
Bachelorarbeit

Weighted Multiple Context-Free
Grammars over Strong Bimonoids

Zhiang Liu

14. November 2016

Technische Universität Dresden
Fakultät Informatik

Erstgutachter: Prof. Dr.-Ing. habil. Heiko Vogler

Zweitgutachter: Dr. rer. nat. Daniel Borchmann

Betreuer: Dipl.-Inf. Tobias Denkinger

Aufgabenstellung für die
Bachelorarbeit

„Normal forms for weighted multiple context-free grammars“

Technische Universität Dresden
Fakultät Informatik

Student: Liu, Zhiang
Geburtsdatum: 25. April 1991
Matrikelnummer: 3846132
Studiengang: Bachelor Informatik (2009)

Studienleistung: Bachelorarbeit (12 LP, ca. 360 Arbeitsstunden)
Beginn am: 22. August 2016
Einzureichen am: 14. November 2016

Verantw. Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler
1. Gutachter: Prof. Dr.-Ing. habil. Heiko Vogler
2. Gutachter: Dr. rer. nat Daniel Borchmann
Betreuer: Dipl.-Inf. Tobias Denkinger

Gewichtete Grammatiken und Automaten Grammatiken und Automaten können
mit einer Gewichtungsfunktion versehen werden, die jeder Produktion bzw. Transition
einen Wert aus einer Gewichtsalgebra zuordnen. Diese Gewichtungsfunktion erzeugt
eine Dekoration der Ableitungsbäume bzw. Läufe durch deren Auswertung (in der
Gewichtsalgebra) jedem Ableitungsbaum bzw. Lauf ein Gewicht zugeordnet wird. Aus
den Gewichten aller Ableitungsbäume bzw. Läufe eines bestimmten Wortes wird dann ein
Gewicht für dieses Wort berechnet. Als Gewichtsalgebren werden u.A. Halbringe [DKV09;
SS78; Goo99], Verbände [DV12], oder Valuierungsmonoide [DM11; DV14] verwendet.

Multiple context-free grammars Natürliche Sprachen weisen Merkmale auf, die
von kontextfreien Grammatiken nicht darstellbar sind, z.B. kann ein Teilsatz eine Lücke
haben, in die vom Kontext abhängiger Inhalt eingefügt wird. Um allerdings die hohe
Parsingkomplexität kontextsensitiver Grammatiken (nämlich PSPACE-complete) zu
vermeiden, betrachtet man Formalismen, die diese Lücken zwar darstellen können, aber

1 / 5

dennoch polynomiell parsbar sind. Man fasst solche Formalismen unter dem Begriff
mildly context-sensitive formalisms zusammen. Dazu gehören z.B. head grammars, tree
adjoining grammars, combinatory categorial grammars, linear indexed grammars, linear
context-free rewriting systems, und minimalist grammars. Multiple context-free grammars
(kurz: MCFG) wurden von Pollard [Pol84] im Kontext natürlicher Sprachen eingeführt
[siehe auch Sek+91]. Es hat sich herausgestellt, dass alle oben genannten (und noch einige
weitere) Formalismen bzw. deren Frontsprachen eine kleinere oder die gleiche Sprachklasse
wie MCFG erzeugen [Sek+91; VWJ86; WJ88; Vij87; Mic01a; Mic01b]. MCFG haben
daher besondere Bedeutung für die Verarbeitung natürlicher Sprache [Eva11].

Normalformen Normalformen sind syntaktische Einschränkungen eines Formalismus,
die aber keine Einschränkung der erzeugten Sprachklasse zur Folge haben; sie werden
u.A. genutzt um die Effizienz von Algorithmen, die mit dem entsprechenden Formalismus
arbeiten, zu steigern. MCFG lassen verschiedene Normalformen zu, z.B. non-deleting
normal form [Sek+91, Lemma 2.2: (f3)], 𝜀-free normal form [Sek+91, Lemma 2.2: (N3)
und (N4)], terminal separated normal form [Sek+91, Lemma 2.2: (N1), (N2), und (N5)],
monotone normal form (in der Definition von Kracht [Kra03, Definition 5.4.3] sowie
Kuhlmann [Kuh07, Abschnitt 6.2.3] und Kuhlmann [Kuh13, Property 2]), und lexicalized
normal form [Kuh07, Definition 618]. Siehe Kuhlmann [Kuh13, Abschnitt 5.1] für einen
Überblick.

Aufgaben Der Student soll MCFG gewichtet mit starken Bimonoiden formal definieren.
Für die starken Bimonoide ist eine Liste konkreter für die Verarbeitung natürlicher Spra-
che relevanter Beispiele anzugeben. Es sollen gewichtete Versionen der oben genannten
Normalformen definiert und deren Universalität unter Angabe der nötigen Einschrän-
kungen an die Gewichtsalgebra durch einen konstruktiven Beweis gezeigt werden. Die
Gewichtsalgebra soll dabei jeweils so wenig wie möglich eingeschränkt werden. Desweite-
ren soll für jede Normalformkonstruktion ein Algorithmus angegeben werden und dessen
partielle Korrektheit gezeigt werden. Die Beweise der Terminierung dieser Algorithmen
sowie die Betrachtung weiterer (d.h. oben nicht genannter) Normalformen ist wünschens-
wert, aber in Rahmen der Arbeit optional.

Form Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss
in sich abgeschlossen sein und alle nötigen Definitionen und Referenzen enthalten. Die
Urheberschaft von Inhalten – auch die eigene – muss klar erkennbar sein. Fremde
Inhalte, z.B. Algorithmen, Konstruktionen, Definitionen, Ideen, etc., müssen durch genaue
Verweise auf die entsprechende Literatur kenntlich gemacht werden. Lange wörtliche
Zitate sollen vermieden werden. Gegebenenfalls muss erläutert werden, inwieweit und zu
welchem Zweck fremde Inhalte modifiziert wurden. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit geführt werden. Die Darstellung
aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Für jeden wichtigen
Begriff sollen Erläuterungen und Beispiele angegeben werden, ebenso für die Abläufe
der beschriebenen Verfahren. Wo es angemessen ist, sollen Illustrationen die Darstellung
vervollständigen. Bei Diagrammen, die Phänomene von Experimenten beschreiben, muss

2 / 5

deutlich erläutert werden, welche Werte auf den einzelnen Achsen aufgetragen sind, und
beschrieben werden, welche Abhängigkeit unter den Werten der verschiedenen Achsen
dargestellt ist. Schließlich sollen alle Lemmata und Sätze möglichst lückenlos bewiesen
werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.

Ablauf Zusätzlich zu den Regelungen der Prüfungsordnung gelten folgende Absprachen
zum Ablauf der Arbeit: Student und Betreuer treffen sich regelmäßig. Zu den Treffen
informiert der Student den Betreuer über den aktuellen Stand der Arbeit. Der Betreuer
beantwortet eventuelle Fragen des Studenten und gibt Rückmeldung zum Fortschritt und
zur Qualität des aktuellen Standes der Arbeit. Im Laufe der Bearbeitungszeit, idealerweise
etwa zu deren Hälfte, hält der Student einen Statusvortrag zum Fortschritt seiner Arbeit.

Dresden, 2016-08-04

Unterschrift von Heiko Vogler Unterschrift von Liu, Zhiang

3 / 5

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Bachelorarbeit selb-

stständig und nur unter Zuhilfenahme der angegebenen Literatur

verfasst habe.

Dresden 14.11.2016

Unterschrift

4

Contents

1 Introduction 6

1.1 Intuition of the thesis . 6

1.2 Outline of the thesis . 6

2 Preliminaries 7

3 Multiple context-free grammars 8

3.1 MCFG . 8

3.2 Normal forms . 10

4 Weighted multiple context-free grammers over strong bimonoids 23

4.1 Strong bimonoids . 23

4.2 Weighted MCFG over strong bimonoids 23

4.3 Normal forms of weighted MCFG over strong bimonoids 25

5 Conclusion 29

5

1 Introduction

1.1 Intuition of the thesis

The multiple context-free grammars (shorted: MCFG) are introduced by Seki

et.al. [6, Definition 2.2] for the processing of natural languages as a replacer of

context-free grammars (shorted: CFG), which are less powerful. MCFGs extend

CFGs by equipping a function for each production, which can get information

from non-terminal symbols on the right side, and each non-terminal symbol yields

fixed-size tuples of strings, where the size is determined by the function. Each

component of the tuple generated by a non-terminal symbol can be used only once

in the function within a production.

Syntactic restrictions of MCFG are needed for the developing of algorithms, and

some of which are normal forms of MCFG that can be effectively constructed.

Weighted grammars are used widely in many cases that requires an evaluation of the

words they derive, like search engines that determine which part in a given keyword

is most interesting for users. A strong bimonoid (A,+, ⋅,0,1) does not require

commutativity of the operation ⋅, which leads to a wider potential application,

but notice that some syntactic restrictions of MCFG may also restrict the weight

algebra.

1.2 Outline of the thesis

In chapter 2 we will fix some important notations that will be used throughout this

thesis. Then in chapter 3 we will use the composition representation (introduced

by Denkinger [1, Section 2.1]) to recall MCFG, and its syntactic restrictions of

the unweighted case, which are non-deleting form [6, Lemma 2.2 f3], ε-free form

[6, Lemma 2.2 N3+N4], terminal separated form [6, Lemma 2.2 N5], monotone

form [4, Definition 5.43, Page 442], strongly monotone form [5, Section 6.2.3], and

lexicalized form [5, Definition 618]. In chapter 4 we will list some of the most

used strong bimonoids, and recall weighted MCFG, and fix the constructions of

syntactic restrictions, which are extended from non-weighted case, where we also

fix the restriction they impose on to the weight algebra . In the last chapter we

will briefly review the ideas of Proofs.

6

2 Preliminaries

We use N to denote the set of all natural numbers including 0. The set N ∖ {0} is

denoted by N+. The set {k∶k ∈ N+, k ≤ x} for some x ∈ N+ is denoted by [x]. The

empty word is written as ε. An alphabet is a finite set. We write A ⊆fin B, if A is

a finite subset of B. We use ∣w∣ to refer to the length of the string w over some

alphabet, and w⟨i⟩ with i ∈ [∣w∣] refers to the i-th symbol of w. We fix a set of

variables X(s1...sk,s) = {xji ∶ i ∈ [k], j ∈ [si]} for each k ∈ N, s1, ..., sk, s ∈ N+.

Definition 2.1 (permutations). Let k ∈ N+. A permutation over [k] is a

bijection π∶ [k] → [k]. We say π is the identity on [k], if π(i) = i for each

i ∈ [k].

Definition 2.2 (sorted sets). Let S be a countable set. An S-sorted set is a

tuple (A, sort), where A is a set and sort is a function from A to S. For each

s ∈ S, we abbreviate the set {a ∈ A∶ sort(a) = s} by As.

Definition 2.3 (trees). Let Σ be an (S∗ × S)-sorted set. The set of trees

over Σ, denoted by TΣ, is the smallest S-sorted set T , such that for every

k ∈ N, s, s1, ..., sk ∈ S, t1 ∈ Ts1 , ..., tk ∈ Tsk , and σ ∈ Σ(s1...sk,s), we have that

σ(t1, ..., tk) ∈ Ts.

Definition 2.4 (characterization of trees). Let Σ be an alphabet, ξ = σ(ξ1, ...,
ξk) ∈ TΣ. The height and position of trees, denoted by height and pos respec-

tively, are

height(ξ) = 1 +max{height(ξi)∶ i ∈ [k]}
pos(ξ) = {ε} ∪ {iv∶ i ∈ [k], v ∈ pos(ξi)}

We denote the label at w as ξ(w).

7

Definition 2.5 (subtrees). Let Σ be an alphabet, t = σ(t1, ..., tk) ∈ TΣ. For

each w ∈ pos(t), the subtree with root at the position w is t∣w, such that for

each u ∈ pos(t∣w), there is t∣w(u) = t(wu).

3 Multiple context-free grammars

3.1 MCFG

In order to describe properties of weighted multiple context-free grammars, we recall

definitions from Denkinger [1, Section 2.1]:

Definition 3.1 (composition representations). Let Σ be an alphabet, and

u1, ..., us ∈ (Σ ∪X(s1...sk,s))∗, then the string [u1, ..., us](s1...sk,s) is a composition

representation, if the variable xji ∈ X(s1...sk,s) occurs in u1...us at most once,

for each i ∈ [k], j ∈ [si]. We fix the set of all composition representations

over Σ as RΣ. We can conceive RΣ as an N∗ ×N-sorted set, where for each

r = [u1, ..., us](s1...sk,s) ∈ RΣ, we set sort(r) = (s1...sk, s).

Definition 3.2 (composition functions). For r = [u1, ..., us](s1...sk,s) ∈ RΣ, the

composition function with respect to r is:

fr∶ (Σ∗)s1 × ... × (Σ∗)sk → (Σ∗)s

fr((w1
1, ...,w

s1
1), ..., (w1

k, ...,w
sk
k)) = (u′1, ..., u

′
s)

for all w1
1, ...,w

s1
1 , ...,w

1
k, ...,w

sk
k ∈ Σ∗, where for each κ ∈ [s], u′κ is obtained from

uκ by replacing every occurrence of xji ∈X(s1...sk,s) by wji for all i ∈ [k], j ∈ [si].

In the following we will not distinguish between r and fr. We also write [u1, ..., us]
instead of [u1, ..., us](s1...sk,s) when referring to composition functions, and write Xf

instead of X(s1...sk,s) for f = [u1, ..., us](s1...sk,s).

Example 3.1 (composition functions). Let Σ = {a, b},X = {x11, x21, x12, x22} and

r = [ax11b, bx22b](22,2), then for the tuple T ∶= ((ab, ba), (bb, aa)) we have fr(T) =
(aabb, baab).

8

We recall the definition of multiple context-free grammars from Seki, Matsumura,

Fujii and Kasami [6, Definition 2.2]:

Definition 3.3 (multiple context-free grammars). A multiple context-free

grammar (short: MCFG) is a tuple G = (N,Σ,P,S) where

• N is a finite N+-sorted set (non-terminal symbols),

• Σ is an alphabet (terminal symbols),

• P ⊆fin ⋃s1,...,sk,s∈N+Ns × (RΣ)(s1...sk,s) × (Ns1 ⋅ ... ⋅Nsk).

• S ∈ N1.

Let an MCFG G = (N,Σ,P,S). We conceive P as an (N∗ ×N)-sorted set with

sort(p) = (A1...Ak,A) for each p = (A,f,A1...Ak) ∈ P . We define a function

fan ∶P → N+, where for each production p = (A,f,A1...Ak) ∈ P, fan(p) = sort(A),
called fan-out of p and p with k = 0 is called a terminating production. We write fp

to indicate the composition function of p. We also call k the rank of p. The fan-out

of G is max{fan(p)∶p ∈ P}, and an MCFG with fan-out at most m is called an

m-MCFG.

Definition 3.4 (derivations of MCFG). Let G = (N,Σ,P,S) be an MCFG.

Then the set of derivations of G, denoted by DG, is (TP)S.

We define the function yieldG∶TP → (Σ∗)∗. For each ξ = p(ξ1, ..., ξk) ∈ TP with

p = (A,f,A1...Ak) ∈ P , We have:

yieldG(ξ) = f(yieldG(ξ1), ..., yieldG(ξk))

A string w ∈ Σ is called derivable in G, if there exists a derivation ξ, such

that yieldG(ξ) = w. We abbreviate yieldG to yield , and denote the set of all

strings that is derivable in G by L(G), DG(A) ∶= (TP)A for each A ∈ N , and

DG(w) ∶= {ξ∶ ξ ∈DG, yield(ξ) = w} as derivations of w by G. For each A,B ∈ N
we say B is reachable from A, if there is a ξB ∈DG(B) and ξA ∈DG(A), such

that ξB is a subtree of ξA. For each A ∈ N and w ∈ yield(DG(A)), we fix w⟨i⟩
with i ∈ [sort(A)] to refer to the i-th component of w.

9

ξ1 = (S, [ε], ε)

ξ2 = (S, [x11x21x31],A)

(A, [ε, ε, ε], ε)

(a) Derivations of example 3.2

(S, [x11x21x12x22],AB)

(A, [ax11, cx12],A)

(A, [ε, ε], ε)

(B, [bx11, dx12],B)

(B, [bx11, dx12],B)

(B, [ε, ε], ε)

(b) Derivations of example 3.3

Figure 1: Derivation Examples

Example 3.2 (MCFG). For the formal language L = {anbncn∶n ∈ N}, we have

G = (N,Σ,P,S), with P = {p1, p2, p3, p4},N = {S,A},Σ = {a, b, c} and:

p1 = (S, [ε], ε), p2 = (S, [x11x21x31],A),
p3 = (A, [ax11, bx21, cx31],A), p4 = (A, [ε, ε, ε], ε),

that L(G) = L. The two derivations of w2 = ε are shown in Figure 1a.

Example 3.3 (MCFG). For the formal language L = {anbmcndm∶m,n ∈ N},

there exists an MCFG G = (N,Σ,P,S), such that L(G) = L. Consider P =
{p1, p2, p3, p4, p5},N = {S,A,B},Σ = {a, b, c, d} and:

p1 = (S, [x11x12x21x22],AB), p4 = (B, [bx11, dx21],B),
p2 = (A, [ax11, cx21],A), p5 = (B, [ε, ε], ε),
p3 = (A, [ε, ε], ε),

The only derivation of w1 = abbcdd is shown in Figure 1b.

3.2 Normal forms

We recall some syntactical restrictions of MCFGs from the literature.

Definition 3.5 (Syntactical restrictions to composition functions). Let Σ be

an alphabet, and r = [u1, ..., us](s1...sk,s) ∈ RΣ. We call r

• non-deleting if all elements of X(s1...sk,s) occur in u1...us;

10

• ε-free if ε ∉ {u1, ..., us};

• terminal separated if r is in a terminating rule, we have s = 1 with

u1 ∈ (Σ∪{ε}), and if r is in a non-terminating rule, we have uκ ∈X∗

(s1...sk,s)

for each κ ∈ [s];

• monotone [4, Definition 5.43, Page 442] if for each fixed i ∈ [k], all xji
with j ∈ [si] occur in the increasing order of j from left to right in u1...uk;

• strongly monotone [5, Section 6.2.3] if r is monotone, and all x1i , i ∈ [k]
occur in the increasing order of i from left to right in u1...uk;

• lexicalized [5, Definition 618] if u1...us contains exactly one terminal

symbol.

Definition 3.6 (Syntactical restrictions to MCFG). Let G = (N,Σ,P,S) be

an MCFG, then we call G

• ε-free if the composition function of all productions are ε-free, or (S, [ε], ε)
is the only production whose composition function is not ε-free, and if

(S, [ε], ε) ∈ P , then S does not occur on the right side of any productions;

• non-deleting, terminal separated, monotone, strongly monotone, or lexi-

calized if the composition functions of all productions are non-deleting,

terminal separated, monotone, strongly monotone, or lexicalized, respec-

tively.

Definition 3.7 (tuple restriction). LetG = (N,Σ,P,S) be an MCFG, yield ∶TP →
(Σ∗)∗, and Ψ = {s1, ..., sn} ⊆ N+ with s1, ..., sn ∈ N+ in increasing order.

The tuple restriction with respect to Ψ is ⟦Ψ⟧∶ (Σ∗)∗ → (Σ∗)∗, where for

a given w = (w1, ...,wk) ∈ (Σ∗)∗ with w1, ...,wk ∈ Σ∗ and k ≥ sn, we have

⟦Ψ⟧(w) = (ws1 , ...,wsn).
We fix yieldΨ = yield ; ⟦Ψ⟧, and n[M] = ∣{i∶ i ∈M,n > i}∣ for each n ∈ N+,M ⊂ N+.

11

Definition 3.8 (restricted composition function). Let Σ be some alphabet,

f = [u1, ..., us](s1...sk,s) be a composition function, Ψ ⊆ [s], Ψ1 ⊆ [s1], ..., Ψk ⊆ [sk].
The restricted composition function with respect to Ψ,Ψ1, ..., Ψk and f is

fΨ,Ψ1,...,Ψk ∶ (Σ∗)∣Ψ1∣ × ... × (Σ∗)∣Ψk ∣ → (Σ∗)∣Ψ ∣,

The function fΨ,Ψ1,...,Ψk is obtained from f : we replace each xji ∈X(s1...sk,s) with

j ∉ Ψi by ε, and delete each component ul with l ∉ Ψ , and replace each remaining

xji ∈X(s1...sk,s) by x
j−j[[si]∖Ψi]
i .

Lemma 3.1 (restricted composition function). Let Σ be some alphabet, f = [u1, ...,
us](s1...sk,s) be a composition function, and Ψ ⊆ [s], Ψ1 ⊆ [s1], ..., Ψk ⊆ [sk]. Let

v1 ∈ (Σ∗)s1 , ..., vk ∈ (Σ∗)sk , such that for each xji ∈ X(s1...sk,s), if xji occurs in

⟦Ψ⟧(u1, ..., us), and j ∉ Ψi, then vi⟨j⟩ = ε. We have

fΨ,Ψ1,...,Ψk(⟦Ψ1⟧(v1), ..., ⟦Ψk⟧(vk)) = ⟦Ψ⟧(f(v1, ..., vk)).

Proof. Let (w1, ...,wl) = ⟦Ψ⟧(f(v1, ..., vk)), and Ψ = {p1, ..., pl} with p1 < p2 < ... < pl.
Then we have wi = [upi](v1, ..., vk). Let u′pi be constructed from upi by Definition

3.8 for each i ∈ [l]. There is [upi](v1, ..., vk) = [u′pi](⟦Ψ1⟧(v1), ..., ⟦Ψk⟧(vk)), since

each component deleted by Ψ1, ..., Ψk but used by some variable in upi is ε, and this

this variable is replaced by ε in u′pi , and each component preserved by Ψ1, ..., Ψk

is used in the same position of u′pi and upi according to the variable renaming in

Definition 3.8. Thus

⟦Ψ⟧(f(v1, ..., vk)) = ⟦Ψ⟧([u1, ..., us](v1, ..., vk))
= [up1 , ..., upl](v1, ..., vk)
= [u′p1 , ..., u′pl](⟦Ψ1⟧(v1), ..., ⟦Ψk⟧(vk)) (by the text above)

= fΨ,Ψ1,...,Ψk(⟦Ψ1⟧(v1), ..., ⟦Ψk⟧(vk)) (by Definition 3.8)

Theorem 3.1 (Non-deleting). [6, Lemma 2.2 f3] For every m-MCFG G there

is a non-deleting m-MCFG G′, such that L(G) = L(G′).

12

Construction. Let G = (N,Σ,P,S). We recall the construction by Seki, Mat-

sumura, Fujii, and Kasami [6, Lemma 2.2 f3]. We construct G′ = (N ′,Σ,P ′,

S[{1}]), where

• N ′ = {A[Ψ]∶A ∈ N,Ψ ⊆ [sort(A)]}, where sort(A[Ψ]) = ∣Ψ ∣ for each A ∈ N
and Ψ ⊆ [sort(A)].

• P ′ = {(A[Ψ], fΨ,Ψf,1,Ψ ,...,Ψf,k,Ψ ,A1[Ψf,1,Ψ]...Ak[Ψf,k,Ψ])∶ (A,f,A1...Ak) ∈ P,

Ψ ⊆ [sort(A)]}, where for each s1, ..., sk, s ∈ N, f ⊆ (RΣ)(s1...sk,s), and Ψ ⊆ [s],
we fix Ψf,i,Ψ = {j ∈ [si]∶ ∃l ∈ Ψ.xji occurs in ul}, for each i ∈ [k]1.

Proof. The function fΨ,Ψf,1,Ψ ,...,Ψf,k,Ψ of each constructed production is non-deleting

by the construction of Ψf,1,Ψ , ..., Ψf,k,Ψ for each p = (A,f,A1...Ak) ∈ P and Ψ ⊆
[sort(A)]. We fix the function g∶P ′ → P that assigns the original production to its

constructed one, and ĝ∶TP ′ → TP that applies g position-wise. We can conceive that

ĝ is a bijection between (T ′

P)A[Ψ] and (TP)A with a given Ψ for each A ∈ N , and g is

a bijection between P ′ with a fixed Ψ and P , proved by Denkinger [2, Lemma 5]. Let

p = (A, [u1, ..., us],A1...Ak) ∈ P, d = p(d1, ..., dk) ∈ DG(A), Ψ = {i∶ i ∈ [s], ui ≠ ε}, d′ =
p′(d′1, ..., d′k) = ĝ−1(d), and Ψf,1,Ψ , ..., Ψf,k,Ψ are fixed according to the construction.

Then we have the following structural induction over ⟦Ψ⟧(yield(d)) = yield(d′)∶

⟦Ψ⟧(yield(d))
=⟦Ψ⟧(yield(p(d1, ..., dk)))
=fΨ,Ψf,1,Ψ ,...,Ψf,k,Ψ (⟦Ψf,1,Ψ⟧(yield(d1)), ..., ⟦Ψf,k,Ψ⟧(yield(dk))) (Lemma 3.1)

=fΨ,Ψf,1,Ψ ,...,Ψf,k,Ψ (yield(d′1), ..., yield(d′k)) (induction hypothesis)

=yield(d′)

Thus for each derivation d ∈DG, and for each d′ ∈DG′ , d′ = ĝ−1(d), we have

yield(d) = ⟦{1}⟧(yield(d)) = yield(d′)

Hence G′ is non-deleting, and L(G) = L(G′).

Example 3.4 (non-deleting form). For some MCFG G = (N,Σ,P,S) with Σ =
{a, b, c},

p1 = (S, [x11x21x31],A), p2 = (A, [ax11, bx21, cx31, x41],A),
1Note that each Ψi with i ∈ [k] is defined as the set of positions of unused variables of Ai in

the original paper, but of used variables here.

13

p3 = (A, [ε, ε, ε, b], ε)

after the procedure from Theorem 3.1, and removal of all productions containing

non-terminal symbols that are not reachable from S[{1}], we have:

p′1 = (S[{1}], [x11x21x31],A[{1,2,3}]), p′2 = (A[{1,2,3}], [ax11, bx21, cx31],A[{1,2,3}]),
p′3 = (A[{1,2,3}], [ε, ε, ε], ε)

Theorem 3.2 (ε-free). [6, Lemma 2.2 N3+N4] For every m-MCFG G there is

an ε-free m-MCFG G′, such that L(G) = L(G′).

Construction. Let G = (N,Σ,P,S). We use the construction by Seki et. al. [6,

Lemma 2.2], and G′ = (N ′,Σ,P ′, S′), where

• N ′ = {A[Ψ]∶A ∈ N,Ψ ⊆ [sort(A)]} ∪ {S′},

• P ′ = {(S′, [ε], ε)∶ ε ∈ L(G)} ∪ {(S′, [x11], S[{1}])} ∪ {(A[Ψf,Ψ1,...,Ψk],
fΨf,Ψ1,...,Ψk ,Ψ1,...,Ψk ,A1[Ψ1]...Ak[Ψk])∶ (A,f,A1...Ak) ∈ P,Ψ1 ⊆ [sort(A1)], ...,
Ψk ⊆ [sort(Ak)]}, where for each f = [u1, ..., us](s1...sk,s), Ψ1 ⊆ [sort(A1)], ...,
Ψk ⊆ [sort(Ak)], we fix Ψf,Ψ1,...,Ψk ⊆ [sort(A)], such that for each l ∈ Ψf,Ψ1,...,Ψk ,

ul contains at least one terminal symbol, or at least one variable from the set

{xji ∶x
j
i ∈X(s1...sk,s), j ∈ Ψi}.

Proof. It is obvious that each production other than (S′, [ε], ε) is ε-free, hence the

constructed G′ is ε-free. Let P ′′ = P ′ ∖ ({(S′, [ε], ε)} ∪ {(S′, [x11],
S[{1}])}). We fix the function g∶P ′′ → P that assigns the original production to

its constructed one, and the function ĝ∶TP ′′ → TP applying g position-wise. We

can conceive that ĝ is a bijection between (TP ′′)A[Ψf,Ψ1,...,Ψk]
and (TP)A according to

Denkinger [2, Lemma 5]. For each p = (A, [u1, ..., us],A1...Ak) ∈ P, d = p(d1, ..., dk) ∈
DG(A), d′′ = p′(d′′1 , ..., d′′k) = ĝ−1(d), Ψ1 ⊆ [sort(A1)], ..., Ψk ⊆ [sort(Ak)], we have by

structural induction over d:

⟦Ψf,Ψ1,...,Ψk⟧(yield(d))
=⟦Ψf,Ψ1,...,Ψk⟧(yield(p(d1, ..., dk)))
=fΨf,Ψ1,...,Ψk ,Ψ1,...,Ψk(⟦Ψ1⟧(yield(d1)), ..., ⟦Ψk⟧(yield(dk))) (Lemma 3.1)

14

=fΨf,Ψ1,...,Ψk ,Ψ1,...,Ψk(yield(d′′1), ..., yield(d′′k)) (induction hypothesis)

=yield(d′′)

For w ∈ L(G) with w = ε, we have w ∈ L(G′) because of the production (S′, [ε], ε).
For each w ∈ L(G) with w ≠ ε, we use the fact that

yield(DG) = ⟦{1}⟧(yield(DG)) = yield(DG′′) = yield(DG′).

Hence L(G) = L(G′).

Example 3.5 (ε-free form). We use the Example 3.2 to show a construction of

ε-free form. For the productions:

p1 = (S, [ε], ε), p2 = (S, [x11x21x31],A),
p3 = (A, [ax11, bx21, cx31],A), p4 = (A, [ε, ε, ε], ε),

after the procedure from Theorem 3.2, and removal of all productions containing

non-terminal symbols that are not reachable from S′, we have:

pε = (S′, [ε], ε), ps = (S′, [x11], S[{1}]),
p′2 = (S[{1}], [x11x21x31],A[{1,2,3}]), p′3 = (A[{1,2,3}], [ax11, bx21, cx31],A[{1,2,3}]),
p′′3 = (A[{1,2,3}], [a, b, c],A[∅]), p′4 = (A[∅], [], ε).

Theorem 3.3 (Terminal separated). [6, Lemma 2.2 N5] For every m-MCFG

G there is a terminal separated m-MCFG G′, such that L(G) = L(G′).

Construction. Let G = (N,Σ,P,S). We construct G′ = (N ′,Σ,P ′, S), where

• N ′ = {A∶A ∈ N} ∪ { a ∶a ∈ Σ ∪ {ε}},

• P ′ = {(A,fa1,...,an ,A1...Ak a1 ... an)∶ (A,f,A1...Ak) ∈ P, a1, ..., an are terminal

symbols in f} ∪ {(a , [a], ε)∶a ∈ Σ}, where fa1,...,an is obtained from f by

replacing ai by x1k+i for each i ∈ [n].

Proof. We fix a function g∶P → P ′ that assigns to each p ∈ P the production

constructed from it, and a function ĝ∶TP → TP ′ applying g position-wise, where

ĝ(p(t1, ..., tk)) = g(p)(ĝ(t1), ..., ĝ(tk), (a1 , [a1], ε), ..., (an , [an], ε)) for each tree

15

p(t1, ..., tk) ∈ TP , where a1, ..., an are the terminal symbols in the composition

function of p.

Then g−1 is a function, since g(p)(ĝ(t1), ..., ĝ(tk), (a1 , [a1], ε), ..., (an , [n], ε)) is

unique for each p(t1, ..., tk). Let ξ = p(ξ1, ..., ξk) ∈ TP , and

ξ′ = ĝ(ξ) = g(p)(ĝ(ξ1), ..., ĝ(ξk), (a1 , [a1], ε), ..., (an , [n], ε)),

then we have the following structural induction for yield(ξ) = yield(ĝ(ξ))∶

yield(ξ) = fp(yield(ξ1), ..., yield(ξk))
= fp(yield(ĝ(ξ1)), ..., yield(ĝ(ξk))) (induction hypothesis)

= fg(p)(yield(ĝ(ξ1)), ..., yield(ĝ(ξk)), a1, ..., an) (∗)

= yield(ĝ(ξ))

The (∗) holds since ai in fp is replaced by x1k+i in fp′ , which refers to ai , and for

the unique t ∈ DG′(ai) there is yield(t) = ai, for each i ∈ [n]. Since the function

ĝ is bijective, and there is DG′ = ĝ(DG), we have yield(DG) = yield(ĝ(DG)) =
yield(DG′), hence L(G) = L(G′).

Example 3.6 (Terminal separated form). We use the Example 3.2 to show the

construction. For the productions:

p1 = (S, [ε], ε), p2 = (S, [x11x21x31],A),
p3 = (A, [ax11, bx21, cx31],A), p4 = (A, [ε, ε, ε], ε),

we have the terminal separated form:

p′1 = (S, [x11], ε), p′2 = (S, [x11x21x31],A),
p′3 = (A, [x12x11, x13x21, x14x31],A a b c), p′4 = (A, [x11, x12, x13], ε ε ε),
pε = (ε , [ε], ε), pa = (a , [a], ε)
pb = (b , [b], ε), pc = (c , [c], ε)

Theorem 3.4 (Strongly monotone). For every m-MCFG G there is a strongly

monotone m-MCFG G′, such that L(G) = L(G′).

16

Construction. Let G = (N,Σ,P,S). We fix G′ = (N ′,Σ,P ′, S[π0]), where π0 is the

identity on {1}.

• N ′ = {A[π]∶A ∈ N}, where π is a permutation over [sort(A)], and

• P ′ = {(A[π], ([u′
π(1)

, ..., u′
π(s)

](s1...sk,s)),Aγf,π(1)[πf,γf,π(1)]...Aγf,π(k)[
πf,γ

f,π
(k)])∶ (A, [u1, ..., us](s1...sk,s),A1...Ak) ∈ P,π is permutation over [k]},

where for each f = [u1, ..., us](s1...sk,s) and the permutation π over [k],

– πf,i is a permutation over [si] for each i ∈ [k], such that x
π−1f,i(1)
i , ...,

x
π−1f,i(k)
i occur in that order in uπ(1)...uπ(s), and

– the monotone form [u′′
π(1)

, ..., u′′
π(s)

] is obtained from [uπ(1), ..., uπ(s)] by

replacing each xji ∈X(s1...sk,s) by x
πf,i(j)

i , and

– γf,π is a permutation over [k], such that x1
γ−1
f,π

(1)
, ..., x1

γ−1
f,π

(k)
occur in that

order in u′′
π(1)

...u′′
π(s)

, and

– the strongly monotone form [u′
π(1)

, ..., u′
π(s)

] is obtained from [u′′
π(1)

, ...,

u′′
π(s)

] by replacing each xji ∈X(s1...sk,s) by xj
γf,π(i)

.

Proof. The permutations used in the construction build strongly monotone form

for each production. Hence G′ is strongly monotone. Let G′ = (N ′,Σ,P ′, S[π0])
be the grammar constructed from G with π0 the identity on {1}. Let the function

g∶P ′ → P assign to the constructed production the original one it is constructed

from, and let function ĝ∶TP ′ → TP , where for each tree t′ = p′(t′1, ..., t′k) ∈ TP ′ , and

γf,π for the construction of t′, we have ĝ(t′) = g(p′)(ĝ(t′
γ−1
f,π

(1)
), ..., ĝ(t′

γ−1
f,π

(k)
)) ∈ TP

with yield(t′) = yield(t). Then ĝ is a bijection between (TP ′)A[π] and (TP)A for each

A ∈ N and π ∈ sort(A), and g is a bijection between P ′ in (TP ′)A[π] and P in (TP)A.

For each tree t = p(t1, ..., tk) ∈ (TP)A, and ĝ−1(t) = g−1(p)(ĝ−1(tγf,π(1)), ...,
ĝ−1(tγf,π(k))) = ĝ−1(t) ∈ (TP ′)A[π], we fix the function yieldπ ∶TP → (Σ∗)∗ with

yieldπ(t) = (yield(t)⟨π(1)⟩, ..., yield(t)⟨π(∣yield(t)∣)⟩)

For each i ∈ [∣yield(t)∣], and π1, ..., πk for the construction for t1, ..., tk, respectively,

we can conceive that

fg−1(p)(yieldπγf,π(1)(tγf,π(1)), ..., yieldπγf,π(k)(tγf,π(k)))⟨i⟩ = yield(t)⟨π−1(i)⟩,

17

since the l-th component of fg−1(p)(yieldπγf,π(1)(tγf,π(1)), ..., yieldπγf,π(k)(tγf,π(k))) is

obtained from (π−1(l))-th component of yield(t) for each l ∈ [∣yield(t)∣], and

each variable xji ∈ X(s1...sk,s) in p has the same position as the variable x
πf,i(j)

γf,π(i)

in g−1(p), by the construction, where x
πf,i(j)

γf,π(i)
gets the (πf,i(j))-th component of

yieldπγf,π(i)
(tγf,π(i)), which is the j-th component of yield(ti) got by xji . We have

the following structural induction over t:

yieldπ(t)
= (yield(t)⟨π(1)⟩, ..., yield(t)⟨π(∣yield(t)∣)⟩)
= fg−1(p)(yieldπγf,π(1)(tγf,π(1)), ..., yieldπγf,π(k)(tγf,π(k))) (by text above)

= fg−1(p)(yield(ĝ−1(tγ(1))), ..., yield(ĝ−1(tγ(k)))) (induction hypothesis)

= yield(ĝ−1(t))

Hence yield(DG) = yieldπ0(DG) = yield(DG′), L(G) = L(G′).

Example 3.7 (strongly monotone form). For an MCFG with productions:

p1 = (S, [x21x12x22x11],AB), p4 = (B, [bx11, dx21],B),
p2 = (A, [ax11, cx21],A), p5 = (B, [ε, ε], ε),
p3 = (A, [ε, ε], ε),

we obtained the strongly monotone form using the construction in Theorem 3.4,

and deletes all non-terminal symbols that are not reachable from S[π0]:

p′1 = (S[π0], [x11x12x22x21],A[πfp1 ,1]B[πfp1 ,2]), p′4 = (B[πfp1 ,2], [bx
1
1, dx

2
1],B[πfp1 ,2]),

p′2 = (A[πfp1 ,1], [cx
1
1, ax

2
1],A[πfp2 ,1]), p′5 = (B[πfp1 ,2], [ε, ε], ε),

p′′2 = (A[πfp2 ,1], [cx
1
1, ax

2
1],A[πfp2 ,1]), p′3 = (A[πfp1 ,1], [ε, ε], ε),

p′′3 = (A[πfp2 ,1], [ε, ε], ε),

where π0, πfp1 ,2 are the identities on {1},{1,2}, respectively, and πfp1 ,1 = πfp2 ,1 are

both the permutation (1,2) over {1,2}.

18

Definition 3.9 (terminal depth of trees). Let G = (N,Σ,P,S) be an MCFG

with ε ∉ L(G). The terminal depth of trees is dep∶TP → N. For each t ∈ TP , we

fix

dep(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞, if for each w ∈ pos(t), ft(w) contains no terminal symbols

min{∣w∣∶w ∈ pos(t), fξ(w) contains a terminal symbol}, otherwise

For each A ∈ N , if there exists an m ∈ N, such that dep(t) ≤ m for each

t ∈ DG(A), then the depth of A, denoted by Dep(A), is m, otherwise we set

Dep(A) = ∞. We call max{Dep(A)∶A ∈ N} the depth of G. If the depth of

some MCFG G is m, then we say G is m-restricted.

Example 3.8 (non m-restricted MCFG). Let an MCFG G = (N,Σ,P,S) with

P = {p1, p2, p3, p4},N = {S,A},Σ = {a, b, c} and

p1 = (S, [x11x21x31],A), p2 = (A, [x21, x31, x11],A),
p3 = (A, [ax11, bx21, cx31],A), p4 = (A, [a, b, c], ε).

For each m ∈ N, there exists a tree dep(p2(p2(...(p2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

m

(p4))))) =m+1, then Dep(A) =

∞. Hence G is not restricted by any m ∈ N.

Lemma 3.2 (non-deleting ε-free form). Let m ∈ N+. For every m-MCFG G there

is a non-deleting ε-free m-MCFG G′, such that L(G) = L(G′).

Proof. We can obtain G′ by applying the construction of ε-free and non-deleting

form in that order, in Theorem 3.2 and 3.1, respectively, since the construction of

non-deleting form does not introduce new ε’s.

Lemma 3.3 (restricted MCFG). Let m ∈ N+. For each m-restricted non-deleting

ε-free MCFG G, there is an (m − 1)-restricted non-deleting ε-free MCFG G′, such

that L(G) = L(G′).
Construction. Let G = (N,Σ,P,S) be a non-deleting ε-free MCFG of depth m for

some m ∈ N+. We construct G′ = (N,Σ,P ′, S) with

• P ′ = {p∶p ∈ P,dep(t) ≠ 1 for each t ∈ TP with t(ε) = p} ∪ {p = (A,f ○ fl,A1...

Al−1Al+1...AkB1...Bx)∶p = (A,f,A1...Al−1AlAl+1...Ak) ∈ P,dep(t) = 1 for each

19

t ∈ TP with t(ε) = (A,f,A1...Ak), pl = (Al, fl,B1...Bx) ∈ P for smallest l ∈ [k],
such that fl contains terminal symbols}, where f ○ fl is obtained from f by

replacing each xji ∈ Xf with i = l by fl⟨j⟩, where each xj
′
i′ ∈ Xfl in fl⟨j⟩ is

replaced by xj
′
i′+k−1, and replacing each xji ∈Xf with i ≠ l by xj

i−i[{l}]
.

Proof. G′ is non-deleting and ε-free, since the construction does not delete the

information used by any variable or introduce new ε’s.

Let (A,f,A1...Al−1AlAl+1...Ak) ∈ P with dep(t) = 1 for each t ∈ TP with t(ε) =
(A,f,A1...Ak), and (Al, fl,B1...Bx) ∈ P such that fl contains terminal symbols.

Then for wi ∈ (Σ∗)sort(Ai), uj ∈ (Σ∗)sort(Bj), for each i ∈ [k] and j ∈ [x], there is

f(w1, ...,wl−1, fl(u1, ..., ux),wl+1, ...,wk)
=(f ○ fl)(w1, ...,wl−1,wl+1, ...,wk, u1, ..., ux) (∗)

The (∗) holds, since each variable xji ∈Xf replaced by a component of fl has the

same value as the component that replaces it, and each other variable xji ∈Xf has

the same value as the variable at the same position in f ○ fl. We show L(G) = L(G′)
by proving L(G) ⊆ L(G′) and L(G′) ⊆ L(G).

• We show that for each t′ ∈ TP ′ , there exits a t ∈ TP , such that yield(t′) =
yield(t) by structural induction over t′. Let t′ = p′(t′1, ..., t′k) ∈ TP ′ , where

p′ = (A,f ′,A1...Ak).

– If p′ ∈ P , then by induction hypothesis there exist t1, ..., tk ∈ TP , such

that yield(ti) = yield(t′i) for each i ∈ [k]. Hence yield(p′(t′1, ..., t′k)) =
yield(p′(t1, ..., tk)).

– if p′ ∉ P , then there exists an n ∈ [k], such that there is a production

q = (B,fB,An...Ak) ∈ P , and p = (A,f,A1...Al−1AlBAl+1...An−1) ∈ P ,

with f ′ = f ○fB by construction. For each t′ = p′(t′1, ..., t′k) ∈ TP ′ , we have

by induction hypothesis, that there exist t1, ..., tl−1, tl, tl+1, ..., tn−1, tn,

tn+1, ..., tk ∈ TP , such that yield(ti) = yield(t′i) for each i ∈ [k]. By (∗)
there exists t = p(t1, ..., tl−1, tl, q(tn, ..., tk), tl+1, ..., tn−1) ∈ TP , such that

yield(t) = yield(t′). It follows that L(G′) ⊆ L(G).

• We show that for each t ∈ TP , there exists a t′ ∈ TP ′ , such that yield(t′) =
yield(t) by structural induction over t. Let t = t = p(t1, ..., tk) ∈ TP , where

p = (A,f,A1...Al−1AlAl+1...Ak) ∈ P .

20

– If p ∈ P ′, then by induction hypothesis there exist t′1, ..., t
′

k ∈ TP ′ , such

that yield(ti) = yield(t′i) for each i ∈ [k]. Hence yield(p(t′1, ..., t′k)) =
yield(p(t1, ..., tk)).

– if p ∉ P ′, then there is a production pl = (Al, fl,B1...Bx) ∈ P , such that

fl contains a terminal symbol, and p′ = (A,f ○ fl,A1...Al−1Al+1...AkB1...

Bx) ∈ P ′. For each tree t = p(t1, ..., tl−1, pl(ξ1, ..., ξx), tl+1, ..., tk) ∈ TP , we

have by induction hypothesis, that there exist t′1, ..., t
′

l−1, t
′

l+1, ..., t
′

k, ξ
′

1, ...,

ξ′x ∈ TP ′ , such that yield(t′i) = yield(ti) for each i ∈ [k] ∖ {l}, and

yield(ξ′i) = yield(ξi) for each i ∈ [x]. By construction there exists

t′ = p′(t′1, ..., t′l−1, t′l+1, ..., t′k, ξ′1, ..., ξ′x) ∈ TP ′ , and by (∗) we have yield(t′) =
yield(t). It follows that L(G) ⊆ L(G′).

Since for each tree t ∈ TP with depth m, and each w ∈ pos(t) with dep(t∣w) = 1,

terminal symbols are constructed into the production t(w), then for the tree t′

constructed from t, there is dep(t′) = (m − 1). Hence G′ is (m − 1)-restricted, and

L(G′) = L(G).

Example 3.9 (construction of (m − 1)-restricted MCFG). Let an MCFG G =
(N,Σ,P,S), whereN = {S,A,B,C,D},Σ = {a, b, c, d}, P = {p1, p2, p3, p4, p5, p6, p7},

and

p1 = (S, [x11x12x21x22],AB), p2 = (A, [x11, x21],C),
p3 = (B, [x11, x21],D), p4 = (C, [ax11, bx21],C),
p5 = (D, [cx11, dx21],D), p6 = (C, [a, b], ε),
p7 = (D, [c, d], ε)

The depth of G is 2. We apply the construction in Lemma 3.3, and get G′ =
{N,Σ,P ′, S} with P ′ = {p1, p′2, p′3, p4, p5, p6, p7, p′′2 , p′′3}, and

p1 = (S, [x11x12x21x22],AB), p′2 = (A, [ax11, bx21],C),
p′3 = (B, [cx11, dx21],D), p4 = (C, [ax11, bx21],C),
p5 = (D, [cx11, dx21],D), p6 = (C, [a, b], ε),
p7 = (D, [c, d], ε), p′′2 = (A, [a, b], ε),
p′′3 = (B, [c, d], ε)

The depth of G′ is 1.

21

Lemma 3.4 (0-restricted MCFG). Let m ∈ N. For each m-restricted MCFG G,

there is an 0-restricted MCFG G′, such that L(G) = L(G′).

Proof. Since the constructions of non-deleting and ε-free form both preserve the

structure and each terminal symbol, then for each m-restricted MCFG G, there is

an m-restricted non-deleting ε-free MCFG G′′ with L(G) = L(G′′).
Thus we apply the construction in Lemma 3.3 on G′′ for m times, and get the

0-restricted MCFG G′ with L(G) = L(G′).

Theorem 3.5 (lexicalized). Let m ∈ N. For each m-restricted MCFG G with

ε ∉ L(G), there is a lexicalized MCFG G′, such that L(G) = L(G′).

Construction. Let G = (N,Σ,P,S). We use the Lemma 3.4, and construct G

to 0-restricted G′′ = (N ′′,Σ,P ′′, S′′), hence L(G) = L(G′′), and each production

has at least one terminal symbol. We use the construction of terminal separated

form in Theorem 3.3 to obtain G′, but for each production (A,f,A1...Ak) ∈ P ′′

with terminal symbols a1, ..., an in f , we execute the construction over ai for each

i ∈ [n] with i > 1 only.

Proof. Since each production in P ′′ contains at least one terminal symbol in the

composition function, then G′ is lexicalized. With the similar proof as in Theorem

3.3 we have L(G) = L(G′).

Example 3.10 (lexicalized form). Let an MCFG G = (N,Σ,P,S) with N =
{S,A},Σ = {a, b, c}, and

p1 = (S, [x11x21x31],A), p2 = (A, [ax11, bx21, cx31],A),
p3 = (A, [a, b, c], ε).

We apply the construction, and delete all non-terminal symbols that are not

reachable from S. We have G′ = (N ∪ { b , c },Σ,P ′, S) with

p′1 = (S, [ax11x12x21x13x31],A b c), p′2 = (A, [ax11, x12x21, x13x31],A b c),
p′3 = (A, [a, x11, x12], b c), p′′1 = (S, [ax11x12], b c),
pb = (b , [b], ε), pc = (c , [c], ε).

22

4 Weighted multiple context-free grammers over

strong bimonoids

4.1 Strong bimonoids

A monoid is an algebra (A, ⋅, 1) where ⋅ is associative and 1 is neutral element over

the operation ⋅. An algebra (A,+, ⋅,0,1) is called a strong bimonoid, if:

• (A,+,0) is a commutative monoid (i.e. the operation + is commutative),

• (A, ⋅,1) is a monoid,

• for each a ∈ A ∶ 0 ⋅ a = 0 = a ⋅ 0.

A strong bimonoid (A,+, ⋅,0,1) is commutative, if (A, ⋅,1) is commutative. A

complete bimonoid is a commutative bimonoid equipped with an infinitary sum

operation ∑. In this paper we write A instead of (A,+, ⋅,0,1).

Example 4.1 (Strong bimonoids). There are some strong bimonoids used in the

processing of natural languages.

• Complete commutative semiring, e.g.

Boolean semiring B = ({0,1},∨,∧,0,1),
probability semiring Pr = (R≥0,+, ⋅,0,1),
Viterbi semiring ([0,1],max, ⋅,0,1).

• Complete lattice,

• The tropical bimonoid, (R≥0 ∪ {∞},+,min,0,∞).

• The algebra ([0, 1],⊕, ⋅, 0, 1) with either a⊕b = a+b−a⋅b or a⊕b = min{a+b, 1}

4.2 Weighted MCFG over strong bimonoids

We use the definition of weighted MCFG as presented by Denkinger [3, Definition

3] to define a weighted MCFG over strong bimonoids.

23

Definition 4.1 (A-weighted MCFG). AnA-weighted MCFG is a tuple (N,Σ,P,
S,µ) such that (N,Σ,P,S) is an MCFG, µ ∶ P → A/{0}, and A is a complete

strong bimonoid.

Definition 4.2 (weighted language of anA-weighted MCFG). LetG = (N,Σ,P,
S,µ) be an A-weighted MCFG over a complete strong bimonoid A, DG∶=
D(N,Σ,P,S). For each ξ = p(ξ1, ..., ξk) ∈DG. The weight function of G, denoted

by wtG, is inductively defined below:

wtG∶DG → A, wtG(ξ) = wtG(ξ1) ⋅ ... ⋅wtG(ξk) ⋅ µ(p)

We abbreviate wtG to wt . Then we have weighted language of G, denoted by

⟦G⟧:
⟦G⟧∶Σ∗ → A, ⟦G⟧(w) = ∑

ξ∈DG(w)

wtG(ξ)

where ∑ is the infinitary sum operation of the complete strong bimonoid A.

Example 4.2 (simple example of a weighted MCFG). Let G = (N,Σ,P,S,µ)
be an weighted MCFG over (R,+, ⋅,0,1), where N = {S,A},Σ = {a, b, c}, P =
(p1, p2, p3, p4) with:

p1 = (S, [ε], ε), µ(p1) = 1, p2 = (S, [x11x21x31],A), µ(p2) = 3,

p3 = (A, [ax11, bx21, cx31],A), µ(p3) = 5, p4 = (A, [ε, ε, ε], ε), µ(p4) = 2,

then for w = ε, ⟦G⟧(w) = ∑ξ∈DG(w)
wt(ξ) = wt(ξ1) +wt(ξ2) = 1 + 3 ⋅ 2 = 7.

Example 4.3 (simple example of a weighted MCFG). We use the former example

but using the weighting bimonoid LangN = (P(N∗),∪, ⋅,∅,{ε}), where µ∶

p1 = (S, [ε], ε), µ(p1) = {1}, p2 = (S, [x11x21x31],A), µ(p2) = {2},
p3 = (A, [ax11, bx21, cx31],A), µ(p3) = {3}, p4 = (A, [ε, ε, ε], ε), µ(p4) = {0},

then for w = ε, ⟦G⟧(w) = ∑ξ∈DG(w)
wt(ξ) = wt(ξ1) ∪ wt(ξ2) = {1} ∪ {20} = {1,20},

where ξ1 and ξ2 are the same as in the example 3.2.

24

4.3 Normal forms of weighted MCFG over strong bimonoids

An A-weighted MCFG G = (N,Σ,P,S,µ) is non-deleting, ε-free, terminal separated,

monotone, strongly monotone, or lexicalized, if (N,Σ,P,S) is non-deleting, ε-free,

terminal separated, monotone or strongly monotone, respectively. From now on we

use A = (A,+, ⋅,0,1) to denote an arbitrary complete strong bimonoid.

Corollary 4.1 (non-deleting normal form for A-weighted MCFG). For each A-

weighted MCFG G there exists a non-deleting A-weighted MCFG G′, such that

⟦G⟧ = ⟦G′⟧.

Proof. Let G = (N,Σ,P,S,µ). We recall Theorem 3.1. There exists a bijection

g∶P ′ → P with a given Ψ . We set µ′ = g;µ with the same proof by Denkinger [2,

Lemma 2.7]. Hence DG =DG′ , ⟦G⟧ = ⟦G′⟧.

Corollary 4.2 (ε-free normal form for A-weighted MCFG). For each A-weighted

MCFG G there exists an ε-free A-weighted MCFG G′, such that and ⟦G⟧ = ⟦G′⟧.

Proof. Let G = (N,Σ,P,S,µ). We fix G′ = (N ′,Σ,P ′, S′, µ′) with

• N ′, P ′, S′ are exactly defined as in Theorem 3.2,

• for each production p′ = (A[Ψf,Ψ1,...,Ψk], fΨ,Ψ1,...,Ψk ,A1[Ψ1]...Ak[Ψk]) ∈ P ′, we

fix µ′(p′) = µ((A,f,A1...Ak)),

• we fix µ′((S′, [x11], S[{1}])) = 1, and µ′((S′, [ε], ε)) = ⟦G⟧(ε).

Let P ′′ = P ′∖({(S′, [ε], ε)}∪{(S′, [x11], S[{1}])}). We recall g and ĝ from Theorem

3.2. Let ξ′′ = p′′(ξ′′1 , ..., ξ′′k) ∈ TP ′′ , ξ = ĝ(ξ′′), ξ1 = ĝ(ξ′′1), ..., ξk = ĝ(ξ′′k), and p = g(p′′)
for some Ψ1, ..., Ψk. Since g preserves the structure of trees in TP ′′ , and g is a

bijection, we have wtG(ξ) = wtG′(ξ′′).
Let q = (S′, [x11], S[{1}]), then for each w ∈ L(G),
if w = ε, then

⟦G′⟧(w) = µ(S′, [ε], ε) = ⟦G⟧(ε)

Otherwise,

⟦G′⟧(w) = ∑
ξ∈DG′(w)

wtG′(ξ)

25

= ∑
q(ξ′′)∈DG′(w)

µ′(q) ⋅wtG′(ξ′′)

= ∑
q(ξ′′)∈DG′(w)

1 ⋅wtG(ĝ(ξ′′))

= ∑
ξ∈DG(w)

1 ⋅wtG(ξ)

= ⟦G⟧(w)

Hence DG =DG′ , ⟦G⟧ = ⟦G′⟧.

Corollary 4.3 (terminal separated normal form for A-weighted MCFG). For each

A-weighted MCFG G there exists a terminal separated A-weighted MCFG G′, such

that DG =DG′ , and ⟦G⟧ = ⟦G′⟧.

Proof. We recall Theorem 3.3. Let ξ = p(ξ1, ..., ξk) ∈ TP , ξ′ = p′(ξ′1, ..., ξ′k, ξk+1, ...,
ξk+n) ∈ T ′

P ′ . We fix the weight of each production with a fresh non-terminal symbol

on the left side to 1, and fix µ′(p′) = µ(p) for each p′ ∈ P ′ constructed from p ∈ P .

Then we have

wtG(ξ) = wtG(ξ1) ⋅ ... ⋅wtG(ξk) ⋅ 1 ⋅ ... ⋅ 1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

⋅µ(p)

IH= wtG′(ξ′1) ⋅ ... ⋅wtG′(ξ′k) ⋅ 1 ⋅ ... ⋅ 1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

⋅µ(p)

= wtG′(ξ′1) ⋅ ... ⋅wtG′(ξ′k) ⋅wtG′(ξk+1) ⋅ ... ⋅wtG′(ξk+n) ⋅ µ′(p′)
= wtG′(ξ′),

Hence ⟦G⟧ = ⟦G′⟧.

Corollary 4.4 (monotone normal form for A-weighted MCFG). For each A-

weighted MCFG G there exists a monotone A-weighted MCFG G′, such that

⟦G⟧ = ⟦G′⟧.

Proof. We recall the bijection g and the construction in Theorem 3.4. Let G =
(N,Σ,P,S,µ), then we constructG′ = (N ′,Σ,P ′, S⟨⟩, g−1;µ), where (N ′,Σ,P ′, S⟨⟩)
is obtained by the construction from G. Since the construction without the per-

mutation of non-terminal symbols, which is used for the strongly monotone form,

preserves the structure of each tree, we have ⟦G⟧ = ⟦G′⟧.

26

Corollary 4.5 (strongly monotone normal form for A-weighted MCFG). For each

A-weighted MCFG G, where A is commutative, there exists a strongly monotone

A-weighted MCFG G′, such that ⟦G⟧ = ⟦G′⟧.

Proof. Let G = (N,Σ,P,S,µ).We recall the function ĝ and g in Theorem 3.4,

and construct G′ = (N ′,Σ,P ′, S[(1)], g−1;µ), where N ′, P ′ are constructed in

the same way in Theorem 3.4. For each A ∈ N , π ∈ sort(A), and tree t′ =
p′(t′

γ(1)
, ..., t′

γ(k)
) ∈ (TP ′)A[π] with γ obtained from π by the construction, there is

a unique t = ĝ(t′) = g(p′)(t1, ..., tk) ∈ (TP)A. We have by structural induction over

wtG(t′)

wtG′(t′) =wtG′(t′γ(1)), ...,wtG′(t′γ(k)) ⋅ (g−1;µ)(p′)
=wtG(tγ(1)), ...,wtG(tγ(k)) ⋅ (g−1;µ)(p′) (induction hypothesis)

=wtG(t1), ...,wtG(tk) ⋅ (g−1;µ)(p′) (commutative of ⋅)
=wtG(t1), ...,wtG(tk) ⋅ µ(p)
=wtG(t)

Hence ⟦G⟧ = ⟦G′⟧.

Let m ∈ N, A be a strong bimonoid. For each A-weighted MCFG G =
(N,Σ,P,S,µ), we say that G is m-restricted, if (N,Σ,P,S) is m-restricted. We

say an MCFG G = (N,Σ,P,S) is unambiguous, if for each w ∈ (Σ∗)∗, there exists at

most one t ∈ TP , such that w = yield(t). An A-weighted MCFG G = (N,Σ,P,S,µ)
is unambiguous, if (N,Σ,P,S) is unambiguous.

Lemma 4.1 (unambiguous MCFG). Let m ∈ N+. For each m-restricted unambigu-

ous MCFG G, the (m − 1)-restricted MCFG Gm−1 constructed from G according

to Lemma 3.3 is unambiguous.

Proof. Let G = (N,Σ,P,S),Gm−1 = (N,Σ,Pm−1, S). We recall Lemma 3.3. For

each tree t ∈ TP , there is a unique tree t′ ∈ TPm−1 constructed from t, such that

yield(t) = yield(t′).
We assume that Gm−1 is ambiguous. Then for some w ∈ (Σ∗)∗, there exist different

trees t′1, ..., t
′

n ∈ TPm−1 , such that yield(t′i) = w for each i ∈ [n]. Thus there exist

t1, ..., tn ∈ TP that construct t′1, ..., t
′

n, respectively, such that yield(ti) = w for each

i ∈ [n], but then G is ambiguous. ☇

27

Corollary 4.6 (lexicalized normal form for A-weighted MCFG). Let m ∈ N. For

each m-restricted unambiguous A-weighted MCFG G, where A is commutative and

distributive, there exists a lexicalized A-weighted MCFG G′, such that ⟦G⟧ = ⟦G′⟧.

Proof. Let m ∈ N,G = (N,Σ,P,S,µ) be an m-restricted unambiguous A-weighted

MCFG. We recall the construction in Lemma 3.3. We fix the relation g ⊆ P × P ′

that assigns to each p ∈ P all p′ ∈ P ′ it constructs, and fix the function h∶P ×P ′ → P

that assigns to each (p, p′) ∈ P × P ′, where p constructs p′, the pl, according to the

construction. We fix the function ĝ∶TP → TP ′ that assigns to each tree in TP the

tree it constructs.

We construct construct the (m−1)-restricted A-weighted MCFG Gm−1 = (Nm−1,Σ,

Pm−1, S, µm−1) from G with

• Nm−1, Pm−1 are the same as N ′, P ′ respectively in Lemma 3.3,

• for each p′ = (A,f ○ fl,A1...Al−1Al+1...AkB1...Bx) ∈ Pm−1,

– if p′ ∈ P , then µm−1(p′) = µ(p′),
– otherwise, we set µm−1(p′) = ∑p∈g−1(p′) µ(h(p, p′)) ⋅ µ(p).

We have by structural induction over t′

wtGm−1(t′) =wtGm−1(t′1) ⋅ ... ⋅wtGm−1(t′l−1) ⋅wtGm−1(t′l+1) ⋅ ... ⋅wtGm−1(t′k)⋅
wtGm−1(ξ′1) ⋅ ... ⋅wtGm−1(ξ′x) ⋅ µm−1(p′)

=wtGm−1(t′1) ⋅ ... ⋅wtGm−1(t′l−1) ⋅wtGm−1(t′l+1) ⋅ ... ⋅wtGm−1(t′k)⋅
wtGm−1(ξ′1) ⋅ ... ⋅wtGm−1(ξ′x) ⋅ (∑

p∈g−1(p′)
µ(h(p, p′)) ⋅ µ(p))

(by construction)

= ∑
p∈g−1(p′)

wtGm−1(t′1) ⋅ ... ⋅wtGm−1(t′l−1) ⋅wtGm−1(t′l+1) ⋅ ... ⋅wtGm−1(t′k)⋅

wtGm−1(ξ′1) ⋅ ... ⋅wtGm−1(ξ′x) ⋅ µ(p) ⋅ µ(h(p, p′)) ⋅ µ(p)
(distributive)

= ∑
p∈g−1(p′)

wtGm−1(t′1) ⋅ ... ⋅wtGm−1(t′l−1) ⋅ (wtGm−1(ξ′1) ⋅ ... ⋅wtGm−1(ξ′x)⋅

µ(h(p, p′))) ⋅wtGm−1(t′l+1) ⋅ ... ⋅wtGm−1(t′k) ⋅ µ(p) (commutative)

= ∑
p∈g−1(p′)

(∑
t1∈ĝ(t

′
1)

wtG(t1)) ⋅ ... ⋅ (∑
tl−1∈ĝ(t′l−1)

wtG(tl−1))⋅

28

((∑
ξ1∈ĝ(ξ

′
1)

wtG(ξ1)) ⋅ ... ⋅ (∑
ξx∈ĝ(ξ′x)

wtG(ξx) ⋅ µ(h(p, p′))))⋅

(∑
tl+1∈ĝ(t′l+1)

wtG(tl+1)) ⋅ ... ⋅ (∑
tk∈ĝ(t

′
k)

wtG(tk)) ⋅ µ(p)

(induction hypothesis)

= ∑
t∈ĝ(t′)

wtG(t) (dirstributive, definition of wt)

For each string w ∈ Σ∗, since Gm−1 and G are unambiguous, there are unique

ξ ∈ TP and ξ′ ∈ TP ′ , such that yield(ξ) = yield(ξ′) = w. Then we have

⟦Gm−1⟧(w) =wtGm−1(t′)
= ∑
t∈ĝ(t′)

wtG(t)

=wtG(t) (t is unique)

=⟦G⟧(w).

Hence ⟦Gm−1⟧ = ⟦G⟧.

We repeat the former construction, until a 0-restricted A-weighted MCFG G0 =
(N0,Σ,P0, S, µ0) is generated, thus ⟦G0⟧ = ⟦G⟧. We construct the lexicalized A-

weighted MCFG G′ = (N ′,Σ,P ′, S) from G0 with

• N ′ = N0 ∪ { a ∶a ∈ Σ},

• P ′ is constructed the same as in Theorem 3.5,

• µ′ is constructed the same as in Corollary 4.3.

⟦G0⟧ = ⟦G′⟧. holds with the same proof of Corollary 4.3. Hence ⟦G′⟧ = ⟦G⟧.

5 Conclusion

We have formally recalled weighted MCFGs over strong bimonoids, and modified

the existing construction of above mentioned forms except of lexicalized form. The

construction of lexicalized form is brand new, and works only for a syntactically

restricted subset of MCFG.

There are no restrictions to the weight algebra for the construction of normal

29

forms, if a bijection exists between original trees and constructed ones, and the

construction preserves structure of each tree. The constructions of non-deleting,

monotone and ε-free forms fulfill exactly that condition. For terminal separated

form, the construction extends each trees with branches consisting of terminating

productions only, which almost preserve the structure of each tree, thus there

are no restrictions the weight algebra either. During the construction of strongly

monotone forms, there are permutations of non-terminal symbols on the right

side of some productions, which leads to the requirement of commutativity of the

weight algebra. The construction of lexicalized form for unweighted case requires

a restricted MCFG, and changes structure of each tree severely by merging some

children trees to the father node. The construction of lexicalized form for a weighted

MCFG, however, requires further restriction to MCFG, and commutativity and

distributivity of the weight algebra. There could exist other weight functions for

lexicalized form with different further restrictions to an MCFG.

Since the above claims are based on each construction, further work could be the

searching for some alternative constructions with less restrictions.

References

[1] Tobias Denkinger. An automata characterisation for multiple contest-free

languages. CoRR, 2016.

[2] Tobias Denkinger. A Chomsky-Schützenberger representation for weighted

multiple context-free languages. CoRR, June 2016.

[3] Tobias Denkinger. A Chomsky-Schützenberger representation for weighted

multiple context-free languages. 2016.

[4] Marcus Kracht. The mathematics of language, volume 63. Walter de Gruyter,

2003.

[5] Marco Kuhlmann. Dependency structures and lexicalized grammars. PhD thesis,

2007.

30

[6] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On

multiple context-free grammars. Theoretical Computer Science, 88(2):191–229,

1991.

31

