Z, which is only
required for translation models, and otherwise set to Z = {∅} for language models. For IO informations, this leads
to additional divergence from the definition in [BSV15], where µ is introduced as a quintuple µ = (q, π1, π2, K, H).
Both definitions are congruent for language models by letting π2(y) := ∅.
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Each hidden information y is a tree from TC, and a conditional probability qω(a|b) can be as-
signed to each countable event c = (a, b) that occurs in the tree. Each hidden information y
belongs to exactly one observation x. The set of all hidden informations Y̸⊥ is generated by
the PRTG (K, p′ω), and for each observation x, the set of all hidden informations leading to this
observation is generated by the PRTG

(
H(x), p′ω

)
.

The description of a language model using an IO information is a special case of the description
via counting informations, since an IO information induces a counting information.

Definition 2.36. Let µ = (q, π1, K, H) be an IO information. The induced counting information
µ♭ = (q, λ, π) is given by

λ(x, y) :=

⎧
⎨
⎩

1 if π1(y) = x,

0 otherwise,

(
π(x, y)

)
(a, b) :=

⎧
⎨
⎩

⏐⏐{w ∈ pos(y) : y(w) = (a, b)
}⏐⏐ if π1(y) = x,

0 otherwise.

The induced counting information µ♭ is always proper. [BSV15, p. 15] Using µ, we can construct
a suitable complete-data corpus:

c⟨ω, µ⟩ : C → R≥0, (a, b) ↦→∑
x

c(x) · χω,x(a, b).

Unlike c⟨ω,κ⟩, this definition uses the original corpus c instead of relying on the complete-data
corpus of the previous step mapping. In this expression, (χω,x|ω ∈ Ω, x ∈ X ̸⊥) is a family of
C-corpora, defined by

χω,x(a, b) := βx(q0)
−1 · ∑

ρ=(q→(a,b)(q1,...,qk)) in R
αx(q) · p′ω(ρ) · βx(q1) · · · βx(qk), (2.3)

where (Q, q0, R) is the PRTG H(x) with rule probabilities p′ω as defined above, and αx and βx are
the outside and inside weights of H(x), respectively.
To understand the formula for χω,x(a, b), recall that H(x) is an RTG such that the set of its com-
plete abstract syntax trees is π−1

1 (x), the set of all hidden informations that lead to the observa-
tion x. Each of these derivations d has a probability p(d), and the sum of all these probabilities
is the inside weight βx(q0). The term χω,x(a, b) measures the contribution of rules containing
the countable event (a, b) to this total weight (such that multiple occurrences of (a, b) in a single
derivation are counted multiple times). For every such derivation, we have the part that leads up
to the state q (described by the outside weight αx(q)), the rule ρ that produces (a, b) with proba-
bility p′ω(ρ) = qω(a|b), and the derivations that occur below this rule application (described by
the inside weights βx(qi) of the produced states).
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Given the complete-data corpus, we can once more apply a maximum-likelihood estimator for q
to arrive at the inside-outside step mapping

LµMio : Ω0 → 𝒫(Ω), ω ↦→ cmleq
(
c⟨ω, µ⟩

)
= argmax

ω′
qω′

(
c⟨ω, µ⟩

)
.

[BSV15, pp. 16] shows that LµMio = Lµ♭Msc for all IO informations µ, from which it follows that
L·Mio is nondecreasing.

2.7 Review

This chapter introduced the three formalizations of language models proposed by [BSV15]:

1. models p : Ω→ℳ(Y× X),

2. counting informations κ = (q, λ, π),

3. inside-outside informations µ = (q, π1, K, H).

Each formalization is more specific than the one before it, as evidenced by the ♭ operator that
converts each formalization into the previous one. A step mapping can be defined for each of
these formalizations. [BSV15] illustrate these relationships as follows:

step mapping

model counting info IO info

L·Mcb

L·Msc

L·Mio

♭ ♭

In the definition of both κ = (q, λ, π) and µ = (q, π1, K, H), the only part that depends on ω is
the probability model q. All other parts are fixed as soon as the language model is instantiated,
and are therefore not subject to training. For many language models, it is sufficient to choose
Ω := ℳC(A|B) and q = id (i. e., qω = ω for all ω). Applying Lemma 2.17, we see that the
empirical probability distribution for the complete-data corpus is an element of LµMio(ω) (and
similar for the simple counting step mapping). Since the EM algorithm only needs one element
from LµMio(ω), we can use

LµM′io(ω) :=
{

c̃⟨ω, µ⟩
}

instead, which is much less expensive to compute than the full argmax.





3 The Hidden Markov model

This chapter is accompanied by a formulary, which can be found in Appendix B on page 47. The
definition of the Hidden Markov model, the forward algorithm, backward algorithm and Baum-
Welch algorithm in this chapter are based on [JM09, pp. 210], except where otherwise noted.

Definition 3.1. A Hidden Markov model (HMM) is a quintuple1 ℋ = (Q, V, #, t, e) such that

∙ Q is a non-empty alphabet (states),

∙ V is a non-empty alphabet (words),

∙ # /∈ Q ∪V (initial and final state),

∙ t ∈ ℳ(Q ∪ {#}|Q ∪ {#}) (transition probability distribution), and

∙ e ∈ ℳ(V|Q) (emission probability distribution).

From here on, we will abbreviate Q ∪ {#} as Q#.
The Hidden Markov model describes a sentence as being the result of the progression of a prob-
abilistic state machine that starts out in #, traverses states from Q, and in the end reaches # again.
Each time a state from Q is reached, a word from V is emitted. The sequence of all these emitted
words is the sentence that is observed.
When a sentence v = v1 · · · vn in V* is observed, is must have been caused by a certain sequence
of states q = q1 · · · qn in Q*, but it is not known which one it was, only that the lengths of both
sequences agree. Therefore, by the law of total probability,

P(v) = ∑
q∈Qn

P(v, q) = ∑
q∈Qn

P(v|q) · P(q).

Definition 3.2. A stochastic process is said to have the Markov property if the conditional proba-
bility distribution of the next state of the process only depends on the present state, not on the
states before it.

A Hidden Markov model exhibits the Markov property in two separate ways: First, the con-
ditional probability distribution of each state depends only on the state directly preceding it.
Second, the conditional probability distribution of each emitted word depends only on the state
that was inhabited at the time of emission. These two conditional probability distributions are
called t and e, and are part of the quintupleℋ = (Q, V, #, t, e) as defined above.

1This definition diverges in structure from [JM09] in one significant way: It uses a single state # instead of a
pair of initial state q0 and final state qF. This allows us to use a single probability distribution t to describe all state
transitions, instead of the triple of matrices (a0i)i, (aij)(i,j), and (aiF)i that appear in [JM09].
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The progression of the probabilistic state machine of ℋ through the state sequence q = q1 · · · qn

involves several separate stochastic events: entering each state q1, . . . , qn in that order, then en-
tering the state # after n other states. Therefore, by the chain rule,

P(q1 · · · qn) = P(q1, . . . , qn, n) = P(q1) · P(q2|q1) · · · P(qn|q1, . . . , qn−1) · P(n|q1, . . . , qn).

The last factor, P(n|q1, . . . , qn) is the probability of the state sequence having length n if q1, . . . , qn

are known or, in other words, the probability of the state sequence terminating (by the state
machine coming back to #) after these n states. Since, by the first Markov property, each state
only depends on the one directly preceding it, we can reformulate each factor in terms of the
transition probability distribution t, i. e.,

P(q1) = t(q1|#),
P(qi|q1, . . . , qi−1) = t(qi|qi−1),

P(n|q1, . . . , qn) = t(#|qn)

⎫
⎪⎪⎬
⎪⎪⎭

⇒ P(q1 · · · qn) = t(q1|#) · t(q2|q1) · · · t(qn|qn−1) · t(#|qn).

In a similar way, we can rewrite P(v|q) as

P(v1 · · · vn|q1 · · · qn) =
n

∏
i=1

P(vi|q1 · · · qn) =
n

∏
i=1

e(vi|qi)

because of the second Markov property. Putting all these results into the original equation for
P(v), we obtain

P(v = v1 · · · vn) = ∑
q1,...,qn∈Q

t(q1|#) · e(v1|q1) ·
n

∏
i=2

[
t(qi|qi−1) · e(vi|qi)

]
· t(#|qn). (3.1)

As a special case, for the empty sentence v = ε, we have

P(v = ε) = t(#|#) (3.2)

since the state machine goes from the initial directly into the final state, without ever visiting a
state that emits a word.

3.1 Forward and backward algorithms

When P(v) is computed in this manner, the computation takes an exponential amount of time in
the sentence length n since |Q|n summands need to be evaluated. However, the expressions for
P(q) · P(v|q) for similar state sequences q share several common factors. By following a dynamic
programming approach, i. e., by storing common subterms in a tabular memory for later re-use,
the computational effort can be reduced significantly. There are two well-known schemes for
dividing P(v) into subterms, which lead to the forward and backward algorithm, respectively.
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Definition 3.3. Let ℋ = (Q, V, #, t, e) be an HMM, q ∈ Q be a state, v = v1 · · · vn in V+ be
a nonempty sentence, and i ∈ {1, . . . , n}.2 The forward weight3 Tv(i, q) is the probability of the
HMM being in state q after having emitted the first i words of v, i. e.,

Tv(i, q) := P(v1, . . . , vi, qi = q).

The backward weight Sv(i, q) is the probability of the HMM generating v when the first i words of
v have already been emitted and the HMM is in state q after that many words, i. e.,

Sv(i, q) := P(vi+1, . . . , vn, n|qi = q).

The forward weight can be calculated by following the same methods as in the previous section
for P(v). For i = 1, the forward weight describes the transition from the initial state # into q, and
the emission of v1 in that state, i. e.,

Tv(1, q) = P(v1, q1 = q) = P(q1 = q) · P(v1|q1 = q) = t(q|#) · e(v1|q). (3.3)

For i ≥ 2, the forward weight can be calculated iteratively by first obtaining the forward weights
Tv(i− 1, q′) for any possible previous state q′ ∈ Q, because

Tv(i, q) = P(v1, . . . , vi, qi = q) = ∑
q′∈Q

P(v1, . . . , vi, qi−1 = q′, qi = q)

by the law of total probability, and then, by the chain rule and the Markov properties ofℋ,

Tv(i, q) = ∑
q′∈Q

P(v1, . . . , vi−1, qi−1 = q′) · P(qi = q|qi−1 = q′) · P(vi|qi = q)

= ∑
q′∈Q

Tv(i− 1, q′) · t(q|q′) · e(vi|q)

= e(vi|q) · ∑
q′∈Q

Tv(i− 1, q′) · t(q|q′). (3.4)

The probability P(v) can then be computed in a similar way as

P(v) = P(v1, . . . , vn, n) = ∑
q∈Q

P(v1, . . . , vn, qn = q) · P(n|qn = q) = ∑
q∈Q

Tv(n, q) · t(#|q). (3.5)

The forward weights Tv(i, q) exhibit a topological ordering: To compute Tv(i, q) with i > 1, all
Tv(i − 1, q′) need to be computed first. Computing the full matrix

(
Tv(i, q)

)
i,q in that order, in

order to finally obtain P(v), yields the forward algorithm.

2[JM09] uses the term “time” and the symbol t for this index. We avoid the symbol t because it is already used for
the transition probability distribution.

3The names “forward/backward weight” have been chosen deliberately, because we will see in the next section
that these values correspond to the inside and outside weight.
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Each forward weight can be computed in O
(
|Q|

)
time because |Q| summands need to be added.

Since there are n · |Q| forward weights for each v, the forward algorithm runs in O
(
n · |Q|2

)
time,

which is much better than the exponential time required for the initial formula for P(v).
The same time complexity arises when P(v) is being restated in terms of backward weights.
Backward weights can be computed in a similar manner to forward weights, with the difference
of iterating in opposite temporal order.

P(v) = ∑
q∈Q

t(q|#) · e(v1|q) · Sv(1, q) (3.6)

where Sv(i, q) =

⎧
⎨
⎩

t(#|q) if i = n,

∑q′∈Q t(q′|q) · e(vi+1|q′) · Sv(i + 1, q′) otherwise.
(3.7)

The backward algorithm works analogously to the forward algorithm: It computes the matrix(
Sv(i, q)

)
i,q in decreasing order of i to obtain P(v).

3.2 The Baum-Welch algorithm

The Baum-Welch algorithm is first stated in [BPSW70], but since notational conventions have
changed considerably since then, we are using a contemporary formulation in [JM09] as a refer-
ence (see Algorithm 3.1 on page 25).
The algorithm uses two terms that have not yet been introduced: Uv(i, q, q′) is defined as the
probability of the HMM progressing from state q at time i into state q′ at time i + 1 while gen-
erating the sentence v. Rv(i, q) is the probability of the HMM being in state q at time i while
generating the sentence v.

Uv(i, q, q′) := P(qi = q, qi+1 = q′|v) for i ∈ {1, . . . , |v| − 1} , q, q′ ∈ Q

Rv(i, q) := P(qi = q|v) for i ∈ {1, . . . , |v|} , q ∈ Q

Both Uv and Rv can be expressed in terms of the forward and backward weights Tv and Sv, by ap-
plying the same calculation rules for probabilities that were already used for deriving formulas
for P(v), Tv and Sv.

Rv(i, q) = P(qi = q|v) = P(v, qi = q)
P(v)

=
P(v1, . . . , vn, n, qi = q)

P(v)

=
P(v1, . . . , vi, qi = q) · P(vi+1, . . . , vn, n|qi = q)

P(v)

=
Tv(i, q) · Sv(i, q)

P(v)
. (3.8)
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Algorithm 3.1 Baum-Welch algorithm, based on [JM09, p. 226]. To reach a local maximum (or
saddle point) for the corpus likelihood p(c), the outermost loop needs to be executed until (t, e)
stop changing, possibly infinitely long. The loop condition is stated as “not converged” to de-
scribe that the loop is typically aborted once the changes to (t, e) per iteration fall below some
manually chosen threshold.

The formulation of the algorithm has been altered from [JM09] to also train the transition proba-
bilities for the initial and final state, and to support a corpus with multiple nonempty sentences
of different length (by taking sums over the time index i in the E-step rather than in the M-step).
These alterations have previously been applied successfully to an implementation of HMM in
[Nel13]. We will demonstrate in section 3.3.6 that this algorithm can be extended to accept a
V*-corpus instead of V+-corpus.

Input: HMMℋ0 = (Q, V, #, t0, e0); V+-corpus h
Variables: t ∈ ℳ(Q#|Q#), e ∈ ℳ(V|Q)

counttr : Q# ×Q# → R≥0
countem : V ×Q→ R≥0

Output: sequence of HMMℋi over Q and V
such that pℋ0(c) ≤ pℋ1(c) ≤ pℋ2(c) ≤ . . .

1: (t, e)← (t0, e0)
2: while not converged do
3: consider the HMM (Q, V, #, t, e)
4: counttr(q′, q)← 0 for every q, q′ ∈ Q#
5: countem(w, q)← 0 for every q ∈ Q and w ∈ V
6: for v = v1 · · · vn in supp(h) do
7: calculate all forward weights Tv(i, q) and backward weights Sv(i, q)
8: for i ∈ {1, 2, . . . , n− 1} do
9: for q, q′ ∈ Q do

10: counttr(q′, q)← counttr(q′, q) + h(v) ·Uv(i, q, q′)
11: end for
12: end for
13: for i ∈ {1, 2, . . . , n} do
14: for q ∈ Q do
15: countem(vi, q)← counttr(vi, q) + h(v) · Rv(i, q)
16: end for
17: end for
18: for q ∈ Q do
19: counttr(q, #)← counttr(q, #) + h(v) · Rv(1, q)
20: counttr(#, q)← counttr(#, q) + h(v) · Rv(n, q)
21: end for
22: end for
23: for q, q′ ∈ Q# do
24: t(q′|q)← counttr(q′,q)

∑q′′∈Q#
counttr(q′′,q)

25: end for
26: for q ∈ Q and w ∈ V do
27: e(w|q)← countem(w,q)

∑w′∈V countem(w′,q)
28: end for
29: output (Q, V, #, t, e)
30: end while
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And analogously,

Uv(i, q, q′) = P(qi = q, qi+1 = q′|v) = P(v1, . . . , vn, n, qi = q, qi+1 = q′)
P(v)

=
1

P(v)
·
[

P(v1, . . . , vi, qi = q) · P(qi+1 = q′|qi = q)
· P(vi+1|qi+1 = q′) · P(vi+2, . . . , vn, n|qi+1 = q′)

]

=
Tv(i, q) · t(q′|q) · e(vi+1|q′) · Sv(i + 1, q′)

P(v)
. (3.9)

With these definitions, we can observe the basic motivation and method of the Baum-Welch
algorithm: Given a previous estimate for t and e, the algorithm estimates how often each state is
visited and how often each state transition occurs throughout the corpus, and normalizes these
counts to obtain better estimates for t and e.

In particular, the algorithm employs counter variables counttr(q, q′) and countem(w, q), which are
reset in lines 4–5 and then computed in lines 6–22 by summing terms of the form h(v) · Rv(i, q)
and h(v) ·Uv(i, q, q′) in a particular way. By rewriting the nested loops as closed formulas, we
see that, for any q, q′ ∈ Q, lines 4 and 8–12 result in

counttr(q′, q) = ∑
v∈supp(h)

|v|−1

∑
i=1

h(v) ·Ux(i, q, q′) (3.10)

after line 22, since no other statements modify counttr(q′, q). Analogously, for any q ∈ Q, lines 4
and 18–21 result in

counttr(#, q) = ∑
v∈supp(h)

h(v) · Rv
(
|v|, q

)
, (3.11)

counttr(q, #) = ∑
v∈supp(h)

h(v) · Rv(1, q). (3.12)

Finally, because of lines 5 and 13–17, we also have, for any q ∈ Q and w ∈ V,

countem(w, q) = ∑
v∈supp(h)

|v|
∑
i=1

vi=w

h(v) · Rv(i, q). (3.13)

3.3 Deriving the Baum-Welch algorithm

[JM09] describes Baum-Welch as an instance of the EM algorithm. And indeed, the basic struc-
ture of the algorithm looks similar to the types of EM algorithms that we have introduced in
Chapter 2 in several ways:

∙ The conditional probability distributions t and e are the model parameters that are itera-
tively optimized.
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∙ The counter variables counttr and countem act like complete-data corpora. They are com-
puted using the previous model parameters, then new model parameters are obtained by
taking the empirical probability distribution of these corpora, which is the efficient solution
to the conditional maximum-likelihood estimator that is suggested by Lemma 2.17.

∙ The hidden information is the state sequence q that produces the sentence v from the cor-
pus. It can be decomposed into countable events in several ways (e. g., states only, pairs of
time and states, or pairs of subsequent states).

∙ The way that forward weights and backward weights appear in the computation of counttr

and countem is similar to how inside and outside weights appear in the computation of the
inside-outside complete-data corpus.

Therefore, in the remainder of this chapter, we will show that the Baum-Welch algorithm can
be obtained from the generic EM algorithm from Chapter 2 through suitable instantiation of the
inside-outside step mapping, from which follows that its convergence properties also apply to
the Baum-Welch algorithm.

3.3.1 Model parameter and countable events

For the remainder of this section, let ℋ = (Q, V, #, t, e) be an HMM. Without loss of generality,
we require Q ∩V = ∅. Observations are sentences with words from V, i. e.,

X = V* ∪ {⊥} .

An IO information contains only one component which can be subject to training, the model pa-
rameter ω which chooses the conditional probability distribution qω ∈ ℳC(A|B). For a HMM,
qω must describe both the transition and emission probability distribution. We therefore choose

Ω :=ℳ(Q#|Q#)×ℳ(V|Q)

such that every model parameter ω = (t, e) is a pair of transition and emission probability
distribution forℋ. Moreover, we choose

A := Q# ∪V,

B := Q# × {T} ∪Q× {E} ,

C :=
{(

q′, (q, T)
)
| q, q′ ∈ Q#

}
∪
{(

v, (q, E)
)
| v ∈ V, q ∈ Q

}
,

qω=(t,e)
(
a
⏐⏐ (q, s)

)
:=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t(a|q) if s = T and a, q ∈ Q#,

e(a|q) if s = E, a ∈ V, and q ∈ Q,

0 otherwise.

Herein, E and T are symbols such that E, T /∈ Q ∪ V that denote if a countable event c ∈ C is a
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transition event
c =

(
q′, (q, T)

)
with probability q(t,e)(c) = t(q′|q),

or an emission event

c =
(
v, (q, E)

)
with probability q(t,e)(c) = e(v|q).

Lemma 3.4. With the definitions shown above, qω ∈ ℳC(A|B) for all ω = (t, e).

Proof. Let ω = (t, e) in Ω. It is easy to see that qω

(
a|(q, s)

)
= 0 for every

(
a, (q, s)

)
/∈ C because

qω was defined in that way. According to Definitions 2.10 and 2.11, what remains to be shown is
that qω

(
(q, s)

)
∈ ℳ(A) for every (q, s) ∈ B. For q ∈ Q# and s = T,

∑
a∈A

q(t,e)
(
a
⏐⏐ (q, T)

)
= ∑

q′∈Q#

q(t,e)
(
q′
⏐⏐ (q, T)

)
  

=t(q′|q)

+ ∑
a∈A∖Q#

q(t,e)
(
a
⏐⏐ (q, T)

)
  

=0

= ∑
q′∈Q#

t(q′|q) = 1

because t ∈ ℳ(Q#|Q#). Analogously, for q ∈ Q and s = E, we have

∑
a∈A

q(t,e)
(
a
⏐⏐ (q, E)

)
= ∑

v∈V
q(t,e)

(
v
⏐⏐ (q, E)

)
  

=e(v|q)

+ ∑
a∈A∖V

q(t,e)
(
a
⏐⏐ (q, E)

)
  

=0

= ∑
v∈V

e(v|q) = 1

because e ∈ ℳ(V|Q).

3.3.2 Tree-shaped hidden information

In order to describe hidden information y ∈ Y̸⊥ as a ranked tree of countable events from C, we
assign a rank to each c =

(
a, (q, s)

)
in C by

rk
((

a, (q, s)
))

:=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if s = E,

2 if s = T and a ̸= #,

0 if s = T and a = #.

The intuition for this choice is that each transition event causes two further events: the emission
event in the state that was entered, and the transition event into the state after that. Emission
events do not result in further events because of the Markov property, and a transition event into
the # state marks the end of the stochastic process after which no further events occur. This rank
assignment results in trees such as the one in Figure 3.1.
The trees y ∈ Y̸⊥ are generated by the tree grammars H(x) and K. We define4

K :=
{

QK, (T, #), RK
}

where QK := {T} ×Q# ∪ {E} ×Q

4The set of grammar states QK is isomorphic to B, but the components of each pair are swapped: We write
(s, q) ∈ QK , but (q, s) ∈ B. This deliberate choice provides a visual cue for distinguishing grammar states from
countable events.
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noun, (#, T)(T, #)→

verb, (noun, T)(T, noun)→

noun, (verb, T)(T, verb)→

#, (noun, T)(T, noun)→

he, (noun, E)(E, noun)→

ate, (verb, E)(E, verb)→

soup, (noun, E)(E, noun)→

Figure 3.1: Example for a hidden information y ∈ Y̸⊥ ⊆ TC corresponding to the observation
x = “He ate soup.” and the state sequence “noun-verb-noun”. The label to the left of each node
shows which grammar state produces this particular subtree when y is generated by K.

and RK contains the following rules:

(T, q)→
(
q′, (q, T)

)(
(E, q′), (T, q′)

)
∀q ∈ Q# and q′ ∈ Q,

(T, q)→
(
#, (q, T)

)
∀q ∈ Q#,

(E, q)→
(
v, (q, E)

)
∀q ∈ Q and v ∈ V.

The grammar K is an RTG since each rule produces as much subtrees as the rank of its label
(a, b). The IO information requires that K have certain properties: First, it must be unambiguous.
Because each c ∈ C is produced by at most one rule from RK, K is deterministic and, hence,
unambiguous (see page 15). Furthermore, we need to show the following lemma.

Lemma 3.5. For every ω ∈ Ω, the PRTG (K, p′ω) is proper, where

p′ω(ρ) :=

⎧
⎨
⎩

qω(a|b) if ρ =
(
q→ (a, b)(q1, . . . , qk)

)
in RK,

0 if ρ /∈ RK.

Proof. The restriction of p′ω to RK, i. e., that p′ω(ρ) = 0 for all ρ /∈ RK, follows directly from the
definition above. It remains to be shown that p′ω ∈ ℳ(Q*K × C|QK). For any q ∈ Q#, we have

∑
q1···qk∈Q*,(a,b)∈C

p′ω
(
(q1 · · · qk, (a, b)

⏐⏐⏐ (T, q)
)

  
= p′ω((T,q)→(a,b)(q1,...,qk))

= p′ω
(
(T, q)→

(
#, (q, T)

))
+ ∑

q′∈Q
p′ω

(
(T, q)→

(
q′, (q, T)

)(
(E, q′), (T, q′)

))

= qω

(
#, (q, T)

)
+ ∑

q′∈Q
qω

(
q′, (q, T)

)
= t(#|q) + ∑

q′∈Q
t(q′|q) = ∑

q′∈Q#

t(q′|q) = 1
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because t ∈ ℳ(Q#|Q#). Analogously, for any q ∈ Q, it follows from e ∈ ℳ(V|Q) that

∑
q1···qk∈Q*,(a,b)∈C

p′ω
(
(E, q)→ (a, b)(q1, . . . , qk)

)
= ∑

v∈V
p′ω

(
(E, q)→

(
v, (q, E)

))

= ∑
v∈V

qω

(
v, (q, E)

)
= ∑

v∈V
e(v|q) = 1.

Using K, we can define the set Y of hidden information as

Y := JKK∪ {⊥} .

Furthermore, we introduce a mapping πX : TC → V* that reads the generated sentence from a
tree t ∈ TC (see Figure 3.2), i. e.,

πX(t) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ε if t =
(
#, (q, T)

)
or t =

(
#, (#, E)

)
,

v if t =
(
v, (q, E)

)
,

πX(t1)πX(t2) if t =
(
q′, (q, T)

)
(t1, t2).

From πX, we derive the mapping π1 : Y̸⊥ → X ̸⊥ that the IO information requires by restricting
the domain of πX to Y̸⊥5, i. e.,

π1(y) := πX(y) ∀y ∈ Y̸⊥.

Finally, the IO information requires a mapping H : X ̸⊥ → ℛ(C) such that H(x) generates all
y with π1(y) = x. We define H(x) by modifying the states and rules of K such that only the
sentence x can be generated.

Definition 3.6. Let x ∈ V* be a sentence. We denote by suff(x) its set of suffixes, including x itself,
but excluding the empty sentence, i. e.,

suff(x) :=

⎧
⎨
⎩

∅ if x = ε,

{x} ∪ suff(x′) if x = vx′ with v ∈ V and x′ ∈ V*.

Definition 3.7. The operators head : V+ → V and tail : V+ → V* decompose a nonempty sen-
tence into its leading word and the rest of the sentence, i. e., for any x = v1 · · · vn in V+,

head(x) := v1 and tail(x) := v2 · · · vn.

For example, for V = {a, b, c} and v = bbcb, we have

suff(bbcb) = {bbcb, bcb, cb, b} , head(bbcb) = b, tail(bbcb) = bcb.

5We cannot use the recursive definition of πX to define π1 directly, since the recursion goes over arguments from
TC that are not all in Y̸⊥.
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πX

⎛
⎜⎜⎜⎜⎜⎜⎝

q1, (#, T)

q2, (q1, T)

#, (q2, T)

v1, (q1, E)

v2, (q2, E)

⎞
⎟⎟⎟⎟⎟⎟⎠

= πX
(
v1, (q1, E)

)
  

=v1

πX

⎛
⎜⎜⎝

q2, (q1, T)

#, (q2, T)v2, (q2, E)

⎞
⎟⎟⎠

= v1 πX
(
v2, (q2, E)

)
  

=v2

πX
(
#, (q2, T)

)
  

=ε

= v1v2

Figure 3.2: Example for how πX can be used to read the generated sentence from a tree y ∈ Y̸⊥,
where the HMM has states Q = {q1, q2, . . .} and words V = {v1, v2, . . .}.

Using these operators, we define, for any x ∈ X ̸⊥ = V*,

H(x) :=
{

Qx, (T, #, x), Rx
}

where Qx := {T} ×Q# ×
(
suff(x) ∪ {ε}

)

∪ {E} ×Q× suff(x)

and Rx contains the following rules:

(T, q, x′)→
(
q′, (q, T)

)(
(E, q′, x′), (T, q′, tail(x′))

)
∀q ∈ Q#, q′ ∈ Q, and x′ ∈ suff(x),

(T, q, ε)→
(
#, (q, T)

)
∀q ∈ Q#,

(E, q, x′)→
(
head(x′), (q, E)

)
∀q ∈ Q and x′ ∈ suff(x).

A grammar state q ∈ Qx tracks both the state from Q# that the HMM is currently in, and the
suffix of x that has not yet been generated yet. Emission rules are restricted such that only the
leading word from that suffix can be generated.
For the empty sentence x = ε, the initial grammar state (T, #, ε) can only be expanded using a
rule of the second kind without producing any subsequent states. We therefore have

q
H(ε)

y
=

{(
#, (#, T)

)}
.

Using the same reasoning as above for K, we see that each H(x) is deterministic and, therefore,
unambiguous. For (q, π1, K, H) to be an IO information, it remains to be shown that

∀x ∈ X ̸⊥ :
q

H(x)
y
= π−1

1 (x).

We decompose the proof for this equivalence into two lemmas.

Lemma 3.8. With the definitions given above,

∀x ∈ X ̸⊥ : ∀y ∈
q

H(x)
y

: π1(y) = x.
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Lemma 3.9. With the definitions given above,

q
K

y
=

⋃

x∈X ̸⊥

q
H(x)

y
.

The proofs for these lemmas can be found in Appendix A. For each x ∈ X ̸⊥, we then have

π−1
1 (x) =

{
y ∈ Y̸⊥

=JKK

⏐⏐ π1(y) = x
}
=

⋃

x′∈X ̸⊥

{
y ∈

q
H(x′)

y ⏐⏐ π1(y) = x
}

by Lemma 3.9. Because of Lemma 3.8, only x′ = x contributes a nonempty set to this union,
yielding

π−1
1 (x) =

{
y ∈

q
H(x)

y ⏐⏐ π1(y) = x
}
=

q
H(x)

y

as required by the definition of the IO information. By all the considerations in this subsection,
the tuple µℋ := (q, π1, K, H) therefore fulfils Definition 2.35 and is, in fact, an IO information.

3.3.3 Complete-data corpus

For the remainder of this chapter, let c be a V*-corpus, ω = (t, e) in Ω, and µ := µℋ. Our goal is
to instantiate the inside-outside step mapping LµMio. The E-step of LµMio involves the computation
of the complete-data corpus c⟨ω, µ⟩ according to

c⟨ω, µ⟩(a, b) = ∑
x∈X ̸⊥=V*

c(x) · χω,x(a, b) (3.14)

for any (a, b) ∈ C. We therefore need to derive expressions for all such χω,x(a, b) first. Following
the definition of χω,x(a, b) in (2.3) on page 18, we have, for every (a, b) ∈ C and x ∈ V*,

χω,x(a, b) = βx
(
(T, #, x)

)−1 · ∑
(q→(a,b)(q1,...,qk))∈Rx

αx(q) · qω(a|b) · βx(q1) · · · βx(qk). (3.15)

The inside and outside weights are defined by (2.1) and (2.2), i. e., for any x ∈ V* and q ∈ Qx,

βx(q) = ∑
(q→(a,b)(q1,...,qk))∈Rx

qω(a|b) · βx(q1) · · · βx(qk), (3.16)

αx(q) = δ
q
(T,#,x) + ∑

(q′→(a,b)(q1,...,qk))∈Rx , m∈{1,...,k}: qm=q
αx(q′) · qω(a|b) · ∏

l∈{1,...,k}: l ̸=m
βx(ql). (3.17)

In computing the inside weights, outside weights, and complete-data corpus contributions, we
start with the simple case of x = ε. The RTG H(ε) has only one rule,

Rx =
{
(T, #, ε)→

(
#, (#, T)

)}
.
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Therefore, all inside weights βε(q) vanish, except for

βε

(
(T, #, ε)

)
= qω

(
#
⏐⏐ (#, T)

)
= t(#|#).

Furthermore, because no rule produces any further grammar states, all outside weights αε(q)
vanish, except for αε

(
(T, #, ε)

)
= 1 since (T, #, ε) is the initial state of H(ε). We therefore have

χω,ε
(
#, (#, T)

)
= βx

(
(T, #, ε)

)−1

  
=t(#|#)−1

· αx
(
(T, #, ε)

)
  

=1

· qω

(
#
⏐⏐ (#, T)

)
  

=t(#|#)

= 1

and all other χω,ε(a, b) vanish. The grammar state (T, #, ε) is unreachable in all other H(x), i. e.,
it is neither the initial state nor produced by any rule ρ ∈ Rx. We therefore have αx(T, #, ε) = 0
and thus χω,x

(
#, (#, T)

)
= 0 for x ̸= ε, from which follows that

c⟨ω, µ⟩
(
#, (#, T)

)
= c(ε) · χω,ε

(
#, (#, T)

)
  

=1

+ ∑
x ̸=ε

c(x) · χω,x
(
#, (#, T)

)
  

=0

= c(ε).

After having considered the case that x = ε, it remains to calculate the inside weights, outside
weights, and complete-data corpus contributions for all x = x1 · · · xn in V+. We begin by noting
that any x′ ∈ suff(x) has the form x′ = xi · · · xn for some i ∈ {1, . . . , n}, and we have

head(xi · · · xn) = xi and tail(xi · · · xn) = xi+1 · · · xn,

if we define xn+1 · · · xn := ε as a corner case. We are going to use this representation of x′multiple
times in the following sections.

3.3.4 Inside weights

We start with emission states (E, q, x′). For any q ∈ Q and x′ ∈ suff(x), we initially have

βx
(
(E, q, x′)

)
= qω

(
head(x′)

⏐⏐ (q, E)
)
= e

(
head(x′)

⏐⏐q
)
.

Replacing x′ by xi · · · xn results in

βx
(
(E, q, xi · · · xn)

)
= e(xi|q)

for any i ∈ {1, . . . , n}. For transmission states (T, q, x′), (3.16) leads to

βx
(
(T, q, ε)

)
= qω

(
#
⏐⏐ (q, T)

)
= t(#|q),

βx
(
(T, q, x′)

)
= ∑

q′∈Q
qω

(
q′
⏐⏐ (q, T)

)
  

=t(q′|q)

· βx
(
(E, q′, x′)

)
  
=e(head(x′)|q′)

·βx

((
T, q′, tail(x′)

))
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for all q ∈ Q# and x′ ∈ suff(x). Again, we insert x′ = xi · · · xn, and obtain

βx
(
(T, q, xn+1 · · · xn)

)
= t(#|q),

βx
(
(T, q, xi · · · xn)

)
= ∑

q′∈Q
t(q′|q) · e(xi|q′) · βx

(
(T, q′, xi+1 · · · xn)

)

for all q ∈ Q# and i ∈ {1, . . . , n}. Comparison of this set of equations with (3.7) on page 24
shows that, for all q ∈ Q (specifically, q ̸= #) and i ∈ {2, . . . , n + 1} (specifically, i ̸= 1), the inside
weights recover the backward weights, i. e.,

βx
(
(T, q, xi · · · xn)

)
= Sx(i− 1, q).

It remains to consider grammar states (T, q, x′) where either q = # or x′ = x. Only one such state
is reachable, the initial grammar state (T, #, x) with

βx
(
(T, #, x)

)
= βx

(
(T, #, x1 · · · xn)

)
= ∑

q′∈Q
t(q′|q) · e(x1|q′) · βx

(
(T, q′, x2 · · · xn)

)
  

=Sx(1,q)

= P(x)

because of (3.6). We technically also have nonzero inside weights for grammar states (T, q, x)
with q ∈ Q, and grammar states (T, #, x′) with x′ ∈ suff(x) ∖ {x}. But those grammar states are
not reachable, which is why their exact inside weights bear no relevance for the following.

3.3.5 Outside weights

Whereas we started with emission states (E, q, x′) in the previous section, it will now prove
useful to consider the transmission states (T, q, x′) first. We begin by noting that

αx
(
(T, #, x)

)
= 1

for the initial grammar state, since it is not produced by any rule. By expanding (3.17) for H(x)
with x = x1 · · · xn in V+, we initially obtain

αx

((
T, q, tail(x′)

))
= ∑

q′∈Q#

αx
(
(T, q′, x′)

)
· qω

(
q
⏐⏐ (q′, T)

)
  

=t(q|q′)

· βx
(
(E, q, x′)

)
  
=e(head(x′)|q)

for all q ∈ Q and x′ ∈ suff(x). Replacing x′ by xi · · · xn yields

αx
(
(T, q, xi+1 · · · xn)

)
= ∑

q′∈Q#

αx
(
(T, q′, xi · · · xn)

)
· t(q|q′) · e(xi|q)

for all q ∈ Q and i ∈ {1, . . . , n}. The grammar states (T, q, x) with q ̸= # are not produced by any
rule in Rx and therefore unreachable, which means that their inside weights vanish. For i = 1,



3.3 Deriving the Baum-Welch algorithm 35

we therefore have

αx
(
(T, q, x2 · · · xn)

)
= ∑

q′∈Q#

αx
(
(T, q′, x1 · · · xn)

)
  

1 for q′ = #, 0 otherwise

· t(q|q′) · e(x1|q) = t(q|#) · e(x1|q) = Tx(1, q).

For x′ ̸= x, we can likewise observe that the grammar states (T, #, x′) are unreachable, hence in
αx

(
(T, q, xi+1 · · · xn)

)
for i ∈ {2, . . . , n}, it suffices to sum over q′ ∈ Q only. We therefore have

αx
(
(T, q, x2 · · · xn)

)
= Tx(1, q),

αx
(
(T, q, xi+1 · · · xn)

)
= ∑

q′∈Q
αx

(
(T, q′, xi · · · xn)

)
· t(q|q′) · e(xi|q)

for any q ∈ Q and i ∈ {2, . . . , n}. Comparison of this set of equations with (3.3) and (3.4) shows
that the outside weights recover the inside weights, i. e.,

αx
(
(T, q, xi+1 · · · xn)

)
= Tx(i, q)

for all i ∈ {1, . . . , n} and q ∈ Q.
It remains to consider emission states (E, q, x′). For those states, (3.17) leads to

αx
(
(E, q, x′)

)
= ∑

q′∈Q#

αx
(
(T, q′, x′)

)
· qω

(
q
⏐⏐ (q′, T)

)
  

=t(q|q′)

·βx

((
T, q, tail(x′)

))

for any q ∈ Q and x′ ∈ suff(x) or, in other words,

αx
(
(E, q, xi · · · xn)

)
= ∑

q′∈Q#

αx
(
(T, q′, xi · · · xn)

)
· t(q|q′) · βx

((
T, q, xi+1 · · · xn

))

  
=Sx(i,q)

.

for q ∈ Q and i ∈ {1, . . . , n}. We need to consider two subcases. For i = 1, we obtain

αx
(
(E, q, x1 · · · xn)

)
= ∑

q′∈Q#

αx
(
(T, q′, x1 · · · xn)

)
  

1 for q′ = #, 0 otherwise

· t(q|q′) · Sx(1, q)

= t(q|#) · Sx(1, q) =
Tx(1, q) · Sx(1, q)

e(x1|q)
,

and for i ∈ {2, . . . , n}, we likewise have

αx
(
(E, q, xi · · · xn)

)
= ∑

q′∈Q#

αx
(
(T, q′, xi · · · xn)

)
  

0 for q′ = #

·t(q|q′) · Sx(i, q)

= ∑
q′∈Q

Tx(i− 1, q′) · t(q|q′) · Sx(i, q) =
Tx(i, q) · Sx(i, q)

e(xi|q)
.
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3.3.6 Complete-data corpus (cont.)

In the previous two sections, we have derived expressions for all relevant inside and outside
weights6 of H(x) for any x ∈ X ̸⊥ = V*. In this section, we will compute the complete-data
corpus by expanding the equations (3.14) and (3.15). The results of this computation will be
used in the following section to instantiate the inside-outside step mapping LµMio for µ = µℋ.
In section 3.3.3, we already considered the case that x = ε, and obtained

c⟨ω, µ⟩
(
#, (#, T)

)
= c(ε).

Therefore, as in the previous sections, it remains to consider x = x1 · · · xn in V+. For emission
events

(
v, (q, E)

)
with v ∈ V and q ∈ Q, (3.15) leads to

χω,x
(
v, (q, E)

)
= P(x)−1 · ∑

i∈{1,...,n}: xi=v
αx

(
(E, q, xi · · · xn)

)
  
=Tx(i,q)·Sx(i,q)·e(xi |q)−1

· qω

(
v
⏐⏐ (q, E)

)
  

=e(v|q)

= ∑
i∈{1,...,n}: xi=v

Tx(i, q) · Sx(i, q)
P(x)

= ∑
i∈{1,...,n}: xi=v

Rx(i, q).

For transition events into and out of the # state, we obtain, for every q ∈ Q,

χω,x
(
#, (q, T)

)
= P(x)−1 · αx

(
(T, q, ε)

)
  

=Tx(n,q)

· qω

(
#
⏐⏐ (q, T)

)
  
=t(#|q)=Sx(n,q)

= Rx(n, q),

χω,x
(
q, (#, T)

)
= P(x)−1 · ∑

x′∈suff(x)
αx

(
(T, #, x′)

)
  

=0 for x′ ̸=x

· qω

(
q
⏐⏐ (#, T)

)
  

=t(q|#)

·βx
(
(E, q, x′)

)
· βx

((
T, q, tail(x′)

))

= P(x)−1 · αx
(
(T, #, x)

)
  

=1

·t(q|#) · βx
(
(E, q, x)

)
  

=e(x1|q)

· βx

((
T, q, tail(x)

))

  
=Sx(1,q)

= P(x)−1 · t(q|#) · e(x1|q)  
=Tx(1,q)

·Sx(1, q) = Rx(1, q).

For transition events from q ∈ Q to q′ ∈ Q, we initially get

χω,x
(
q′, (q, T)

)
= P(x)−1 · ∑

x′∈suff(x)
αx

(
(T, q, x′)

)
· qω

(
q′
⏐⏐ (q, T)

)
  

=t(q′|q)

· βx
(
(E, q′, x′)

)
  
=e(head(x′)|q′)

· βx

((
T, q′, tail(x′)

))
.

6All these inside and outside weights are assembled in the table at the end of Appendix B for quick referencing.
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To simplify this expression, we replace x′ by xi · · · xn once more.

χω,x
(
q′, (q, T)

)
= P(x)−1 ·

n

∑
i=1

αx
(
(T, q, xi · · · xn)

)
  

= 0 for i = 1

·t(q′|q) · e(xi|q′) · βx

((
T, q′, xi+1 · · · xn

))

  
=Sx(i,q′)

= P(x)−1 ·
n

∑
i=2

αx
(
(T, q, xi · · · xn)

)
  

=Tx(i−1,q)

·t(q′|q) · e(xi|q′) · Sx(i, q′)

=
n

∑
i=2

Ux(i− 1, q, q′) =
n−1

∑
i=1

Ux(i, q, q′).

When we put these expressions into the definition of c⟨ω, µ⟩, we initially sum over over all x ∈
V+ = X ̸⊥. However, we can exclude x = ε from the sum since, as was discussed in section 3.3.3,
all χω,ε(a, b) vanish except for (a, b) =

(
#, (#, T)

)
. Furthermore, the factor c(x) makes every

contribution from outside supp(c) vanish. It therefore suffices to sum over supp(c) ∖ {ε} only,
which we shall denote by Xc. For any q, q′ ∈ Q and v ∈ V, we finally have

c⟨ω, µ⟩
(
#, (#, T)

)
= c(ε), (3.18)

c⟨ω, µ⟩
(
#, (q, T)

)
= ∑

x∈Xc

c(x) · Rx
(
|x|, q

)
, c⟨ω, µ⟩

(
q′, (q, T)

)
= ∑

x∈Xc

c(x) ·
|x|−1

∑
i=1

Ux(i, q, q′),

c⟨ω, µ⟩
(
q, (#, T)

)
= ∑

x∈Xc

c(x) · Rx(1, q), c⟨ω, µ⟩
(
v, (q, E)

)
= ∑

x∈Xc

c(x) ·
|x|
∑
i=1

xi=v

Rx(i, q).

These equations are similar to (3.10) through (3.13) aside from variable names and term ordering,
with one exception: Algorithm 3.1 operates on a V+-corpus rather than a V*-corpus, so the
empty sentence ε is not accounted for. Given the V+-corpus h, we can define the equivalent
V*-corpus ch by

ch(x) :=

⎧
⎨
⎩

h(x) if x ∈ V+,

0 if x = ε.

By using ch instead of c in the equations (3.18), and by noting that

Xch = supp(ch) ∖ {ε} = supp(h) ∖ {ε} = supp(h),

we find that (3.10)–(3.13) are equivalent to (3.18). Therefore, after line 22 of Algorithm 3.1,

counttr(q′, q) = ch⟨ω, µ⟩
(
q′, (q, T)

)
and countem(v, q) = ch⟨ω, µ⟩

(
v, (q, E)

)
(3.19)

for all (q′, q) ∈ Q# × Q# and (v, q) ∈ V × Q, respectively. This equivalence also shows how the
Baum-Welch algorithm can be extended to allow for a V*-corpus instead of a V+-corpus. The
only difference is that counttr(#, #) has to be set to c(ε) between lines 4 and 22.
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3.3.7 Step mapping

Having calculated the complete-data corpus, we can apply the inside-outside step mapping,

LµMio(ω) := cmleq
(
c⟨ω, µ⟩

)
= argmax

ω′
qω′

(
c⟨ω, µ⟩

)
,

then use it to choose a new model parameter ω̂ from this set. According to Lemma 2.17 (see
page 10), we can choose ω̂ such that qω̂ = c̃⟨ω, µ⟩ if such a ω̂ exists.

Lemma 3.10. For any p ∈ ℳC(A|B), there exists ω = (t, e) in Ω such that qω = p.

Proof. The ω = (t, e) in question is given by

t(q′|q) := p
(
q′
⏐⏐ (q, T)

)
∀q, q′ ∈ Q#,

e(v|q) := p
(
v
⏐⏐ (q, E)

)
∀v ∈ V, q ∈ Q.

We need to show that ω ∈ Ω and qω = p. Since p ∈ ℳ(A|B), it holds for any q ∈ Q# that

∑
q′∈Q#

t(q′|q) = ∑
q′∈Q#

p
(
q′
⏐⏐ (q, T)

)
= 1.

Therefore, t ∈ ℳ(Q#|Q#). By an analogous argument, we have e ∈ ℳ(V|Q), from which
follows ω ∈ Ω. Moreover, for any (a, b) ∈ A× B, we have

qω(a|b) =

⎧
⎨
⎩

p(a|b) if (a, b) ∈ C,

0 otherwise

because of how q is defined. This is equivalent to saying that qω = p since p ∈ ℳC(A|B) is
restricted to C.

Using this lemma, we obtain the final and principal result of this thesis.

Theorem 3.11. Algorithm 3.1 (see page 25) is an instance of Algorithm 2.1 (see page 7).

Proof. Since c⟨ω, µ⟩ is zero-valued anywhere outside C, we have c̃⟨ω, µ⟩ ∈ ℳC(A|B). We can
therefore apply the construction for (t, e) from this proof to obtain ω̂ = (t̂, ê) which is in LµMio(ω).

t̂(q′|q) := c̃⟨ω, µ⟩
(
q′
⏐⏐ (q, T)

)
∀q, q′ ∈ Q#,

ê(v|q) := c̃⟨ω, µ⟩
(
v
⏐⏐ (q, E)

)
∀v ∈ V, q ∈ Q.
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In the case of Algorithm 3.1, we have c = ch, and the equations (3.19) apply. We therefore have,
for every q, q′ ∈ Q# and v ∈ V,

t̂(q′|q) = c̃⟨ω, µ⟩
(
q′
⏐⏐ (q, T)

)
=

c⟨ω, µ⟩
(
q′
⏐⏐ (q, T)

)

∑q′′∈Q#
c⟨ω, µ⟩

(
q′′

⏐⏐ (q, T)
) (3.19)

=
counttr(q′, q)

∑q′′∈Q#
counttr(q′′, q)

,

ê(v|q) = c̃⟨ω, µ⟩
(
v
⏐⏐ (q, E)

)
=

c⟨ω, µ⟩
(
v
⏐⏐ (q, E)

)

∑v′∈V c⟨ω, µ⟩
(
v′
⏐⏐ (q, E)

) (3.19)
=

countem(v, q)
∑v′∈V countem(v′, q)

.

Comparison with Algorithm 3.1 shows that this is exactly the same computation carried out by
lines 23–28. In total, we see that each iteration of the main loop of this algorithm takes in a
previous ω = (t, e) and computes ω̂ = (t̂, ê) as shown above, such that ω̂ ∈ LµMio(ω). This is the
same behavior that we described more abstractly in Algorithm 2.1.

3.4 Review

The principal insights of this chapter, and this thesis overall, are twofold:

1. We have shown that any Hidden Markov model ℋ can be described as an inside-outside
information µℋ.

2. Using the step mapping LµℋMio, we have instantiated the generic EM algorithm from [BSV15],
and shown that the algorithm thus obtained is identical to the well-known Baum-Welch al-
gorithm.

From this follows that all theorems regarding the generic EM algorithm, esp. concering its con-
vergence properties, apply to the Baum-Welch algorithm as well.





Appendix

A Elided proofs from Chapter 3

This appendix contains the proofs for Lemmas 3.8 and 3.9. We imply thatℋ = (Q, V, #, t, e) is an
HMM. Moreover, we imply all the definitions introduced in Section 3.3 to describe ℋ in terms
of the IO information µℋ. As a prerequisite for both proofs, we shall begin by writing down the
languages of all the grammar states of H(x) and K.

Definition A.1. Let 𝒢 = (Q𝒢 , q0, R𝒢) be an RTG over C. For any grammar state q ∈ Q𝒢 , the
language of q generated by 𝒢 is given by

J𝒢Kq := πC
(

Dq(𝒢) ∩ TR𝒢
)
.

The mapping πC : TR𝒢 (Q𝒢) → UC(Q𝒢) was introduced as πΣ on page 15. The language J𝒢Kq

contains all trees from UC that can be generated by applying the grammar’s rules, starting from
the state q. It especially holds that

J𝒢K = J𝒢Kq0
. (A.1)

To find Dq(𝒢) ∩ TR𝒢 , we first observe that, according to Definition 2.28, each d ∈ Dq(𝒢) must
have one of two forms,

d = q or d = ρ(d1, . . . , dk),

where ρ =
(
q → c(q1, . . . , qk)

)
in R𝒢 such that rk(c) = k, and each di ∈ Dqi(𝒢). The first form,

d = q, is not allowed in J𝒢Kq since q /∈ TR𝒢 . The second form is admissible, but because d ∈ TR𝒢 ,
the subtrees di may not have positions labeled with a state q ∈ Q𝒢 either. We therefore have

Dq(𝒢) ∩ TR𝒢 =
⋃

ρ=(q→c(q1,...,qk)) in R𝒢

{
ρ(d1, . . . , dk)

⏐⏐d1 ∈ Dq1(𝒢) ∩ TR𝒢 , . . . , dk ∈ Dqk(𝒢) ∩ TR𝒢
}

,

from which follows

J𝒢Kq =
⋃

ρ=(q→c(q1,...,qk)) in R𝒢

{
c(t1, . . . , tk)

⏐⏐ t1 ∈ J𝒢Kq1
, . . . , tk ∈ J𝒢Kqk

}
, (A.2)

when πC is applied on both sides. We can thus describe the languages
q

K
y

and
q

H(x)
y

recur-
sively, in terms of the languages generated from their states.
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Let x ∈ V*. Application of (A.2) to all reachable states in H(x) yields

q
H(x)

y
(T,q,x′) =

⋃

q′∈Q

{(
q′, (q, T)

)
(t1, t2)

⏐⏐ t1 ∈
q

H(x)
y
(E,q′,x′), t2 ∈

q
H(x)

y
(T,q′,tail(x′))

}
,

q
H(x)

y
(T,q,ε) =

{(
#, (q, T)

)}

for all q ∈ Q# and x′ ∈ suff(x), and

q
H(x)

y
(E,q,x′) =

{(
head(x′), (q, E)

)}

for all q ∈ Q and x′ ∈ suff(x). Inserting the last equation into the one above it, we can describeq
H(x)

y
=

q
H(x)

y
(T,#,x) recursively by

q
H(x)

y
(T,q,x′) =

⋃

q′∈Q

{(
q′, (q, T)

)((
head(x′), (q′, E)

)
, t
)⏐⏐⏐ t ∈

q
H(x)

y
(T,q′,tail(x′))

}
, (A.3a)

q
H(x)

y
(T,q,ε) =

{(
#, (q, T)

)}
(A.3b)

for all q ∈ Q#. Analogous application of (A.2) to all states in K, followed by insertion of the
expression for JKK(E,q) into that of JKK(T,q), results in

JKK(T,q) =
{(

#, (q, T)
)}
∪

⋃

q′∈Q

⋃

v∈V

{(
q′, (q, T)

)((
v, (q′, E)

)
, t
)⏐⏐⏐ t ∈ JKK(T,q′)

}
(A.4)

for any q ∈ Q#. An important observation can be made from the structure of (A.3).

∀x ∈ V+, q ∈ Q :
q

H(x)
y
(T,q,tail(x)) =

q
H
(
tail(x)

)y
(T,q,tail(x)). (A.5)

This equivalence holds because Qtail(x) and Rtail(x) are strict subsets of Qx and Rx, respectively,
and furthermore, because Rx does not contain any rules not in Rtail(x) that expand grammar
states from Qtail(x). Therefore, we have

Dq(H(x)
)
= Dq

(
H
(
tail(x)

))
∀q ∈ Qtail(x),

from which follows (A.5).

A.1 Proof of Lemma 3.8

Lemma 3.8. With the definitions from Section 3.3,

∀x ∈ X ̸⊥ : ∀y ∈
q

H(x)
y

: π1(y) = x.
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Proof. Let x ∈ X ̸⊥ = V*. We are going to show that

∀x′ ∈ suff(x) ∪ {ε} : ∀q ∈ Q# : πX
(q

H(x)
y
(T,q,x′)

)
=

{
x′
}

. (A.6)

by induction over the length of x′. The lemma follows from this statement because

π1
(q

H(x)
y)

= πX
(q

H(x)
y)

= πX
(q

H(x)
y
(T,#,x)

) (A.6)
= {x} .

For the base case, let x′ = ε. Then (A.6) holds because of

πX
(q

H(x)
y
(T,q,ε)

) (A.3b)
=

{
πX

(
#, (q, T)

)}
= {ε}

for any q ∈ Q#. For the induction step, let x′ ∈ suff(x). Since |tail(x′)| < |x′|, it can be assumed
that tail(x′) satisfies (A.6) (induction hypothesis). Application of πX to both sides of (A.3a) yields

πX
(q

H(x)
y
(T,q,x′)

)
=

⋃

q′∈Q

{
πX

(
head(x′), (q′, E)

)
πX(t)

⏐⏐⏐ t ∈
q

H(x)
y
(T,q′,tail(x′))

}

=
{

head(x′)
}
·
⋃

q′∈Q

{
πX(t)

⏐⏐⏐ t ∈
q

H(x)
y
(T,q′,tail(x′))

}

=
{

head(x′)
}
·
⋃

q′∈Q

πX
(q

H(x)
y
(T,q′,tail(x′))

)
  

={tail(x′)} by induction hypothesis

=
{

head(x′) tail(x′)
}
=

{
x′
}

.

A.2 Proof of Lemma 3.9

Lemma 3.9. With the definitions from Section 3.3,

q
K

y
=

⋃

x∈X ̸⊥

q
H(x)

y
.

Proof. Let πQ : TC → Q# be the mapping defined by

πQ(y) := q such that y(ε) =
(
a, (q, b)

)
.

That is, πQ extracts the state q from the label
(
a, (q, b)

)
of the root position of any y. As a prereq-

uisite for the actual proof, we are going to show that

∀y ∈ TC :
(

y ∈
q

K
y
(T,πQ(y))

)
iff

(
y ∈

q
H
(
πX(y)

)y
(T,πQ(y),πX(y))

)
, (A.7)

by structural induction on y. According to the definition of the ranked alphabet C, each y ∈ TC
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can have one of three forms,

y1(v, q) :=
(
v, (q, E)

)
where v ∈ V and q ∈ Q,

y2(q) :=
(
#, (q, T)

)
where q ∈ Q#,

y3(q, q′, ye, yt) :=
(
q′, (q, T)

)
(ye, yt) where q ∈ Q#, q′ ∈ Q, and ye, yt ∈ TC.

The first two forms are the base cases for the structural induction on y, and the last form repre-
sents the inductive step.

Base cases

For any y = y1(v, q), we have πQ(y) = q and πX(y) = v. We see that (A.7) holds because

(
v, (q, E)

)
/∈

q
K

y
(T,q) and

(
v, (q, E)

)
/∈

q
H(v)

y
(T,q,v).

For any y = y2(q), we have πQ(y) = q and πX(y) = ε, and (A.7) is satisfied because

(
#, (q, T)

)
∈

q
K

y
(T,q) and

(
#, (q, T)

)
∈

q
H(ε)

y
(T,q,ε).

Induction step: “⇒” direction

Consider any
y = y3(q, q′, ye, yt) =

(
q′, (q, T)

)
(ye, yt).

such that y ∈ JKK(T,q), and let x := πX(y). Note that πQ(y) = q. We see from (A.4) that

yt ∈
q

K
y
(T,q′) and ye =

(
v, (q′, E)

)
where q′ ∈ Q and v ∈ V.

From this follows x = πX(y) = vπX(yt) and, therefore, head(x) = v and tail(x) = πX(yt).
Since yt is a substructure of y, it can be assumed to satisfy (A.7) (induction hypothesis). Since
yt ∈

q
K

y
(T,q′), we can see from (A.4) that only πQ(yt) = q′ is possible. Therefore, by the induction

hypothesis,
yt ∈

q
H
(
πX(yt)

)y
(T,q′,πX(yt))

=
q

H
(
tail(x)

)y
(T,q′,tail(x)).

Because of (A.5), this is equivalent to saying that yt ∈
q

H(x)
y
(T,q′,tail(x)). We therefore have

y =
(
q′, (q, T)

)((
head(x), (q′, E)

)
, yt

)

with q ∈ Q#, q′ ∈ Q, and yt ∈
q

H(x)
y
(T,q′,tail(x)), from which follows

y ∈
q

H(x)
y
(T,q,x)

because of (A.3a).
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Induction step: “⇐” direction

Consider any y = y3(q, q′, ye, yt) such that y ∈
q

H(x)
y
(T,πQ(y),x)

, wherein x := πX(y). Since

πQ(y) = q, it follows from (A.3) that ye =
(
head(x), (q′, E)

)
and yt ∈

q
H(x)

y
(T,q′,tail(x)). Because

of (A.5), the second statement is equivalent to

yt ∈
q

H
(
tail(x)

)y
(T,q′,tail(x)).

From (A.3), we see that πQ(yt) must be q′. Since yt is a substructure of y, it can be assumed to
satisfy (A.7), from which follows that yt ∈

q
K

y
(T,q′). According to (A.4), it therefore holds that

y ∈
q

K
y
(T,q). The proof for (A.7) is thereby complete.

Conclusion of the proof

To finally derive Lemma 3.9, we first note that

πQ
(q

K
y
(T,#)

)
= {#} and πQ

(q
H(x)

y
(T,#,x)

)
= {#} (A.8)

for every x ∈ X ̸⊥, which follows from (A.4) and (A.3), respectively. We can thus expand JKK into

q
K

y
=

q
K

y
(T,#) =

{
y ∈ π−1

Q (#)
⏐⏐y ∈

q
K

y
(T,#)

}

=
{

y ∈ π−1
Q (#)

⏐⏐y ∈
q

K
y
(T,πQ(y))

}
.

By using (A.7), we obtain

q
K

y
=

{
y ∈ π−1

Q (#)
⏐⏐y ∈

q
H
(
πX(y)

)y
(T,πQ(y),πX(y))

}

=
{

y ∈ π−1
Q (#)

⏐⏐y ∈
q

H
(
πX(y)

)y
(T,#,πX(y))

}
.

To obtain the desired structure, we split this set into one set per yield x = πX(y).

q
K

y
=

⋃

x∈X ̸⊥

{
y ∈ π−1

Q (#)
⏐⏐y ∈

q
H
(
πX(y)

)y
(T,#,πX(y))

, x = πX(y)
}

=
⋃

x∈X ̸⊥

{
y ∈ π−1

Q (#)
⏐⏐y ∈

q
H(x)

y
(T,#,x), x = πX(y)

}
.

Because of (A.8), each H(x)(T,#,x) is a subset of π−1
Q (#). We can therefore simplify this to

q
K

y
=

⋃

x∈X ̸⊥

{
y ∈

q
H(x)

y
(T,#,x)

⏐⏐ x = πX(y)
}
=

⋃

x∈X ̸⊥

{
y ∈

q
H(x)

y ⏐⏐ x = πX(y)
}

,

which is equivalent to Lemma 3.9 because of Lemma 3.8.





B Formulary for Chapter 3 47

B Formulary for Chapter 3

This appendix assembles most of the formulas derived in Chapter 3. It serves as a quick reference
for the observant reader who wants to follow the derivations without having to flip pages exces-
sively. For most equations, the tag near the right margin refers to the page where the equation
was first introduced.

We imply thatℋ = (Q, V, #, t, e) is an HMM. Let v ∈ V* be an observation.

P(v = v1 · · · vn) = ∑
q1,...,qn∈Q

t(q1|#) · e(v1|q1) ·
n

∏
i=2

[
t(qi|qi−1) · e(vi|qi)

]
· t(#|qn), (3.1, p. 22)

P(v = ε) = t(#|#). (3.2, p. 22)

In terms of the forward weight Tv(i, q) for v = v1 · · · vn in V+, i ∈ {1, . . . , n} and q ∈ Q:

P(v) = ∑
q∈Q

Tv(n, q) · t(#|q), (3.5, p. 23)

Tv(i, q) =

⎧
⎨
⎩

e(v1|q) · t(q|#) if i = 1,

e(vi|q) ·∑q′∈Q Tv(i− 1, q′) · t(q|q′) if i ∈ {2, . . . , n} .
(3.4, p. 23)

In terms of the backward weight Sv(i, q) for v = v1 · · · vn in V+, i ∈ {1, . . . , n} and q ∈ Q:

P(v) = ∑
q∈Q

t(q|#) · e(v1|q) · Sv(1, q), (3.6, p. 24)

Sv(i, q) =

⎧
⎨
⎩

t(#|q) if i = n,

∑q′∈Q t(q′|q) · e(vi+1|q′) · Sv(i + 1, q′) if i ∈ {1, . . . , n− 1} .
(3.7, p. 24)

Expressions from the Baum-Welch algorithm, for v = v1 · · · vn in V+, i ∈ {1, . . . , n} and q, q′ ∈ Q:

Rv(i, q) =
Tv(i, q) · Sv(i, q)

P(v)
, (3.8, p. 24)

Uv(i, q, q′) =
Tv(i, q) · t(q′|q) · e(vi+1|q′) · Sv(i + 1, q′)

P(v)
. (3.9, p. 26)

The IO information µℋ has X ̸⊥ = V* and Ω =ℳ(Q#|Q#)×ℳ(V|Q). For any ω = (t, e) in Ω,
hidden information is structured according to

A = Q# ∪V, B = Q# × {T} ∪Q× {E} , (p. 27)

C =
{(

q′, (q, T)
)
| q, q′ ∈ Q#

}
  

qω(q′|(q,T)) = t(q′|q)
rank 0 for q′ = #, 2 otherwise

∪
{(

v, (q, E)
)
| v ∈ V, q ∈ Q

}
  

qω(v|(q,E)) = e(v|q)
rank 0

. (p. 27)
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The grammar K has states QK = {T} ×Q# ∪ {E} ×Q, the initial state (T, #) and the rules

(T, q)→
(
q′, (q, T)

)(
(E, q′), (T, q′)

)
∀q ∈ Q# and q′ ∈ Q,

(T, q)→
(
#, (q, T)

)
∀q ∈ Q#,

(E, q)→
(
v, (q, E)

)
∀q ∈ Q and v ∈ V. (p. 29)

Each H(x) has states Qx = {T} × Q# ×
(
suff(x) ∪ {ε}

)
∪ {E} × Q × suff(x), the initial state

(T, #, x) and the rules

(T, q, x′)→
(
q′, (q, T)

)(
(E, q′, x′), (T, q′, tail(x′))

)
∀q ∈ Q#, q′ ∈ Q, and x′ ∈ suff(x),

(T, q, ε)→
(
#, (q, T)

)
∀q ∈ Q#,

(E, q, x′)→
(
head(x′), (q, E)

)
∀q ∈ Q and x′ ∈ suff(x). (p. 31)

For x = ε, only the initial state (T, #, ε) is reachable and the only nonzero inside and outside
weights are

βε(T, #, ε) = t(#|#) = P(ε), (p. 33)

αε(T, #, ε) = 1. (p. 33)

The following table shows inside and outside weights for H(x) with x = x1 · · · xn in V+ non-
empty and rule probabilities according to qω(a|b) of the produced symbol (a, b) ∈ C. Unreach-
able grammar states are shown greyed out. All statements apply for all q ∈ Q and i ∈ {1, . . . , n}
unless otherwise noted.

Grammar state qg Reachable? Inside weight βx(qg) Outside weight αx(qg)

(T, #, ε) no not relevant 0

(T, #, x) yes (initial) P(x) 1

(T, #, xi · · · xn) no not relevant 0

(T, q, ε) yes t(#|q) = Sx(n, q) Tx(n, q)

(T, q, x) no not relevant 0

(T, q, xi · · · xn) for i > 1 Sx(i− 1, q) for i > 1 Tx(i− 1, q) for i > 1

(E, q, x) yes e(x1|q)
Tx(1, q) · Sx(1, q)

e(x1|q)

(E, q, xi · · · xn) yes e(xi|q)
Tx(i, q) · Sx(i, q)

e(xi|q)
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