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Gewichtete Grammatiken und Automaten Grammatiken und Automaten kénnen
mit einer Gewichtungsfunktion versehen werden, die jeder Produktion bzw. Transition
einen Wert aus einer Gewichtsalgebra zuordnen. Diese Gewichtungsfunktion erzeugt
eine Dekoration der Ableitungsbdume bzw. Laufe durch deren Auswertung (in der
Gewichtsalgebra) jedem Ableitungsbaum bzw. Lauf ein Gewicht zugeordnet wird. Aus
den Gewichten aller Ableitungsbédume bzw. Laufe eines bestimmten Wortes wird dann ein
Gewicht fir dieses Wort berechnet. Als Gewichtsalgebren werden u.A. Halbringe [DKV09;
SS78; Goo99], Verbande [DV12], oder Valuierungsmonoide [DM11; DV14] verwendet.

Multiple context-free grammars Natiirliche Sprachen weisen Merkmale auf, die
von kontextfreien Grammatiken nicht darstellbar sind, z.B. kann ein Teilsatz eine Liicke
haben, in die vom Kontext abhéngiger Inhalt eingefiigt wird. Um allerdings die hohe
Parsingkomplexitat kontextsensitiver Grammatiken (ndmlich PSPACE-complete) zu
vermeiden, betrachtet man Formalismen, die diese Liicken zwar darstellen konnen, aber
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dennoch polynomiell parsbar sind. Man fasst solche Formalismen unter dem Begriff
mildly context-sensitive formalisms zusammen. Dazu gehoren z.B. head grammars, tree
adjoining grammars, combinatory categorial grammars, linear indexed grammars, linear
context-free rewriting systems, und minimalist grammars. Multiple context-free grammars
(kurz: MCFQG) wurden von Pollard [Pol84] im Kontext nattirlicher Sprachen eingefiihrt
[siehe auch Sek+91]. Es hat sich herausgestellt, dass alle oben genannten (und noch einige
weitere) Formalismen bzw. deren Frontsprachen eine kleinere oder die gleiche Sprachklasse
wie MCFG erzeugen [Sek+91; VWJ86; WJ8S; Vij87; MicOla; MicOlb]. MCFG haben
daher besondere Bedeutung fiir die Verarbeitung natiirlicher Sprache [Evall].

Normalformen Normalformen sind syntaktische Einschrankungen eines Formalismus,
die aber keine Einschriankung der erzeugten Sprachklasse zur Folge haben; sie werden
u.A. genutzt um die Effizienz von Algorithmen, die mit dem entsprechenden Formalismus
arbeiten, zu steigern. MCFG lassen verschiedene Normalformen zu, z.B. non-deleting
normal form [Sek+91, Lemma 2.2: (f3)], e-free normal form [Sek+91, Lemma 2.2: (N3)
und (N4)], terminal separated normal form [Sek+91, Lemma 2.2: (N1), (N2), und (N5)],
monotone normal form (in der Definition von Kracht [Kra03, Definition 5.4.3] sowie
Kuhlmann [Kuh07, Abschnitt 6.2.3] und Kuhlmann [Kuh13, Property 2]), und lexicalized
normal form [Kuh07, Definition 618]. Siche Kuhlmann [Kuh13, Abschnitt 5.1] fiir einen
Uberblick.

Aufgaben Der Student soll MCFG gewichtet mit starken Bimonoiden formal definieren.
Fiir die starken Bimonoide ist eine Liste konkreter fiir die Verarbeitung natiirlicher Spra-
che relevanter Beispiele anzugeben. Es sollen gewichtete Versionen der oben genannten
Normalformen definiert und deren Universalitdt unter Angabe der notigen Einschrén-
kungen an die Gewichtsalgebra durch einen konstruktiven Beweis gezeigt werden. Die
Gewichtsalgebra soll dabei jeweils so wenig wie moglich eingeschrankt werden. Desweite-
ren soll fiir jede Normalformkonstruktion ein Algorithmus angegeben werden und dessen
partielle Korrektheit gezeigt werden. Die Beweise der Terminierung dieser Algorithmen
sowie die Betrachtung weiterer (d.h. oben nicht genannter) Normalformen ist wiinschens-
wert, aber in Rahmen der Arbeit optional.

Form Die Arbeit muss den iiblichen Standards wie folgt geniigen. Die Arbeit muss
in sich abgeschlossen sein und alle nétigen Definitionen und Referenzen enthalten. Die
Urheberschaft von Inhalten — auch die eigene — muss klar erkennbar sein. Fremde
Inhalte, z.B. Algorithmen, Konstruktionen, Definitionen, Ideen, etc., missen durch genaue
Verweise auf die entsprechende Literatur kenntlich gemacht werden. Lange wortliche
Zitate sollen vermieden werden. Gegebenenfalls muss erlautert werden, inwieweit und zu
welchem Zweck fremde Inhalte modifiziert wurden. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit gefiihrt werden. Die Darstellung
aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Fiir jeden wichtigen
Begriff sollen Erlduterungen und Beispiele angegeben werden, ebenso fiir die Abldufe
der beschriebenen Verfahren. Wo es angemessen ist, sollen Illustrationen die Darstellung
vervollstandigen. Bei Diagrammen, die Phanomene von Experimenten beschreiben, muss
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deutlich erlautert werden, welche Werte auf den einzelnen Achsen aufgetragen sind, und
beschrieben werden, welche Abhangigkeit unter den Werten der verschiedenen Achsen
dargestellt ist. Schliellich sollen alle Lemmata und Satze moglichst liickenlos bewiesen
werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.

Ablauf Zusitzlich zu den Regelungen der Priifungsordnung gelten folgende Absprachen
zum Ablauf der Arbeit: Student und Betreuer treffen sich regelméflig. Zu den Treffen
informiert der Student den Betreuer tiber den aktuellen Stand der Arbeit. Der Betreuer
beantwortet eventuelle Fragen des Studenten und gibt Riickmeldung zum Fortschritt und
zur Qualitéit des aktuellen Standes der Arbeit. Im Laufe der Bearbeitungszeit, idealerweise
etwa zu deren Halfte, hélt der Student einen Statusvortrag zum Fortschritt seiner Arbeit.

Dresden, 2016-08-04

Unterschrift von Heiko Vogler Unterschrift von Liu, Zhiang
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1 Introduction

1.1 Intuition of the thesis

The multiple context-free grammars (shorted: MCFG) are introduced by Seki
et.al. [6, Definition 2.2] for the processing of natural languages as a replacer of
context-free grammars (shorted: CFG), which are less powerful. MCFGs extend
CFGs by equipping a function for each production, which can get information
from non-terminal symbols on the right side, and each non-terminal symbol yields
fixed-size tuples of strings, where the size is determined by the function. Each
component of the tuple generated by a non-terminal symbol can be used only once
in the function within a production.

Syntactic restrictions of MCFG are needed for the developing of algorithms, and
some of which are normal forms of MCFG that can be effectively constructed.
Weighted grammars are used widely in many cases that requires an evaluation of the
words they derive, like search engines that determine which part in a given keyword
is most interesting for users. A strong bimonoid (A, +,-,0,1) does not require
commutativity of the operation -, which leads to a wider potential application,
but notice that some syntactic restrictions of MCFG may also restrict the weight

algebra.

1.2 Outline of the thesis

In chapter 2 we will fix some important notations that will be used throughout this
thesis. Then in chapter 3 we will use the composition representation (introduced
by Denkinger [1, Section 2.1]) to recall MCFG, and its syntactic restrictions of
the unweighted case, which are non-deleting form [6, Lemma 2.2 {3], e-free form
[6, Lemma 2.2 N34+N4]|, terminal separated form [6, Lemma 2.2 N5], monotone
form [4, Definition 5.43, Page 442], strongly monotone form [5, Section 6.2.3], and
lexicalized form [5, Definition 618]. In chapter 4 we will list some of the most
used strong bimonoids, and recall weighted MCFG, and fix the constructions of
syntactic restrictions, which are extended from non-weighted case, where we also
fix the restriction they impose on to the weight algebra . In the last chapter we

will briefly review the ideas of Proofs.



2 Preliminaries

We use N to denote the set of all natural numbers including 0. The set N\ {0} is
denoted by N,. The set {k:k e N,,k <z} for some x € N, is denoted by [z]. The
empty word is written as e. An alphabet is a finite set. We write A C;, B, if A is
a finite subset of B. We use |w| to refer to the length of the string w over some
alphabet, and w(i) with ¢ € [|w]|] refers to the i-th symbol of w. We fix a set of
variables X (s, s, = {7):i € [k],j € [s:]} for each k € N, sy, ..., 54,5 € N,.

Definition 2.1 (permutations). Let k € N,. A permutation over [k] is a
bijection 7:[k] — [k]. We say = is the identity on [k], if (i) = ¢ for each
ielk]

Definition 2.2 (sorted sets). Let S be a countable set. An S-sorted set is a
tuple (A, sort), where A is a set and sort is a function from A to S. For each
s €S, we abbreviate the set {a € A:sort(a) = s} by As.

Definition 2.3 (trees). Let X be an (S* x S)-sorted set. The set of trees
over Y, denoted by Ty, is the smallest S-sorted set T', such that for every
ke N,s,s1,...,8, € S;t1 € Ty, ..., € T, and o € X, 4, ), We have that
o(ty,....tr) € Ts.

Definition 2.4 (characterization of trees). Let X be an alphabet, & = o (&, ...,
&) € Ts;. The height and position of trees, denoted by height and pos respec-

tively, are

height (&) = 1 + max{height(&;):1 € [k]}
pos(&) = {e} u{iv:i e [k],v € pos(&)}

We denote the label at w as £(w).



Definition 2.5 (subtrees). Let X' be an alphabet, t = o(ty,...,t;) € Tx. For
each w € pos(t), the subtree with root at the position w is t|,, such that for

each u € pos(t|y), there is t|,(u) = t(wu).

3 Multiple context-free grammars

3.1 MCFG

In order to describe properties of weighted multiple context-free grammars, we recall

definitions from Denkinger [1, Section 2.1]:

Definition 3.1 (composition representations). Let X' be an alphabet, and
U, .oy Us € (XU X (5, 5,.6)) ", then the string [us, ..., Us](s,...sp,5) 15 @ composition
representation, if the variable xf € X(s,...5,,5) OCCUrs in u;g...us at most once,
for each i € [k],7 € [s;]. We fix the set of all composition representations
over X as Ry. We can conceive Ry as an N* x N-sorted set, where for each

7= (U, .oy Us)(sy..5,5) € Ry, We set sort(r) = (s1...5x, 5).

Definition 3.2 (composition functions). For r = [uy, ..., us](s,..s,.5) € Ry, the

composition function with respect to r is:

Fr (Z) % e ()% ()"

Fr((h, oy ws), o (W oy wi®)) = (uy, .oy

! . .
for all wy, ..., w3, ..., w},...,w;* € X*, where for each x € [s], u,, is obtained from

u,. by replacing every occurrence of :vf € X(s1...50,5) DY wf for all i € [k], ] € [si]-

In the following we will not distinguish between r and f,.. We also write [u1, ..., us]
instead of [uy, -'-7us](sl...sk,s) when referring to composition functions, and write X

instead of X, g6y fOr f = [U1, o Us (5. 50,5)-

Example 3.1 (composition functions). Let X = {a,b}, X = {21,222, 22} and
r = [ax}b, bx3b](22,2), then for the tuple T := ((ab,ba), (bb,aa)) we have f,.(T) =
(aabb, baab).



We recall the definition of multiple context-free grammars from Seki, Matsumura,
Fujii and Kasami [6, Definition 2.2]:

Definition 3.3 (multiple context-free grammars). A multiple context-free
grammar (short: MCFG) is a tuple G = (N, X, P, S) where

e N is a finite N,-sorted set (non-terminal symbols),
e Y is an alphabet (terminal symbols),

o P gfin U51 ..... Sk,8€NL Ns X (RZ)(sl...sk,s) X (N51 Ceel Nsk)
e Se Nl.

Let an MCFG G = (N, X, P,S). We conceive P as an (N* x N)-sorted set with
sort(p) = (Ay...Ag, A) for each p = (A, f,A1...Ax) € P. We define a function
fan: P - N, where for each production p = (A, f, A;...Ax) € P, fan(p) = sort(A),
called fan-out of p and p with k = 0 is called a terminating production. We write f,
to indicate the composition function of p. We also call k£ the rank of p. The fan-out
of G is maz{fan(p):p € P}, and an MCFG with fan-out at most m is called an
m-MCFG.

Definition 3.4 (derivations of MCFG). Let G = (N, X, P,S) be an MCFG.
Then the set of derivations of G, denoted by Dg, is (Tp)s.

We define the function yield:Tp — (X*)*. For each £ = p(&y, ..., &) € Tp with
p=(A, f A...A;) € P, We have:

yieldg(§) = f(yieldg(&1), ..., yieldg (&)

A string w € X is called derivable in G, if there exists a derivation &, such
that yieldg (&) = w. We abbreviate yield to yield, and denote the set of all
strings that is derivable in G by L(G), Dg(A) := (Tp)a for each A e N, and
Dg(w) :={&€ € Dg, yield(€) =w} as derivations of w by G. For each A, B e N
we say B is reachable from A, if there is a {g € Dg(B) and £4 € Dg(A), such
that &g is a subtree of £4. For each A € N and w € yield(Dg(A)), we fix w(i)

with i € [sort(A)] to refer to the i-th component of w.



o= (S, [matei], A) (A faxy,cxg], A) (B, [bry, dzy], B)

| | |
1 = (Sv [6]76) <A7 [676’6]76) (A’ [67 E]’E) (B,[b$%,dl‘%],3)

(a) Derivations of example 3.2

(b) Derivations of example 3.3

Figure 1: Derivation Examples

Example 3.2 (MCFG). For the formal language L = {a"b"c":n € N}, we have
G=(N,X,P,S), with P={p1,pa,p3,pa}, N ={S, A}, X = {a,b,c} and:

b= (Sa [6]76)7 b2 = (57 [$%Z‘%IL’?],A),
b3 = (A7 [ax%,bm%,cmi’],A), Ps = (Av [6,6,6],6),
that L(G) = L. The two derivations of wy = € are shown in Figure 1la.

Example 3.3 (MCFG). For the formal language L = {a"b™c*d™:m,n € N},
there exists an MCFG G = (N, X, P,S), such that L(G) = L. Consider P =

{p1,p2,p3, 04,05}, N ={S, A, B}, X ={a,b,c,d} and:
p1 = (S, [z1232723], AB), pa = (B, [bxy,dzi], B),
p2 = (4, [azy, cat], A), ps = (B, [€€].€),
ps = (A [e¢€],¢€),

The only derivation of w; = abbedd is shown in Figure 1b.

3.2 Normal forms

We recall some syntactical restrictions of MCFGs from the literature.

Definition 3.5 (Syntactical restrictions to composition functions). Let X' be

an alphabet, and r = [uy, -~-7u8](51...sk,s) € Rs,. We call r

e non-deleting if all elements of Xy, , s occur in u;...us;
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o c-free if € ¢ {uy,...,us};

o terminal separated if r is in a terminating rule, we have s = 1 with

*

uy € (XYu{e}), and if 7 is in a non-terminating rule, we have u, € X(,

for each k € [s];

e monotone [4, Definition 5.43, Page 442] if for each fixed i € [k], all «’

with j € [s;] occur in the increasing order of j from left to right in wy...uy;

e strongly monotone [5, Section 6.2.3] if r is monotone, and all z},i € [k]

occur in the increasing order of ¢ from left to right in w;...us;

e lexicalized [5, Definition 618] if wu;...us contains exactly one terminal

symbol.

Definition 3.6 (Syntactical restrictions to MCFG). Let G = (N, X, P, S) be
an MCFG, then we call G

e c-free if the composition function of all productions are e-free, or (S, [€], €)
is the only production whose composition function is not e-free, and if

(S, [€],€) € P, then S does not occur on the right side of any productions;

e non-deleting, terminal separated, monotone, strongly monotone, or lexi-
calized if the composition functions of all productions are non-deleting,
terminal separated, monotone, strongly monotone, or lexicalized, respec-

tively.

Definition 3.7 (tuple restriction). Let G = (N, X, P, S) be an MCFG, yield: Tp —
(X*)*, and ¥ = {s1,...,8,} € N, with sq,...,s, € N, in increasing order.
The tuple restriction with respect to ¥ is [¥]:(X*)* - (X*)*, where for
a given w = (wy,...,wg) € (X*)* with wy,...,wy € X* and k > s,, we have
[V](w) = (wsy, ..., ws, ).

We fix yieldy = yield; [¥], and n[M] = [{i:i € M,n >i}| for each n e N, , M c N,.

11



Definition 3.8 (restricted composition function). Let X be some alphabet,
[ =[u1, ..., us](sy..5,5) be @ composition function, ¥ € [s], ¥ € [s1],..., ¥ S [s].

The restricted composition function with respect to ¥, ¥y, ..., ¥, and f is

.....

.....

7 ¢V, by €, and delete each component u; with [ ¢ ¥, and replace each remaining
IEAN A

xz € X(s;..05,5) bY xf il .
Lemma 3.1 (restricted composition function). Let X be some alphabet, f = [uy, ...,
Us](s1...50,5) D€ @ composition function, and ¥ ¢ [s],¥; € [s1],..., %, € [s]. Let
v € (Z%), .., 0 € (I%)%, such that for each ! € X, 4, ., if 2] occurs in
[¥](uy,...,us), and j ¢ ¥;, then v;(j) = €. We have

fow o ([T (01), s [ (0r)) = [T (01, 08))

Proof. Let (wy,...,w;) = [¥](f(v1,...,vx)), and ¥ = {py, ...,p; } with p; <ps <...<py.
Then we have w; = [uy,](v1,...,0). Let u) be constructed from w,, by Definition
3.8 for each i € [I]. There is [up,](v1,...,vx) = [ul, J([¥1](v1), ..., [¥](vr)), since
each component deleted by ¥, ..., ¥, but used by some variable in w,, is €, and this
this variable is replaced by € in w;, , and each component preserved by ¥, ..., ¥
is used in the same position of u;, and w,, according to the variable renaming in

Definition 3.8. Thus

[Z](f (1, 08)) = [Z]([ur, oy us (V1,5 01))
= [Upy s ooy Uy, [ (V15 -, V)
= [up, , ..o wp, J([P1 ] (1), - [P ] (k) (by the text above)

= fow,...o ([P1](v1), .. [Zr] (Vi) (by Definition 3.8)
]

Theorem 3.1 (Non-deleting). [6, Lemma 2.2 £3] For every m-MCFG G there
is a non-deleting m-MCFG G, such that L(G) = L(G").
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Construction. Let G = (N, X, P,S). We recall the construction by Seki, Mat-
sumura, Fujii, and Kasami [6, Lemma 2.2 f3]. We construct G’ = (N', X, P’,
S[{1}]), where
o N' = {A[¥]:Ae N, W c [sort(A)]}, where sort(A[¥]) = |7| for each A e N
and ¥ ¢ [sort(A)].

o P = {(A[W]yfkp,lpf717‘p,...7lpf’k"p7Al[wf,].,kp]"'Ak[!p‘ﬂk‘JI/]):(A)f7A1"‘Ak’) € P,
W c [sort(A)]}, where for each s1,..., 55,5 €N, f € (Rg)(s;...50,5), and ¥ € [s],

we fix Wy, p = {j € [5:]: 3 € W.x) occurs in u;}, for each i € [k]L.

Proof. The function fkpyfyl}%”,gpf,w of each constructed production is non-deleting

by the construction of ¥sqy,...,¥sw for each p = (A, f,Ay...Ay) € P and ¥ ¢
[sort(A)]. We fix the function g: P’ - P that assigns the original production to its
constructed one, and g: Tpr - T’p that applies g position-wise. We can conceive that
§ is a bijection between (77) apw) and (7p) 4 with a given ¥ for each A € N, and g is
a bijection between P’ with a fixed ¥ and P, proved by Denkinger [2, Lemma 5]. Let
p=(A[uy,...,us],A1...Ax) € Pyd = p(dy, ...,dx) € Dg(A), ¥ = {izi € [s],u; # €}, d' =
p'(dy,....d;) =g (d), and ¥y 1w, ..., ¥ are fixed according to the construction.
Then we have the following structural induction over [¥](yield(d)) = yield(d"):

[¥](yield(d))

:fW,Wf,Lsp,m,g’f,k,qx([!pf,17Wﬂ(yield(dl))7 s [{!pf,k,g’ﬂ(ywld(dk))) (Lemma 31)

=fo s gy (yield(dy), ..., yield(dy)) (induction hypothesis)

=yield(d")
Thus for each derivation d € D¢, and for each d' € D¢, d’ = g71(d), we have

yield(d) = [{1}](yield(d)) = yield(d")
Hence G’ is non-deleting, and L(G) = L(G"). O
Example 3.4 (non-deleting form). For some MCFG G = (N, X, P,S) with X' =
{0/7 b7 C}’
b1 = (57 [x%x%xi’],A), b2 = (Aa [ax%, b.%'%, Cl“;’, x%]? A)a

'Note that each ¥; with i € [k] is defined as the set of positions of unused variables of A; in

the original paper, but of used variables here.
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p3 = (A7 [67 €€, b]7 6)

after the procedure from Theorem 3.1, and removal of all productions containing

non-terminal symbols that are not reachable from S[{1}], we have:

= (S[{1}] [m12%21], A[{1,2,3}]), P = (A[{1,2,3}], [azy,bai, exi], A[{1,2,3}]),
(A[{1,2,3}],[€ €, €] €)

Theorem 3.2 (e-free). [6, Lemma 2.2 N34+N4| For every m-MCFG G there is
an e-free m-MCFG G, such that L(G) = L(G").

Construction. Let G = (N, X, P,S). We use the construction by Seki et. al. [6,
Lemma 2.2], and G’ = (N', X, P', S"), where

o N'={A[V]:Ae N,¥c[sort(A)]} u{S"},

o = {(5[ele)e € L(G)} v {(S,[a1], SHLID} v {(Al¥yu,.. ],
Josu, w1 v, A1 [ ] Ak ]): (A, f, A Ag) € Py < [sort(Ad)], ..,
Wy, € [sort(Ag)]}, where for each f = [u1,...,us](s1...1,5), %1 S [s0rt(A1)], ...,
W, € [sort(Ay)], we fix Ury, v, C[sort(A)], such that for each | € Vs g, w,,
u; contains at least one terminal symbol, or at least one variable from the set

{xgxg € X(s1...sk,s),j € ll/l}

Proof. It is obvious that each production other than (57, [€],€) is e-free, hence the
constructed G’ is e-free. Let P" = P~ ({(9[€el,e)} u {(9, ][],
S[{1}])}). We fix the function g: P — P that assigns the original production to
its constructed one, and the function §:Tpr - Tp applying g position-wise. We
can conceive that ¢ is a bijection between (Tpr) AWyg, ] 20 (Tp) 4 according to
Denkinger [2, Lemma 5]. For each p = (A, [u1,...,us], A1...Ag) € P,d = p(dy, ...,dy) €
Dg(A),d" =p'(dy,...,d}) = g7 (d), ¥ < [sort(Ar)], ..., W € [sort(Ay)], we have by

structural induction over d:

[wf TP ‘I’kﬂ(yldd(d))
=Y, [ (yield(p(dy, ..., dx)))
=10}, a0, ([P ] (yield(dr)), ..., [P ] (yield(dy))) (Lemma 3.1)

14



:J'-’&,,M1 7777 A (yield(dy), ..., yield(dy)) (induction hypothesis)
=yield(d")

For w € L(G) with w = ¢, we have w € L(G") because of the production (57, €], €).
For each w € L(G) with w # €, we use the fact that

yield(Dg) = [{1}])(yield(Dq)) = yield(Dar) = yield(De).
Hence L(G) = L(G"). O

Example 3.5 (e-free form). We use the Example 3.2 to show a construction of

e-free form. For the productions:

Y4 :(Sa [6]76)7 b2 = (Sa [$%.’L‘%£L‘?],A),
b3 = (A7 [ax%’bx%’cx?]ﬂél)? Pbg = (Av [6,6,6],6),

after the procedure from Theorem 3.2, and removal of all productions containing

non-terminal symbols that are not reachable from S’, we have:

pe = (5" [€]€), ps = (8" [a1], SH{LLD),

pé = (S[{l}]’ [:v%a:%:z‘;’],A[{l, 2, 3}])7 pg = (A[{17273}]’ [CL$%,b$%,C[L’?],A[{1, 2’3}])7
P = (A[{1,2,3}].[a,b,c], A[2]),  p)=(Al2].[].€).

Theorem 3.3 (Terminal separated). [6, Lemma 2.2 N5] For every m-MCFG
G there is a terminal separated m-MCFG G’, such that L(G) = L(G").

Construction. Let G = (N, X, P,S). We construct G’ = (N’, X, P',S), where

o N'={A:AeN}u{lalae X u{e}},

replacing a; by z;,, for each i € [n].

Proof. We fix a function ¢: P — P’ that assigns to each p € P the production

constructed from it, and a function §:Tp — Tpr applying g position-wise, where

g(p(t,....tr)) = g(p)(g(tl),...,g(tk),(, [al],e),...,(, [a,],€)) for each tree
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p(t1,....,tx) € Tp, where ay,...,a, are the terminal symbols in the composition

function of p.

Then ¢! is a function, since g(p)(§(t1), ..., 9(tx), (ai],[a1],€), ... (an] [n],€)) is
unique for each p(tq,...,t;). Let € =p(&1,...,&) € Tp, and

5, = Q(f) = g(p)(g(£1)> 7.@(&6)7 (7 [a1]7€)7 ) (7 [TL],E)),

then we have the following structural induction for yield (&) = yield(g(£)):

yield (&) = fp(yield (&), ..., yield(&))

= fp(yield(§(&1)), ..., yield(g(&))) (induction hypothesis)
= fg(P)(yield(g(fl))v sy ywld(g(gk‘))? ag, ..., an) (*)
= yield(9(£))

The (*) holds since a; in f, is replaced by x,; in f,, which refers to [a;], and for
the unique ¢ € Der([a;]) there is yield(t) = a;, for each i € [n]. Since the function
g is bijective, and there is Do = (D), we have yield(D¢g) = yield(§(Dg)) =
yield(Dgr), hence L(G) = L(G"). O

Example 3.6 (Terminal separated form). We use the Example 3.2 to show the

construction. For the productions:

pl:(S7 [6]76)7 p2:(S7 [m%x%x?],A),
P3 = (A7 [al‘%a bl‘%,c:)ﬁ?],A), Pa = (Av [Ea E,E], 6)7

we have the terminal separated form:

ph = (S, [23].[€). Ph = (8, [1ata}], A),

Py = (A, [wyal, wjad, wlad], Alafbe]),  ph= (A, (21,23, 23], [T €)),
pe = ([l [e] €), pa = ([al.[a],€)

po= (0] [0].€). pe = ([c).[c],€)

Theorem 3.4 (Strongly monotone). For every m-MCFG G there is a strongly
monotone m-MCFG G’, such that L(G) = L(G").
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Construction. Let G = (N, X, P,S). We fix G' = (N', X, P',S[m]), where mq is the
identity on {1}.

e N'={A[r]: Ae N}, where 7 is a permutation over [sort(A)], and

o P = {(A[?T], ([u;u)a -~-7u;(s)](h-usk,s))’A’Yfﬁ,r(l)[Wfa’Yfm(l)]'“A’Yf,ﬁ(k)[
Wfﬁf,w(k)]):(Av [, ..., Us](sy...5,8), A1 A) € P, is permutation over [k]},
where for each f = [u1,...,Us](s,..5,,5) and the permutation 7 over [k],

7 ()
; s

— my; is a permutation over [s;] for each i € [k], such that z
w5 (k)
fii

T occur in that order in ur(1)...ur(s), and

7

— the monotone form [u;:(l), ...,u;:(s)] is obtained from [ty (1), ..., Ur(s)] by

replacing each 7 € X(,, 4.5 by x:f’i(j), and

1

1 .
_ O occur in that
L) Ty (k)

— ¢« is a permutation over [k], such that x
order in u;:(l)...u;’(s), and

— the strongly monotone form [u;(l), s u;(s)] is obtained from [ug(l), s

J

u/(y] by replacing cach #] € X, sy bY T -

Proof. The permutations used in the construction build strongly monotone form
for each production. Hence G’ is strongly monotone. Let G’ = (N, X P’ S[m])
be the grammar constructed from G with 7 the identity on {1}. Let the function
g: P" - P assign to the constructed production the original one it is constructed
from, and let function §:Tpr — Tp, where for each tree ¢/ = p/(t},...,t}) € Tp, and
v¢x for the construction of ¢, we have g(t') = g(p’)(g(t’ﬁ;(l)), ’”’g(t,v;},r(k))) eTp
with yield(t") = yield(t). Then g is a bijection between (Tpr) arr and (7p) 4 for each
Ae N and 7 € sort(A), and g is a bijection between P’ in (Tp/) a-) and P in (Tp) 4.
For each tree t = p(ti,....tx) € (Tp)a, and g7'(t) = g (P)(G (ty, . 1))s -
Gty ) =971 (t) € (Tpr) A, We fix the function yield : Tp — (X*)* with

yield (t) = (yield(t){mw (1)), ..., yield(t){mw(|yield (t)])))

For each i € [|yield(t)|], and 7y, ..., for the construction for ¢, ..., ¢, respectively,

we can conceive that

fg‘l(p) (yieldw (t’Yfm—(l))7 R yz’eldwﬂ/f’”(k) (tvfm(k)))u) = yz’eld(t)(w‘l(i)),

V(1)
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since the [-th component of fg-1(,) (yield, (1)(257”(1)) - yield, (k)(tww(k))) is
obtained from (7~!(l))-th component of yzeld(t) for each [ € [|yzeld(t)|] and
each variable :U'Z € X(s,...5,5) i p has the same position as the variable :U%f;((jz))
in g7'(p), by the construction, where x:;;(é)) gets the (7y;(j))-th component of
yz’eldmm(i)(tw,w(i)), which is the j-th component of yield(t;) got by x]. We have

the following structural induction over ¢:

yield .(t)
= (yield(t)(m(1)), ..., yield(t){m (|yield (t)])))
= fgfl(p)(yieldﬂwfﬂ(l)(tvfm(l)), o yieldTr (k)(twﬂ(k))) (by text above)
-y (b)) il (00)) (indction hypothesis)
= yield(§7'(t))

Hence yield(D¢) = yield, (Dg) = yield(Dgr), L(G) = L(G”). O

Example 3.7 (strongly monotone form). For an MCFG with productions:

p1 = (S, [afwsa3ar], AB), pa = (B, [bx1,dz?], B),
p2 = (A, [axy, cxi], A), ps = (B, [€,€],6),
b3 = (Av [676]’ 6)7

we obtained the strongly monotone form using the construction in Theorem 3.4,

and deletes all non-terminal symbols that are not reachable from S[m]:

Wo],[%mﬂﬂl] A[Wfp 1]B[7Tfp1,2])a P4
Tfpys 1] [Cxlvaxl] [ﬂ-fpz 1])’ pE,S = (B[ﬂ-fp172:|7 [67 6]76)7
7Tfp2 1] [Cxlva'rl] [ﬂ-fpz ])7 pé

ps = (Almp,, 1l [e €l €),

where 7o, 7, o are the identities on {1}, {1,2}, respectively, and 7y, | =7y, ., are
both the permutation (1,2) over {1,2}.
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Definition 3.9 (terminal depth of trees). Let G = (N, X, P,S) be an MCFG
with € ¢ L(G). The terminal depth of trees is dep:Tp — N. For each t € Tp, we
fix

dep(t) {oo, if for each w € pos(t), fi(w) contains no terminal symbols
ep(t) =

min{|w|:w € pos(t), fe(w) contains a terminal symbol}, otherwise

For each A € N, if there exists an m € N, such that dep(t) < m for each
t € Dg(A), then the depth of A, denoted by Dep(A), is m, otherwise we set
Dep(A) = oo. We call max{Dep(A): A e N} the depth of G. If the depth of

some MCFG G is m, then we say G is m-restricted.

Example 3.8 (non m-restricted MCFG). Let an MCFG G = (N, X, P,S) with
P = {p17p27p37p4}7N = {S7A}7E = {a7b7 C} and

P = (Sa [27%33%1‘?],14), b2 = (Av [m%,x?,xﬂ,fl)?
pS:(A7 [ax%’bx%’cxif]?A)? p4:(A7 [a’b7c]7€).

For each m € N, there exists a tree dep(pa2(p2(...(p2(p4))))) =m+1, then Dep(A) =

———
m

oo. Hence G is not restricted by any m € N.

Lemma 3.2 (non-deleting e-free form). Let m € N,. For every m-MCFG G there
is a non-deleting e-free m-MCFG G, such that L(G) = L(G").

Proof. We can obtain G’ by applying the construction of e-free and non-deleting
form in that order, in Theorem 3.2 and 3.1, respectively, since the construction of

non-deleting form does not introduce new €’s. O]

Lemma 3.3 (restricted MCFG). Let m € N,. For each m-restricted non-deleting
e-free MCFG @G, there is an (m — 1)-restricted non-deleting e-free MCFG G’ such
that L(G) = L(G").

Construction. Let G = (N, X, P,S) be a non-deleting e-free MCFG of depth m for
some m € N,. We construct G' = (N, X, P, S) with

o P'={p:pe P dep(t) + 1 for each t € Tp with t(e) =p}u{p= (A, fo fi,A...
Al,lAlJrl...AkBl...Bx)Ip = (A, f, Al-nAl—lAlAHln-Ak) € P, dep(t) =1 for each
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teTp with t(e) = (A, f, A1...Ax),pr = (A}, f1, By...B,) € P for smallest [ € [k],
such that f; contains terminal symbols}, where f o f; is obtained from f by
replacing each a:f € Xy with ¢ = [ by fi(j), where each x{,’ € Xy, in fi(j) is
replaced by xg,,+k_1, and replacing each a:f € Xy with ¢ # [ by :cg_ Tk

Proof. G' is non-deleting and e-free, since the construction does not delete the
information used by any variable or introduce new €’s.

Let (A, f,A1...A 1 AjA;1.. A) € P with dep(t) = 1 for each t € Tp with t(e) =
(A, f, A1...Ay), and (A, fi, By...B,) € P such that f; contains terminal symbols.
Then for w; € (X*)s0rt(A) ;e (X*)5ort(Bs) | for each i € [k] and j € [x], there is

flwr, oo wig, fi(ug, oy Uy )y Wity ey W)

=(f o fi) (Wi, ooy W1, Wig1y oy Wy U .y Uy (%)

The (*) holds, since each variable wf € Xy replaced by a component of f; has the
same value as the component that replaces it, and each other variable xf € Xy has
the same value as the variable at the same position in f o f;. We show L(G) = L(G")
by proving L(G) ¢ L(G") and L(G") < L(G).

e We show that for each t' € T, there exits a t € Tp, such that yield(t") =
yield(t) by structural induction over ¢/. Let t' = p/(t],...,t}) € Tpr, where
P =(A, [ AL Ap).

— If p’ € P, then by induction hypothesis there exist ti,...,tx € Tp, such
that yield(t;) = yield(t;) for each i € [k]. Hence yield(p'(t},...,t})) =
yield(p'(t1, ..., tx)).

— if p’ ¢ P, then there exists an n € [k], such that there is a production
q= (B, fg, Apn..Ax) € P, and p = (A, f, A1.. A\ 1A/ BA.. Ay ) € P,
with f’ = fo fg by construction. For each t’ = p/(¢],...,t}) € T'pr, we have
by induction hypothesis, that there exist t1,...,¢_1,%;, 141, s b1, b,
tn+t, -, b € Tp, such that yield(t;) = yield(t)) for each i € [k]. By (*)
there exists t = p(ty,...,t-1,t, ¢(tn, -y tg), tists -y tno1) € Tp, such that
yield(t) = yield(t'). It follows that L(G’") ¢ L(G).

e We show that for each t € Tp, there exists a t’ € Tps, such that yield(t') =
yield(t) by structural induction over t. Let t =t = p(ty,...,tx) € Tp, where
p= (A, f, Al---AlflAlAlJrl-nAk) e P.
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— If p e P, then by induction hypothesis there exist t/,...,t; € Tps, such
that yield(t;) = yield(t]) for each ¢ € [k]. Hence yield(p(t},....t};)) =
yield(p(ty, ..., tg))-

— if p ¢ P’, then there is a production p; = (A, fi, B1...B;) € P, such that
f1 contains a terminal symbol, and p’ = (A, f o fi, A1...A;_1 Ajy1... A By
B,) € P'. For each tree t = p(t1,....t1,01(&15 &), tisty ooy tr) € T, We
have by induction hypothesis, that there exist ¢{,....¢_;,t;,1, .., £}, &1, o,
¢! e Tpr, such that yield(t)) = yield(t;) for each i € [k] {l}, and
yield(&!) = yield(&;) for each i € [x]. By construction there exists
t=p (.t oty &L s &) € T, and by (*) we have yield(t') =
yield(t). It follows that L(G) < L(G").

Since for each tree t € Tp with depth m, and each w € pos(t) with dep(t|,,) = 1,
terminal symbols are constructed into the production t(w), then for the tree ¢’
constructed from ¢, there is dep(t') = (m —1). Hence G’ is (m — 1)-restricted, and
L(G") = L(G). O

Example 3.9 (construction of (m — 1)-restricted MCFG). Let an MCFG G =
(N7 Z,P, S)? where N = {S,A,B,C,D},E = {a’ab7c7d}7P = {p17p27p37p47p57p67p7}7

and

b1 = (57 [QT%ZE%I’%[E%],AB), b2 = (A7 [IL’%,QT%],C),
p3=(B,[I‘%,J]%],D), p4=(c’ [axi,bx%],C’),
p5:(D,[C$%,dI%],D), p62(07 [a7b]7€)7

pr=(D,[c,d],€)

The depth of G is 2. We apply the construction in Lemma 3.3, and get G’ =
{N,E,P,,S} with P’ = {plvpévpévp47p5ap67p7apg7pg}v and

p1 = (S, [z1232723], AB), Py = (A [azy, bai], C),
ps = (B, [czy, dat], D), ps = (C, [az},b21], C),
ps = (D, [cxt,dx?], D), ps = (C, [a,b],€),
pr=(D,[c,d],e), Py = (A, [a,b],€),
ps = (B, [c.d],¢)

The depth of G’ is 1.
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Lemma 3.4 (O-restricted MCFG). Let m € N. For each m-restricted MCFG G,
there is an O-restricted MCFG G, such that L(G) = L(G").

Proof. Since the constructions of non-deleting and e-free form both preserve the
structure and each terminal symbol, then for each m-restricted MCFG G, there is
an m-restricted non-deleting e-free MCFG G” with L(G) = L(G").

Thus we apply the construction in Lemma 3.3 on G” for m times, and get the
O-restricted MCFG G’ with L(G) = L(G"). O

Theorem 3.5 (lexicalized). Let m € N. For each m-restricted MCFG G with
e ¢ L(G), there is a lexicalized MCFG G’, such that L(G) = L(G").

Construction. Let G = (N, X, P,S). We use the Lemma 3.4, and construct GG
to O-restricted G” = (N”, X, P" S"), hence L(G) = L(G"), and each production
has at least one terminal symbol. We use the construction of terminal separated
form in Theorem 3.3 to obtain G’, but for each production (A, f, A;...Ax) € P”
with terminal symbols aq,...,a, in f, we execute the construction over for each

i€[n] with ¢ > 1 only.

Proof. Since each production in P” contains at least one terminal symbol in the
composition function, then G’ is lexicalized. With the similar proof as in Theorem

3.3 we have L(G) = L(G"). O

Example 3.10 (lexicalized form). Let an MCFG G = (N, X, P,S) with N =
{S, A}, ¥ ={a,b,c}, and
ps = (A, [a,b,c],e€).

We apply the construction, and delete all non-terminal symbols that are not

reachable from S. We have G’ = (N U {@, [c]}, X, P, S) with

P = (S, [axtelatelad], AbTe)),  ph= (A, [axl, 2ad, 2da}), Alb]C)),
= (A, [a, 2}, 23], [b[€)), pY = (S, [axizd],[b]C)),
Dy = (@7 [b]7 6)7 Pe = (7 [C], 6)'
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4 Weighted multiple context-free grammers over

strong bimonoids

4.1 Strong bimonoids

A monoid is an algebra (A, -, 1) where - is associative and 1 is neutral element over

the operation -. An algebra (A, +,-,0,1) is called a strong bimonoid, if:
e (A, +,0) is a commutative monoid (i.e. the operation + is commutative),
e (A, 1) is a monoid,
o forecachae A:0-a=0=a-0.

A strong bimonoid (A, +,-,0,1) is commutative, if (A4,-,1) is commutative. A
complete bimonoid is a commutative bimonoid equipped with an infinitary sum
operation Y. In this paper we write A instead of (A, +,-,0,1).

Example 4.1 (Strong bimonoids). There are some strong bimonoids used in the

processing of natural languages.

e Complete commutative semiring, e.g.

Boolean semiring B = ({0,1},v,A,0,1),
probability semiring Pr = (R, +,,0, 1),
Viterbi semiring ([0, 1], max,-,0,1).

e Complete lattice,

e The tropical bimonoid, (Ryo U {co}, +, min, 0, o).

e The algebra ([0,1],®,-,0,1) with either a®b = a+b—a-b or a®b = min{a+b,1}

4.2 Weighted MCFG over strong bimonoids

We use the definition of weighted MCFG as presented by Denkinger [3, Definition
3] to define a weighted MCFG over strong bimonoids.
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Definition 4.1 (A-weighted MCFG). An A-weighted MCFG is a tuple (N, X, P,
S, ) such that (N, X, P,S) is an MCFG, p: P - A\{0}, and A is a complete

strong bimonoid.

Definition 4.2 (weighted language of an A-weighted MCFG). Let G = (N, X, P,
S, 1) be an A-weighted MCFG over a complete strong bimonoid A, Dg:=
Dn,x,ps). For each £ =p(&,...,&) € Dg. The weight function of G, denoted
by wtg, is inductively defined below:

wtq: Dg = A, wtg(§) = wtq(&) - ... - wiq (&) - p(p)

We abbreviate wtg to wt. Then we have weighted language of G, denoted by

[G:
[G):2* > A, [Glw) = ). wte(E)

£eDg(w)

where ) is the infinitary sum operation of the complete strong bimonoid A.

Example 4.2 (simple example of a weighted MCFG). Let G = (N, X, P, S, )
be an weighted MCFG over (R,+,-,0,1), where N = {S, A}, ¥ = {a,b,c},P =
(p17p27p37p4) with:

b1 = (S’ [6]76)7 :u(pl) =1, p2= (Sv [:E%x%I?]vA)a N(p2) =3,
P3 = (A7 [axi, bx%a Cl‘?]? A)7 M(pg) = 57 Pa= (A7 [67 €, 6]7 6)7 M(p4) = 2)

then for w =€, [G](w) = Leepy ) wt(E) = wt(&1) +wt(§p) =1+3-2=7.

Example 4.3 (simple example of a weighted MCFG). We use the former example
but using the weighting bimonoid Langy = (P(N*),u,-, @, {€}), where u:

b= (57 [6]76)’ :u(pl) = {1}7 P2 = (S’ [Iix%l’:{’],A), M(pQ) = {2},
b3 = (A, [ax%vaicx?]a‘él)a :U’(p?)) = {3}7 b= (Av [67 € 6]76)7 M(p4) = {0}7

then for w = €, [G1(1) = Teepes(y wH(E) = w(E) U wH(&) = {1} U {20} = {1,20},
where & and & are the same as in the example 3.2.
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4.3 Normal forms of weighted M CFG over strong bimonoids

An A-weighted MCFG G = (N, X, P, S, i) is non-deleting, e-free, terminal separated,
monotone, strongly monotone, or lexicalized, if (N, X, P,S) is non-deleting, e-free,
terminal separated, monotone or strongly monotone, respectively. From now on we

use A = (A, +,-,0,1) to denote an arbitrary complete strong bimonoid.

Corollary 4.1 (non-deleting normal form for A-weighted MCFG). For each A-
weighted MCFG G there exists a non-deleting A-weighted MCFG G’ such that
[G1=[G"]

Proof. Let G = (N, X, P, S, ). We recall Theorem 3.1. There exists a bijection
g: P > P with a given ¥. We set i/ = g;  with the same proof by Denkinger [2,
Lemma 2.7]. Hence Dg = D¢, [G] = [G]. O

Corollary 4.2 (e-free normal form for A-weighted MCFG). For each A-weighted
MCFG G there exists an e-free A-weighted MCFG G’ such that and [G] = [G'].

Proof. Let G =(N,X, P, S, ). We fix G'= (N', X, P, S i) with
e N/ P’ S" are exactly defined as in Theorem 3.2,

e for each production p' = (A[¥su,. v |, fow. w.,A1[V1]... Ax[¥]) € P, we
fix p/(p") = u((A, f, Ar... Ay)),

o we fix /LI((Sla [l’ﬂ,S[{l}])) =1, and MI((Slv [6]76)) = [G]](E)

Let P = P'~({(S", [€],€) }u{(S",[x1], S[{1}])}). We recall g and § from Theorem
3.2, Lot € = p(&f, &) € Tpn, € = G(E"), &1 = 4(EY), o & = §(€1), and p = g(p")
for some ¥y,...,¥,. Since g preserves the structure of trees in Tpr, and g is a
bijection, we have wtg(§) = wte(£").
Let ¢ = (5", [z1],S[{1}]), then for each w € L(G),
if w =€, then

[G'](w) = n(S", [e], €) = [G](e)
Otherwise,

[G'I(w) =" > wtei(E)

§eDgr(w)
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= > (g wte(g)

q(§")eDgr(w)

>, Loute(g(g")

q(§")eDgr(w)

Y 1-wite(§)

§eDg(w)

= [G](w)

Hence Dg = D¢, [G] = [G]. O

Corollary 4.3 (terminal separated normal form for A-weighted MCFG). For each
A-weighted MCFG G there exists a terminal separated A-weighted MCFG G, such
that Dg = D¢, and [G] = [G'].

Proof. We recall Theorem 3.3. Let & = p(&1,...,&) € Tp, & = p' (&1, &4y Eovty -
Eken) € Th,. We fix the weight of each production with a fresh non-terminal symbol
on the left side to 1, and fix u/(p’) = u(p) for each p’ € P’ constructed from p € P.

Then we have

wtg(€) = wtg(&1) oo wtg(&e) -1+ ... 1-u(p)

n

Ié] th,(fi) et thr(g;c) 3 | -,u(p)

n

wter(&1) - oo wtar (&) - wtar (Eker) - - W (§pan) - 1/ (P)
wtar(£'),

Hence [G] = [G"]. O

Corollary 4.4 (monotone normal form for A-weighted MCFG). For each A-
weighted MCFG G there exists a monotone A-weighted MCFG G’, such that
[G1=[G"]

Proof. We recall the bijection g and the construction in Theorem 3.4. Let G =
(N, X, P, S, i), then we construct G’ = (N', X, P’ S(), g%; 1), where (N', X, P, S())
is obtained by the construction from G. Since the construction without the per-
mutation of non-terminal symbols, which is used for the strongly monotone form,

preserves the structure of each tree, we have [G] = [G']. O
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Corollary 4.5 (strongly monotone normal form for A-weighted MCFG). For each
A-weighted MCFG G, where A is commutative, there exists a strongly monotone
A-weighted MCFG G, such that [G] = [G].

Proof. Let G = (N, X, P,S,u).We recall the function g and g in Theorem 3.4,
and construct G’ = (N’, X, P",S[(1)],97%; ), where N’ P’ are constructed in
the same way in Theorem 3.4. For each A € N, m € sort(A), and tree t’ =

(t7(1)> 7(k)) (Tpr) apr) with v obtained from 7 by the construction, there is
a unique t = g(t') = g(p’ )(tl, .y tr) € (Tp) 4. We have by structural induction over

th(t’)

wter(t') =wter (1)) -y wher () - (975 1) (1)

=Wt (ty(1))s - Wha(tyry) - (675 1) (@) (induction hypothesis)
=wtg(ty), ..., wta(te) - (g7 p)(P) (commutative of -)
=wtg(t1), ..., wta(ty) - p(p)
:th(t)
Hence [G] = [G']. O

Let m € N, A be a strong bimonoid. For each A-weighted MCFG G =
(N, X, P, S, i), we say that G is m-restricted, if (N, X, P,S) is m-restricted. We
say an MCFG G = (N, X, P, S) is unambiguous, if for each w € (X*)*, there exists at
most one t € Tp, such that w = yield(t). An A-weighted MCFG G = (N, X, P, S, i)

is unambiguous, if (N, X, P, S) is unambiguous.

Lemma 4.1 (unambiguous MCFG). Let m € N,. For each m-restricted unambigu-
ous MCFG G, the (m - 1)-restricted MCFG G,,_;1 constructed from G according

to Lemma 3.3 is unambiguous.

Proof. Let G = (N, X, P,S),Gp1 = (N, X, P,1,5). We recall Lemma 3.3. For
each tree ¢t € Tp, there is a unique tree t' € Tp _, constructed from ¢, such that
yield(t) = yield(t").

We assume that G,,_1 is ambiguous. Then for some w € (X*)*, there exist different
trees t),...,t, € Tp, ,, such that yield(t}) = w for each i € [n]. Thus there exist
t1,...,t, € Tp that construct ¢/, ...,/ respectively, such that yield(t;) = w for each

A (%)

i € [n], but then G is ambiguous. ¢ O

27



Corollary 4.6 (lexicalized normal form for A-weighted MCFG). Let m € N. For
each m-restricted unambiguous A-weighted MCFG G, where A is commutative and
distributive, there exists a lexicalized A-weighted MCFG G, such that [G] = [G'].

Proof. Let me N,G = (N, X, P,S, 1) be an m-restricted unambiguous A-weighted
MCFG. We recall the construction in Lemma 3.3. We fix the relation g ¢ P x P’
that assigns to each p € P all p’ € P’ it constructs, and fix the function h: Px P' - P
that assigns to each (p,p’) € P x P’ where p constructs p’, the p;, according to the
construction. We fix the function g:Tp — T that assigns to each tree in T the
tree it constructs.

We construct construct the (m—1)-restricted A-weighted MCFG G,,,-1 = (Npp-1, X,
P1, S, pim-1) from G with

e N, 1,P,_1 are the same as N', P’ respectively in Lemma 3.3,
e for each p' = (A, f o fl7 A1...Al_lAHl...AkBl...Bx) € Pm—l;

— if p" € P, then ju,,1(p’) = u(p'),

— otherwise, we set i, -1(p") = ¥ eyt () £(M(D, D)) - (D).

We have by structural induction over t’

wtg, (1) =wtg,, ,(t}) ... wlg,,  (t_1) - wtg, (1) - .- wta, (1))
WG,y (&1) o WhG, (§2) * Him-1 (D)
=wtg,, (1)) ... wtg, _(tj_1) - wta,, ,(t,1) ... wtg,,_, ()
wtG,, 1 (§1) o wta,, (&) - (> w(h(p,p)) - u(p))
peg™ ! (p")

(by construction)

= Z thmq(t,l) Tt thm—l(tE—l) “wtg,, (t2+1) Cewta,, (t;c)

peg " (p')
wia,,, (§1) o wia,,, (&) - w(p) - p(h(p,p")) - 1(p)
(distributive)
= Z thm—l(tll) Tt thm—l(tE—l) ) (thm—l (fi) Cewtg,, (5;)
peg ! (p')

u(h(p,p))) - wte,, ,(tq) - wic,, , (t;) - u(p) (commutative)

= 2 (2 wet) .- Y wte(ti))

peg 1 (p') treg(t)) ti1eg(t)_,)
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(C 2 wta(&)) - (), wte(&) u(h(p,p))))

£1€4(&1) £2€g(&r)
( Z wte (t)) - ( Z wtg(te)) - pn(p)
tiv1€9(t],q) treg(ty,)
(induction hypothesis)
= > wig(t) (dirstributive, definition of wt)
teg(t')

For each string w € X*, since GG,,,_1 and G are unambiguous, there are unique
¢ eTp and & € T, such that yield(§) = yield(§') = w. Then we have
[Grn-1](w) =witc,, , (1)
= > wta(t)

teg(t')

=wtg(t) (t is unique)

=[GT(w).
Hence [G-1] = [G].

We repeat the former construction, until a O-restricted A-weighted MCFG Gy =
(No, X, Py, S, 110) is generated, thus [Gy] = [G]. We construct the lexicalized A-
weighted MCFG G’ = (N', X, P',S) from G with

e N'=Nyu{lalaeX},
e P’ is constructed the same as in Theorem 3.5,

e 1/ is constructed the same as in Corollary 4.3.

[Go] = [G']. holds with the same proof of Corollary 4.3. Hence [G'] = [G]. O

5 Conclusion

We have formally recalled weighted MCFGs over strong bimonoids, and modified
the existing construction of above mentioned forms except of lexicalized form. The
construction of lexicalized form is brand new, and works only for a syntactically
restricted subset of MCFG.

There are no restrictions to the weight algebra for the construction of normal
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forms, if a bijection exists between original trees and constructed ones, and the
construction preserves structure of each tree. The constructions of non-deleting,
monotone and e-free forms fulfill exactly that condition. For terminal separated
form, the construction extends each trees with branches consisting of terminating
productions only, which almost preserve the structure of each tree, thus there
are no restrictions the weight algebra either. During the construction of strongly
monotone forms, there are permutations of non-terminal symbols on the right
side of some productions, which leads to the requirement of commutativity of the
weight algebra. The construction of lexicalized form for unweighted case requires
a restricted MCFG, and changes structure of each tree severely by merging some
children trees to the father node. The construction of lexicalized form for a weighted
MCFG, however, requires further restriction to MCFG, and commutativity and
distributivity of the weight algebra. There could exist other weight functions for
lexicalized form with different further restrictions to an MCFG.

Since the above claims are based on each construction, further work could be the

searching for some alternative constructions with less restrictions.
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