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Hintergrund: Ein aktueller Trend in den Forschungsgebieten des Natural Language Processing
(NLP) und der Machine Translation (MT) ist der zunehmende Bezug auf die syntaktische, d.h.
grammatikalische, Struktur der zu verarbeitenden Sätze, welche in Form eines Parsebaums des
Satzes vorliegt [vgl. 8, 9]. Als formale Modelle, um die Sprache der erlaubten Parsebäume zu be-
schreiben, dienen u.a. reguläre Baumgrammatiken (RTG) [4], aber auch (eingeschränkte Varianten
von) kontextfreien Baumgrammatiken (CFTG) [11].
Die regulären Baumsprachen bilden eine robuste Klasse mit zahlreichen Abschlusseigenschaften,

und verhalten sich größtenteils analog zur klassischen Theorie über Wörtern. Anders stellt sich die
Lage bei den kontextfreien Baumsprachen dar: unter anderem sind sie nicht unter inversen linearen
Baumhomomorphismen abgeschlossen [1]. Überraschenderweise gilt dies selbst für die Einschränkung
auf lineare CFTG (l-CFTG) [10]. Dieses Negativresultat ist nicht nur theoretisch unbefriedigend, es
erschwert auch das kompositionelle Design von Übersetzungssystemen auf Grundlage von CFTG.
Das Problem kann jedoch gelöst werden, indem eine stärkere zugrundeliegende algebraische Struk-

tur gewählt wird, die der Magmoiden [2, 3]. Die Trägermenge des freien (projektiven) Magmoid ent-
hält Tupel von Bäumen, und die grundlegenden Operationen erlauben “vertikale” Substitution und
“horizontale” Konkatenation solcher Tupel. Die kontextfreien Sprachen über dem freien Magmoid
werden erzeugt von kontextfreien Magmoidgrammatiken (CFMG). Sie enthalten echt die kontext-
freien Baumsprachen, und zudem sind sie unter inversen Homomorphismen abgeschlossen. In [14]
wird Erkennbarkeit und Rationalität für Magmoide behandelt und ein Kleene-Theorem für den freien
Magmoid bewiesen. Zudem existiert ein enger Zusammenhang zwischen Magmoiden und dem multi
bottom-up tree transducer [6, 7].
In dieser Arbeit sollen die folgenden Fragestellungen zu kontextfreien Sprachen über Magmoiden

bearbeitet werden.

• Die kontextfreien Baumsprachen sind unter Schnitt mit erkennbaren Baumsprachen abge-
schlossen [12, 13]. Lässt sich diese Konstruktion auf CFMG verallgemeinern?

• Es soll ein Dekompositionsresultat L(CFMG) = T (L(CFTG)) für eine geeignete Klasse von
Baumtransformationen T gezeigt werden, analog für l-CFMG und l-CFTG. Dabei bezeichnet
L(CFXG) die Klasse der Sprachen die von CFXG, X ∈ {M,T}, erzeugt werden. Vermutung:
T ist die Klasse der Transformationen von deterministischen top-down tree transducer (d-
TOP), oder sogar von single-use d-TOP [vgl. 5, 6].
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Wünschenswert, im Rahmen dieser Arbeit aber optional, ist die Bearbeitung einiger der folgenden
Fragestellungen:

• Es sollen lineare CFMG (l-CFMG) untersucht werden, analog zu den linearen CFTG. Gilt
der Abschluss unter Schnitt mit erkennbaren Sprachen? Sind die Sprachen von l-CFMG unter
inversen linearen Homomorphismen abgeschlossen?

• Sind die Sprachen von l-CFMG unter Anwendung von linearen multi bottom-up tree transducer
abgeschlossen? Wenn ja, soll eine direkte Konstruktion angegeben werden.

• Wie verhalten sich die Sprachen von linearen monadischen Grammatiken über dem Magmoid
(also mit maximal einer Variable) zu denen von linearen und monadischen über Bäumen?
Vermutung: sie sind identisch. Das würde erklären warum die Sprachen von monadischen
l-CFTG bessere Abschlusseigenschaften aufweisen.

Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss in sich abgeschlossen
sein und alle nötigen Definitionen und Referenzen enthalten. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit geführt werden. Die Darstellung aller Begriffe
und Verfahren soll mathematisch formal fundiert sein. Für jeden wichtigen Begriff sollen Beispiele
angegeben werden, ebenso für die Abläufe der beschriebenen Verfahren. Wo es angemessen ist,
sollten Illustrationen die Darstellung vervollständigen. Schließlich sollen alle Lemmata und Sätze
möglichst lückenlos bewiesen werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.
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Chapter 1: Introduction

1.1 Motivation

The field of Natural Language Processing (NLP) is dedicated to the formal representation,
structuring and arithmetic properties of natural languages. Not only is this relevant for a
scientific purpose, but also in our everyday life. Machine Learning, Machine Translation
and Human-Computer Interaction profit vastly from research in NLP, since interpartici-
pant communication in the modern world relies on the integrability of communication
devices into translation processes.

As an example, picture the following scenery: A group of people whose native languages
are pairwise different meet at a workshop and want to communicate their ideas. Since
all of them share basic knowledge about the English language, they try to speak in
English. As additional assistance, they use smartphones to translate unknown phrases.
The use of NLP in this setting is at least twofold: On the one hand, whenever someone
translates a grammatically correct phrase with a smartphone, the resulting translation
should be both substantially and grammatically correct. On the other hand, it should be
possible for the translating devices to understand incorrect sentences. That is, if someone
misunderstood a word and enters the erroneous text into his smartphone, it should still
dispense a correct translation.

In contrast to “basic” formal language theory that is affine to words, i.e. sequences of
symbols (a, bab, abaacdb, . . . ) from an alphabet Σ, NLP motivates the use of a structure
called trees to achieve these goals. In the context of this thesis, a tree will always be a
tree over a ranked alphabet. That is, we will give every symbol in an alphabet a number
of successors and a tree is made up of these symbols, such that each position in the
tree respects the corresponding number of successors. Trees over a ranked alphabet are
usually drawn as a graph. Examples are

σ

γ

α

β

σ

σ

α α

α

γ

σ

β β

,

where σ, γ, β, α are symbols from the ranked alphabet. One very intuitive reason to
introduce this structure is given by the syntactical structure of natural language. In the
English language, a sentence is a compound grammatical object consisting of subphrases,
nouns, verbs, adjectives, adverbs et cetera. Whilst the actual sentence is stored as
the yield (i.e. the sequence of leaves) of a tree, the inner positions are used to store
information about the syntactical structure of the text. This makes a grammatically
correct translation possible.

A set of trees is often referred to as a tree language and using these concepts, NLP
introduces a vast scale of machinery that for example generates, translates or accepts
tree languages. In Chapter 2, we will gather all the elementary definitions and lemmas
that are necessary to understand the following chapters of this thesis. If the reader is not
familiar with these instruments, it is strongly recommended to read the preliminaries.

7



One very important class of such machinery is represented by the context-free tree
grammars or short CFTGs. The main idea is to describe syntactically “well-formed”
components of a tree and successively derive a tree into a (possibly more complex) new
tree that might reuse parts from earlier steps in the derivation. A conceivable task is to
describe the structure of an enumeration of adjectives, which might be done as follows:

A −→ AL

A ‘,’ A

A −→ ‘big’

A −→ ‘old’

A −→ ‘dark’.

We think of A as “representing adjectives” and AL as “representing an enumeration (or
list) of adjectives”. Using the above productions in a corresponding CFTG results in
derivations of the following form:

A =⇒ ‘big’,

A =⇒ AL

A ‘,’ A

=⇒ AL

‘big’ ‘,’ A

=⇒ AL

‘big’ ‘,’ ‘old’

.

The occurrences of A within a derivation may again be decomposed to a list of adjectives
as in the derivation

A =⇒∗ AL

‘big’ ‘,’ A

=⇒ AL

‘big’ ‘,’ AL

A ‘,’ A

=⇒∗ AL

‘big’ ‘,’ AL

‘old’ ‘,’ ‘dark’

.

The yields of the derived trees can now be concatenated and are enumerations of
adjectives.

A CFTG distinguishes between symbols in a tree that it may further derive, so called
nonterminals, and those who are final, the terminals. Moreover, a CFTG has a unique
initial nonterminal which is usually denoted by Z and is the starting point for any

8



derivation. Thus a CFTG is made up of a terminal ranked alphabet, a nonterminal
ranked alphabet, an initial nonterminal and a (finite) set of productions.

One important limitation to the expressiveness of CFTGs is a property called “non-
determinism followed by copying”, where a part of a tree is always derived completely,
before being copied several times. The problem is, that the grammar may also copy parts
of a tree before deriving them, so CFTGs can not model this property. We will see an
example for this in later Chapters (e.g. Examples 27 and 29).

Furthermore, context-free tree languages (that is, the class of languages generated by
CFTGs) are somewhat theoretically unsatisfying, since they are neither closed under ap-
plication of tree-homomorphisms ([11], there: Example 6.7.), inverse tree-homomorphisms
nor linear inverse tree-homomorphisms, both proven in [3] (there: Théorème 3.1.).

Therefore, Arnold and Dauchet introduced in [4] and [5] the structure of magmoids.
This structure works with tuples of trees, which we will call lavas and allows “horizontal
concatenation” and “vertical substitution” of these lavas. Similar to the case with trees,
context-free magmoid grammars (or short: CFMGs) are defined. In contrast to CFTGs,
a CFMG has lavas as terminals and the generated language projects the derived lavas on
their first components. Context-free magmoid languages show a more algebraic nature
than context-free tree languages. As we will show, they are for example closed under
tree-homomorphisms and intersection with regular tree languages, yet the emptiness and
membership problems are decidable for them.

A main goal of this thesis is to portray magmoids and context-free magmoid grammars.
The entirety of Chapter 3 is dedicated to their construction and examples, where we will
put a lot of effort into formalizing a structure over which a CFMG operates. We will
call this structure Tk(Σ, V ) and it corresponds to T (Σ ∪ V ) found in [5]. We thought of
this elaboration as necessary, since we were not able to find an adequate definition of the
latter structure in the given article by Arnold and Dauchet.

Chapters 4 and 5 solve the tasks given for this thesis. First we will show that the
language classes of CFMGs and CFTGs are connected by an algebraic nexus. Namely
the class of languages generated by CFMGs is equal to the image of the class of languages
generated by CFTGs under total and deterministic top-down tree transducers, or in
symbols

L (CFMG) = td-TOP(L (CFTG)).

We will deduce that this also holds for the class of deterministic top-down tree transducers.
Next we will show that for any language generated by a CFMG and any recognizable
tree language, the intersection of both languages can be generated by a CFMG. All given
proofs will be constructive and we will include proof intuition at the beginning of each
chapter.

In the last chapter, we will reflect on our work and summarize the results.
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Chapter 2: Preliminaries

2.1 Notations and Basic Definitions

We use the conventional set-theoretic approach to mathematics after Zermelo and Fraenkel
with the axiom of choice. For a set M , we denote the cardinality of M by #M .

The set of positive integers is denoted by N+ := {1, 2, 3, ...}. The set of nonnega-
tive integers is denoted by N0 := N+ ∪ {0}. If not stated differently we write N for N+.
We abbreviate [n,m] := {n, n+ 1, ...,m} and [n] := [1, n] for any n,m ∈ N with n ≤ m.
Moreover we denote [0] := ∅.

Furthermore Z denotes the set of all integers, Q the set of rational numbers and
R the set of real numbers.

A relation between sets A and B is a subset r ⊆ A×B. For sets A,B,C and relations
ρ ⊆ A× B and π ⊆ B × C, we define the (contravariant) composition of ρ and π
as π ◦ ρ := {(r, p) ∈ A×C | ∃s ∈ B : (r, s) ∈ ρ∧ (s, p) ∈ π}. The dual covariant notation
is ρ ? π := π ◦ ρ.

For a set A, the identity relation on A is idA := {(a, a) | a ∈ A} and for a relation
r ⊆ A×A, define rn for n ∈ N0 inductively by r0 := idA and rk+1 := r◦rk, k ∈ N0 which
is called the n-fold composition of r. Moreover the reflexive, transitive closure
of r is r∗ :=

⋃
n≥0 r

n and the symmetric closure of r is r ∪ {(x, y) | (y, x) ∈ r}.
A mapping between sets A and B is a triplet (A, f,B) where f ⊆ A×B is a relation,

denoted f : A −→ B such that for all a ∈ A there exists exactly one b ∈ B such that
(a, b) ∈ f . We then write f(a) = b. If for a relation f ⊆ A×B it only holds that for all
a ∈ A there exists at most one b ∈ B such that (a, b) ∈ f , we call (A, f,B) a partial
mapping. It is customary to omit the sets A and B when talking about mappings.

Let A,B be sets, C ⊆ A, f : A −→ B. The restriction of f to C is the mapping
f |C : C −→ B such that f |C(x) = f(x) for every x ∈ C.

For k ∈ N0 and a set A, a k-ary operation on A is a mapping φ : Ak −→ A. We
write nonary instead of 0-ary, unary instead of 1-ary and binary instead of 2-ary. For
a nonary operation ϕ : A0 → A on a set A we identify ϕ with ϕ(()).

An alphabet is a set Σ, such that #Σ ∈ N, i.e. Σ is a finite and nonempty set.
Σ∗ denotes the set of words over Σ, i.e. finite ordered sequences of elements from Σ.
The length of ω ∈ Σ∗ is denoted |ω|. Let Σn := {ω ∈ Σ∗ | |ω| = n} for n ∈ N0 and ε be
the unique element of Σ0. For σ ∈ Σ, ω ∈ Σ∗, we denote the number of occurrences
of σ in ω as |ω|σ.

Let Σ be an alphabet and r : Σ −→ N0 a mapping. We call the pair (Σ, r) a ranked
alphabet and for any a ∈ Σ, r(a) is the rank of a. If the context is clear, we will
withhold r and simply write Σ instead of (Σ, r).

Let Σ be a ranked alphabet and k ∈ N0. We define Σ(k) := r−1({k}) = {a ∈ Σ |
r(a) = k}. Since Σ is finite and nonempty, there exists maxrk(Σ) := max r(Σ) called
the maximal rank of Σ.

We fix the sets X := {xi | i ∈ N} and for any n ∈ N, Xn := {xi | i ∈ [n]}.
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Let Σ be a ranked alphabet and A a set. Then the set of trees over Σ indexed
by A, abbreviated by TΣ(A), is the smallest set T ⊆ (Σ ∪A ∪ C)∗ (where C consists of
open and closed round brackets and a comma), that satisfies the following conditions:

1. A ⊆ T

2. σ(t1, ..., tk) ∈ T for any k ∈ N0, σ ∈ Σ(k), t1, ...tk ∈ T .

Moreover TΣ := TΣ(∅) and for each σ ∈ Σ(k) we identify σ with σ(x1, . . . , xk).
A tree language is a set of trees L ⊆ TΣ.
A tree t ∈ TΣ(X) is called linear if for every i ∈ N xi occurs at most once in t.

Let l ∈ N0, ξ ∈ TΣ(Xl) and t1, ..., tl ∈ TΣ(A). Define the substitution of ξ with
t1, ..., tl inductively by:

ξ[t1, ..., tl] := ti

whenever ξ = xi, i ∈ [l] and

ξ[t1, ..., tl] := σ(ζ1[t1, ..., tl], ..., ζk[t1, ..., tl])

for k ∈ N0, σ ∈ Σ(k), ζ1, ..., ζk ∈ TΣ, ξ = σ(ζ1, ..., ζk).
Define T̃Σ(Xq) as the set of trees u ∈ TΣ(Xq) such that the left-to-right sequence of

variables in u is x1 . . . xq (where q ∈ N0).

Example 1. Consider the set Σ := {θ, σ, β, α} with ranks r(θ) = 3, r(σ) = 2, r(β) =
r(α) = 0. That is, (Σ, r) is a ranked alphabet where for example

θ(α, θ(x1, β, x2), α) ∈ TΣ(X2) and

σ(θ(1, 2, α), 3) ∈ TΣ(N)

hold. The trees can be visualized as follows:

θ

α θ

x1 β x2

α

σ

θ

1 2 α

3

Note that the first tree is also in T̃Σ(X2). �
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2.2 Tree Transformations and Tree Grammars

The following definitions for tree transducers are strongly oriented on [24] and [9]. Since
it is not the task of this thesis to explain these concepts in more depth, we waive examples.

Let Σ,∆ be ranked alphabets. A relation τ ⊆ TΣ×T∆ is called tree transformation.
For a subset L ⊆ TΣ(X) and a set Q define

Q〈L〉 := {q(ξ) | q ∈ Q, ξ ∈ L}.

If #Q = k ∈ N and Q = {q1, . . . , qk}, we moreover introduce a notational convention
for substitution in trees from TΣ(Q〈X〉): Let (ξi,j)i∈[k],j∈N be a double-indexed family of
trees from TΣ(X) and ζ ∈ TΣ(Q〈X〉). Define the expression ζ[qi(xj)/ξi,j ] inductively by

(qι(xκ))[qi(xj)/ξi,j ] := ξι,κ

for some ι ∈ [k], κ ∈ N and

(σ(t1, . . . , tn))[qi(xj)/ξi,j ] := σ(t1[qi(xj)/ξi,j ], . . . , tn[qi(xj)/ξi,j ])

for some n ≥ 0, σ ∈ Σ(n), t1, . . . , tn ∈ TΣ(Q〈X〉). Thus ζ[qi(xj)/ξi,j ] is the element of
TΣ(X) derived from ζ by replacing any occurrence of qi(xj) with ξi,j .

A top-down tree transducer (td-tt) is a tuple T = (Q,Σ,∆, I, R) where Q is a
finite set (of states), I ⊆ Q and R is a finite set of rules of the form

q(σ(x1, . . . , xk)) −→ t

where k ≥ 0, σ ∈ Σ(k), q ∈ Q, t ∈ T∆(Q〈Xk〉).
The derivation relation of T is a relation =⇒T⊆ T∆(Q〈TΣ〉)2 such that ∀φ, ψ ∈

T∆(Q〈TΣ〉):

φ =⇒T ψ :⇐⇒
∃u1, u2 ∈ (Q ∪ Σ ∪∆ ∪ {(, ,, )})∗, (q(σ(x1, . . . , xk)) −→ t) ∈ R, s1, . . . , sk ∈ TΣ :

φ = u1 · q(σ(s1, . . . , sk)) · u2, ψ = u1 · t[s1, . . . , sk] · u2

The tree transformation induced by T is

τ(T ) := {(s, t) ∈ TΣ × T∆ | ∃q ∈ I : q(s) =⇒∗
T
t}.

Let T = (Q,Σ,∆, I, R) be a td-tt, q ∈ Q. We define Tq := (Q,Σ,∆, {q}, R), the td-tt
with initial state q.
T is called deterministic if #I = 1 and for every q ∈ Q, k ≥ 0, σ ∈ Σ(k), q(σ(x1, . . . , xk))

is the left hand side of at most one rule in R.
T is called total if for every q ∈ Q, k ≥ 0, σ ∈ Σ(k), q(σ(x1, . . . , xk)) is the left hand

side of at least one rule in R.
Note that a total and deterministic td-tt (td-td-tt) induces a tree mapping τ(T ) :

TΣ −→ T∆. Thus the expression τ(T )(ξ) for some ξ ∈ TΣ is the unique ζ ∈ T∆ such

12



that (ξ, ζ) ∈ τ(T ). In this case we can extend the tree transformation to trees containing
variables:

τ(T ) : TΣ(X) −→ T∆(Q(X))

where τ(T )(ξ) is the unique element in T∆(Q(X)) that can be derived from ξ ∈ TΣ(X)
in T . Since obviously τ(T )|TΣ

= τ(T ) holds, we can write τ(T ) instead of τ(T ). Using
this definition, we can express for some σ ∈ Σ, q ∈ Q the right hand side of the unique
rule (q(σ) −→ t) ∈ R by τ(Tq)(σ).

Lemma 2. Let Σ be a ranked alphabet, T = (Q,Σ,∆, I, R) a td-td-tt.
For any k ≥ 0, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ, q ∈ Q it holds that

τ(Tq)(σ(t1, . . . , tk)) = τ(Tq)(σ)[qi(xj)/τ(Tqi)(tj)].

Proof. This is a well-known result and was proven by Fülöp and Vogler in [12] (there:
Theorem 3.25.).

T is called top-down tree homomorphism (or simply tree homomorphism) if
T is total, deterministic and #Q = 1.
T is called top-down relabeling (or simply relabeling) if #Q = 1 and for every

q(σ(x1, . . . , xk)) −→ t ∈ R there exists δ ∈ ∆(k) such that t = δ(q(x1), . . . , q(xk)).
We denote the class of tree transformations induced by deterministic (total and

deterministic) tree transducers with d-TOP (td-TOP). The class of tree transformations
induced by homomorphisms is denoted h-TOP or HOM.

For a class of tree transformations Ξ and a class of tree languages Λ, we define

Ξ(Λ) := {τ(L) | τ ∈ Ξ, L ∈ Λ, τ ⊆ (TΣ × T∆), L ⊆ TΣ,Σ,∆ r.a.}.

A bottom-up tree transducer (bu-tt) is a tuple B = (Q,Σ,∆, F,R) where Q is a
finite set (of states), F ⊆ Q and R is a finite set of rules of the form

σ(q1(x1), . . . , qk(xk) −→ q(t)

where k ≥ 0, σ ∈ Σ(k), q1, . . . , qk, q ∈ Q, t ∈ T∆(Xk).
The derivation relation of B is the relation =⇒T⊆ TΣ(Q〈T∆〉)2 such that ∀φ, ψ ∈

TΣ(Q〈T∆〉):

φ =⇒B ψ :⇐⇒
∃b ∈ T̃Q∪Σ∪∆(X1), (σ(q1(x1), . . . , qk(xk)) −→ q(t)) ∈ R, s1, . . . , sk ∈ TΣ :

φ = b[σ(q1(s1), . . . , qk(sk)], ψ = b[q(t[s1, . . . , sk])]

The tree transformation induced by B is

τ(B) := {(s, t) ∈ TΣ × T∆ | ∃q ∈ F : s =⇒∗
B
q(t)}.
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B is called deterministic if for every k ≥ 0, σ ∈ Σ(k), q1 . . . , qk ∈ Q there is at most
one rule in R with left hand side σ(q1(x1), . . . , qk(xk)).
B is called total if for every k ≥ 0, σ ∈ Σ(k), q1 . . . , qk ∈ Q there is at least one rule in

R with left hand side σ(q1(x1), . . . , qk(xk)).
B is called finite-state tree automaton (fta) if Σ = ∆ and for every rule

(σ(q1(x1), . . . , qk(xk)) −→ q(t)) ∈ R,

t has the form σ(x1, . . . , xk).
B is called bottom-up deterministic finite-state tree automaton (budet-fta)

if B is deterministic and total fta.
Let L ⊆ TΣ. L is called recognizable tree language if there exists a budet-fta B

such that τ(B) = {(t, t) | t ∈ L}.
The class of all recognizable tree languages over Σ is denoted REC(Σ).

A context-free tree grammar (CFTG) is a tuple G = (V,Σ, Z, P ) where
- V,Σ are ranked alphabets, elements of V are called nonterminals, elements

of Σ are called terminals respectively,
- Z ∈ V (0) and
- P is a finite set of productions of the form
A(x1, . . . , xq) −→ ζ, with A ∈ V (q), ζ ∈ TΣ∪V (Xq), q ∈ N0.

The derivation relation induced by G is the relation =⇒G⊆ TΣ∪V × TΣ∪V that
has for φ, ψ ∈ TΣ∪V

φ =⇒G ψ :⇐⇒∃(A(x1, . . . , xq) −→ ζ) ∈ P, ξ ∈ T̃Σ∪V (X1), ζ1, . . . , ζq ∈ TΣ∪V :

φ = ξ[A[ζ1, . . . , ζq]] ∧ ψ = ξ[ζ[ζ1, . . . , ζq]].

The language generated by G is L(G) := {ζ | Z =⇒∗
G
ζ, ζ ∈ TΣ}.

A CFTG G = (V,Σ, Z, P ) is called linear or l-CFTG :⇐⇒ for every production
(A −→ ζ) ∈ P , ζ is linear as an element of TΣ∪V (X).

The class of tree-languages generated by context-free tree grammars is de-
noted L (CFTG). The class of tree-languages generated by linear context-free
tree grammars is denoted L (l-CFTG).

Let G = (V,Σ, Z, P ) be a CFTG. We say G is in normal form or nf-CFTG if for
any rule (A −→ ζ) ∈ P , ζ is of one of the following forms:

ζ ∈ TV (X) , or σ(x1, . . . , xq) , for some σ ∈ Σ(q), q ∈ N0.

This normal form will allow us to have perspicuous constructions for the following results.

Lemma 3. Let G = (V,Σ, Z, P ) be a CFTG. There exists G′ = (V ′,Σ, Z ′, P ′) CFTG
in normal form (nf-CFTG) such that L(G) = L(G′).

Proof. This is a well-known result for CFTGs and can be found in [23].
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Let G = (V,Σ, Z, P ) be a CFTG. The OI derivation relation induced by G is
the relation ◦=⇒G ⊆=⇒G such that for any (A(x1, . . . , xq) −→ ζ) ∈ P , ξ ∈ T̃Σ∪V (X1) and
ζ1, . . . , ζq ∈ TΣ∪V , it holds that (ξ[A[ζ1, . . . , ζq]], ξ[ζ[ζ1, . . . , ζq]]) ∈ ◦=⇒G is true if and only
if the path from the root of ξ to the single occurrence of x1 in ξ only consists of elements
of Σ (or x1).

The OI language generated by G is L◦(G) := {ζ | Z ◦=⇒G
∗ζ, ζ ∈ TΣ}.

Lemma 4. Let G = (V,Σ, Z, P ) be a CFTG. It holds that

L(G) = L◦(G).

Proof. This Lemma is well known and a proof can be found in [10] (there: Theorem 3.4.
and the remark after Theorem 3.4.).

2.3 Algebraic Structures

Let Ω 6= ∅ be a set and ◦ a binary operation on Ω. We call (Ω, ◦) a
semigroup :⇐⇒ ∀x, y, z ∈ Ω : x ◦ (y ◦ z) = (x ◦ y) ◦ z.
monoid :⇐⇒ (Ω, ◦) is a semigroup and ∃1 ∈ Ω : ∀x ∈ Ω : x ◦ 1 = 1 ◦ x = x.

Now let Ω 6= ∅ be a set, + and ∗ binary operations on Ω and 0 ∈ Ω. The tuple (Ω,+, ∗, 0)
is called a semiring :⇐⇒ (i) – (iv) hold, where

(i) (Ω,+, 0) is a commutative monoid,
(ii) (Ω, ∗) is a semigroup,
(iii) ∀x, y, z ∈ Ω : x ∗ (y + z) = x ∗ y + x ∗ z ∧ (y + z) ∗ x = y ∗ x+ z ∗ x,
(iv) ∀x ∈ Ω : x ∗ 0 = 0 ∗ x = 0.

A detailed study of group theory can be found in [7] and [16] contains a vast exploration
of the theory of semirings.
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Chapter 3: Magmoids and Context-Free Magmoid Grammars

3.1 Magmoids

We first introduce the definition of an algebraic structure – the magmoid – as seen in [4]
and proceed with giving examples of this structure.

Definition 5. Let M be a set, · : M × M −→ M a partial binary operation on M,
⊕ : M×M −→M a binary operation on M and  and  two nonary operations on M.

We call the tuple (M, ·,⊕, , ) a magmoid :⇐⇒
the conditions (M1), (M2), (M2’), (M3), (M3’), (M4) and (M5) hold, where

(M1) ∀p, q ∈ N0∃Mp
q ⊆M such that M =

⋃
p,q∈N0

Mp
q and ∀p, p′, q, q′ ∈ N0 with (p, q) 6=

(p′, q′) : Mp
q ∩Mp′

q′ = ∅. (M is the union of disjoint sets).

(M2) ∀p, p′, q, q′ ∈ N0,m ∈ Mp
q ,m′ ∈ Mp′

q′ : m · m′ is defined ⇔ q = p′ and if the

composition is defined we have m ·m′ ∈Mp
q′ .

(M2’) ∀m,m′,m′′ ∈M where (m ·m′) ·m′′ and m · (m′ ·m′′) are defined, (m ·m′) ·m′′ =
m · (m′ ·m′′) (associativity on domain).

(M3) ∀p, p′, q, q′ ∈ N0,m ∈Mp
q ,m′ ∈Mp′

q′ : m⊕m′ ∈Mp+p′

q+q′ .

(M3’) ⊕ is associative.

(M4) ∀m1,m2, n1, n2 ∈ M : (m1 ·m2)⊕ (n1 · n2) is defined =⇒ (m1 ⊕ n1) · (m2 ⊕ n2)
is defined and both terms are equal.

(M5)  ∈M1
1,  ∈M0

0 and with p :=
⊕p

i=1  ∈Mp
p for p ∈ N it holds that

∀p, q ∈ N0,m ∈Mp
q : p ·m = m · q = m and m⊕  = ⊕m = m.

Note that because of (M1), we call M biranked. For any p, q ∈ N0 we call p the superrank
of Mp

q and q the subrank of Mp
q , whereas Mp

q is called the fibre of M for p, q or p-q-
fibre of M. Moreover we call the partial operation · the product of composition and
the operation ⊕ is called the tensor product. Since the tensor product is associative,
we use the big operator

⊕
as the natural extension of ⊕ to arbitrarily many operands.

It is customary to refer to a magmoid by its support. Thus we will write M instead of
the tuple. An element of M can be referred to as lava.

If M0
1 contains a unique element 1, then we define two helpful lavas: p :=

⊕p
i=1 1 for

p ∈ N0 and for any p ∈ N, i ∈ [p] the p, i-projection in M is πip := i−1⊕⊕p−i ∈M1
p�

Corollary 6. Let (M, ·,⊕, , ) be a magmoid. In M it holds that

(a1 · b1)⊕ · · · ⊕ (an · bn) = (a1 ⊕ · · · ⊕ an) · (b1 ⊕ · · · ⊕ bn) (1)

for any n ∈ N and a1, . . . , an, b1, . . . , bn ∈M such that the left hand side of the equation
is defined.
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Proof. We use induction over n. For n = 1, the equation holds trivially, for n = 2 the
equation follows directly from axiom (M4).

Now let n ∈ N, a1, . . . , an, b1, . . . , bn ∈ M such that equation (1) holds (and its left
hand side is defined). Let a, b ∈M such that a · b is defined. Then

(a · b)⊕ (a1 · b1)⊕ · · · ⊕ (an · bn) = (a · b)⊕ ((a1 · b1)⊕ · · · ⊕ (an · bn))

IH
= (a · b)⊕ ((a1 ⊕ · · · ⊕ an) · (b1 ⊕ · · · ⊕ bn))

(M4)
= (a⊕ (a1 ⊕ · · · ⊕ an)) · (b⊕ (b1 ⊕ · · · ⊕ bn))

= (a⊕ a1 ⊕ · · · ⊕ an) · (b⊕ b1 ⊕ · · · ⊕ bn)

Example 7. As a first simple example consider the (p, q)-matrices over the real numbers
R together with matrix multiplication and disjoint matrix union. For the latter (binary)
operation, the two matrices are just written diagonally next to each other and all other
positions in the resulting matrix are filled up with zeros. The p-th unit matrix becomes
the unit for multiplication and the empty matrix with 0 rows and 0 columns the unit for
disjoint matrix union.

This idea can be generalized to matrix magmoids over semirings with a unit element:

Let (R,+, ∗, 0R, 1R) be a semiring with unit element 1R for ∗ and define Mp
q := Rp,q

(the set of p, q-matrices with values in R) and M :=
⋃
p,q∈N0

Mp
q . The tuple M(R) :=

(M, ∗,⊕, , ((1R))), where
- ∗ is the usual matrix multiplication,

- for any p, p′, q, q′ ∈ N0,m ∈Mp
q ,m′ ∈Mp′

q′ we definem⊕m′ :=
(
m 0p,q′

0p′,q m′

)
with zero-matrices 0p,q′ and 0p′,q, and

-  is the empty matrix with 0 rows and 0 columns
is called matrix magmoid over R.
Note that the p-th unit p becomes the p-dimensional unit matrix. Furthermore all Mp

0

and M0
q contain only one single element that is an empty matrix, but still the Mp

q are
pairwise disjoint since two empty matrices with different numbers of rows or columns are
posited to be different.
To prove that M(R) is in fact a magmoid, we show that the axioms from Definition 2
hold:

(M1) follows directly from the definition of M,
(M2) and (M2’) are usual arithmetics for matrix multiplication and
(M3) and (M3’) follow directly from the definition of ⊕.
The last part of axiom (M5) can be seen as follows: since m⊕  (and ⊕m) doesn’t

add any rows or columns to m (recall that  ∈ M0
0) and m itself isn’t changed by the

operation, using the tensorproduct on m and  gives m. The rest of (M5) follows from
the definitions of M and matrix multiplication.

To prove that axiom (M4) holds, we evaluate both sides of the equation. Let
m,m′, n, n′ ∈M such that λ := (m∗m′)⊕(n∗n′) is defined. Now ∃p, q, r, p′, q′, r′ ∈ N0 such
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that m ∈Mp
q ,m′ ∈Mq

r, n ∈Mp′

q′ and n′ ∈Mq′

r′ . Thus m⊕n ∈Mp+p′

q+q′ and m′⊕n′ ∈Mq+q′

r+r′ ,

which gives us that ρ := (m⊕ n) ∗ (m′ ⊕ n′) is defined (and ∈Mp+p′

r+r′ ). Because of

λ = (m ∗m′)⊕ (n ∗ n′) =

(
m ∗m′ 0p,r′

0p′,r n ∗ n′
)
,

ρ = (m⊕ n) ∗ (m′ ⊕ n′) =

(
m 0p,q′

0p′,q n

)
∗
(
m′ 0q,r′

0q′,r n′

)
it is then fairly obvious that λ = ρ.
Thus all axioms for magmoids hold and the name “matrix magmoid” is appropriate. �

For our purposes, the magmoid of tree-tuples over a ranked alphabet is the most important
example. It is crucial to gain intuition about this structure, which is why we give a
detailed presentation of this so called free projectable magmoid in the rest of this section.

Example 8.
Recall that the set TΣ(Xk) for some k ∈ N0 and ranked alphabet Σ is the set of all
trees over Σ indexed by variables (denoted x1, ..., xk). For p, q ∈ N0 we will denote
the (p + 1)-tuples in Mp

q := {q} × TΣ(Xq)
p using angle brackets, for this notation is

easier to read. Defining M :=
⋃
p,q∈N0

Mp
q raises the question whether the fibres of M

are disjoint. Since the first component of each element in Mp
q is q, we only need to

show that for any p, p′, q ∈ N0 with p 6= p′, Mp
q and Mp′

q are disjoint. But since p and p′

are the numbers of trees in the tuples, we have that the fibres of M are disjoint. Let
∆ := {σ(2), γ(1), δ(1), β(0), α(0)}.
Define

t1 :=σ(γ(x1), x2) ∈ T∆(X2)

t2 :=β ∈ T∆(X2)

t3 :=δ(x2) ∈ T∆(X2)

t4 :=x3 ∈ T∆(X4)

t5 :=σ(x1, x4) ∈ T∆(X4)

We then for example have that

τ1 :=〈2, t1, t2, t3〉 ∈ T∆(X2)3 = M3
2

τ2 :=〈4, t4, t5〉 ∈ T∆(X4)2 = M2
4

It is important to note that for p = 0, Mp
q contains the single element 〈q〉.

Now define · as the partial operation on M that for 〈q, u1, ..., up〉 ∈Mp
q and 〈r, v1, ..., vq〉 ∈

Mq
r outputs 〈r, u′1, ..., u′p〉 ∈Mp

r where u′i := ui[v1, ..., vq] for i ∈ [p].
Moreover define⊕ as the operation on M that for 〈q, u1, ..., up〉 ∈Mp

q and 〈q′, v1, ..., vp′〉 ∈
Mp′

q′ outputs 〈q + q′, w1, ..., wp+p′〉 ∈ Mp+p′

q+q′ where wi := ui for i ∈ [p] and wi :=
vi−p[xq+1, ..., xq+q′ ] for i ∈ [p+ p′] \ [p].

18



Furthermore for n ≥ 1, i ∈ [n], pi, qi ∈ N0, ui := 〈qi, ui,1, ..., ui,pi〉 ∈ Mpi
qi define

〈[u1, . . . , un]〉 := 〈q, u1,1, ..., u1,p1 , . . . , un,1, ..., un,pn〉 ∈ Mp
q , where p =

∑n
i=1 pi and q =

maxi∈[n] qi.
It is now

τ1 · τ2 =〈4, σ(γ(x3), σ(x1, x4)), β, δ(σ(x1, x4))〉 ∈ T∆(X4)3 = M3
4

τ1 ⊕ τ2 =〈6, t1, t2, t3, x5, σ(x3, x6)〉 ∈ T∆(X6)5 = M5
6

Defining  := 〈0〉 and  := 〈1, x1〉 with p :=
⊕p

i=1 , we see that for any m ∈M it holds
that m⊕  = ⊕m = m and for any m ∈Mp

q (p, q ∈ N0) we have m · q = p ·m = m.
Note that for p ∈ N,i ∈ [p], the p, i-th projection is πip = 〈p, xi〉.

We continue the example for trees over ∆ with a portrayal of one representative for the
equation in axiom (M4) from Definition 2:
Let

s1 :=σ(x1, x1) ∈ T∆(X1)

s2 :=γ(α) ∈ T∆(X3),

thus

χ1 :=〈1, s1〉 ∈ T∆(X1)1 = M1
1

χ2 :=〈3, s2〉 ∈ T∆(X3)1 = M1
3

χ1 · χ2 =〈3, σ(γ(α), γ(α))〉 ∈ T∆(X3)1 = M1
3

and since

τ1 ⊕ χ1 =〈3, t1, t2, t3, σ(x3, x3)〉 ∈ T∆(X3)4 = M4
3

τ2 ⊕ χ2 =〈7, t4, t5, s2〉 ∈ T∆(X7)3 = M3
7

we get

(τ1 · τ2)⊕ (χ1 · χ2) =〈7, σ(γ(x3), σ(x1, x4)), β, δ(σ(x1, x4)), σ(γ(α), γ(α))〉
=(τ1 ⊕ χ1) · (τ2 ⊕ χ2)

which can be visualized as〈
7, σ

γ

x3

σ

x1 x4

, β, δ

σ

x1 x4

, σ

γ

α

γ

α

〉

Note that in this example we used T∆(Xk) ⊆ T∆(Xl) for k ≤ l when we stated s2 ∈ T∆(X3)
to adjust the ranks of the lavas to fit for later operations.

The assumption that Σ is a finite ranked alphabet can be dropped and instead M can
be defined for possibly infinite ranked alphabets analogous to the finite case. �
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Lemma 9.
Let Σ be a ranked alphabet. Defining Mp

q for p, q ∈ N0, M , · , ⊕ ,  and  as in Example
4, the tuple (M, ·,⊕, , ) is a magmoid – the so called free projectable magmoid
over Σ. The common notation for M is T (Σ). Moreover it is customary to identify
TΣ(Xk) 3 t with 〈k, t〉 ∈ T (Σ)1

k.

Proof. Since the axioms (M1), (M2), (M3), (M5) from Definition 5 are proven in
Example 8, we focus on axioms (M2’), (M3’) and (M4).

While the associativity of · has been proven in [15] (there: Proposition 2.4) and the
associativity of⊕ is easy to verify, axiom (M4) can be seen as follows: Form,m′, n, n′ ∈M
such that λ := (m · m′) ⊕ (n · n′) is defined, we find p, p′, q, q′, r, r′ ∈ N0 such that

m ∈Mp
q ,m′ ∈Mq

r, n ∈Mp′

q′ and n′ ∈Mq′

r′ . Thus (m⊕ n) · (m′ ⊕ n′) is defined.
Let the operands be decomposed as follows: m = 〈q, u1, . . . , up〉,m′ = 〈r, v1, . . . , vq〉, n =
〈q′, u′1, . . . , u′p′〉, n′ = 〈r′, v′1, . . . , v′q′〉. It then holds that

m ·m′ = 〈r, u1[v1, . . . , vq], . . . , up[v1, . . . , vq]〉
n · n′ = 〈r′, u′1[v′1, . . . , v

′
q′ ], . . . , u

′
p′ [v
′
1, . . . , v

′
q′ ]〉

(m ·m′)⊕ (n · n′) = 〈r + r′, w1, . . . , wp, z1[xr+1, . . . , xr+r′ ], . . . , zp′ [xr+1, . . . , xr+r′ ]〉

where wi := ui[v1, . . . , vq], zj := u′j [v
′
1, . . . , v

′
q′ ] for i ∈ [p], j ∈ [p′]. Whereas

m⊕ n = 〈q + q′, u1, . . . , up, u
′
1[xq+1, . . . , xq+q′ ], . . . , u

′
p′ [xq+1, . . . , xq+q′ ]〉

m′ ⊕ n′ = 〈r + r′, v1, . . . , vq, v
′
1[xr+1, . . . , xr+r′ ], . . . , v

′
q′ [xr+1, . . . , xr+r′ ]〉.

Taking into account that u1, . . . , up and u′1, . . . , u
′
p′ use disjoint variables we get the

required equality in (M4).

Definition 10. Let Σ be a ranked alphabet. For notational purposes we define the
torsion-free subset of T (Σ), T̃ (Σ) :=

⋃
p,q∈N0

T̃ (Σ)pq , where T̃ (Σ)pq is the set of lavas
u from T (Σ)pq such that the left-to-right sequence of variables in u is x1 . . . xq. In fact,
T̃ (Σ) is a magmoid, as found in [4] (there: Théorème 1). �

Definition 11. Let (M, ·M,⊕M, M, M) and (O, ·O,⊕O, O, O) be magmoids. A mapping
ϕ : M −→ O is called magmoid homomorphism if the following axioms hold:

(1) ϕ(Mp
q) ⊆ Op

q for any p, q ∈ N0,

(2) ϕ(m ·M n) = ϕ(m) ·O ϕ(n) for any m,n ∈M such that m ·M n is defined,

(3) ϕ(m⊕M n) = ϕ(m)⊕O ϕ(n) for any m,n ∈M.

This is equivalent to the definition in [4] (there: first definition in Chapter 4.1.) since
there, axiom A3 implies axiom A2. That is, our axioms (2) and (3) imply that neutral
elements are preserved.

Due to the fact that this is a very common definition, we shall not give an example of
magmoid homomorphisms. �
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3.2 The Construction of Tk(Σ, V )

Since our goal is to formulate results for context-free magmoid grammars (CFMGs), we
need an appropriate structure on which their derivation relation can be defined. In this
subchapter we give one very important characterization of this structure to complete the
theoretic picture of CFMGs given in [5].

Definition 12. Let (M, ·,⊕, , ) be a magmoid and k ∈ N. Define the magmoid

(k-dil(M), ·|k-dil(M),⊕|k-dil(M), , k) where k-dil(M)pq = Mkp
kq (∀p, q ∈ N0). Since M is a

magmoid and the restricted operations preserve fibres of k-dil(M), all axioms for mag-
moids hold immediately for k-dil(M). Thus, k-dil(M) is well-defined. We call k-dil(M)
the k-dilatation of M. �

Example 13. Let Σ := {σ(2), γ(1), δ(1), β(0), α(0)} and k := 2. Then we e.g. have that

τ1 := 〈6, σ(x1, σ(β, x4)), γ(x1)〉 ∈ k-dil(T (Σ))1
3

τ2 := 〈0, σ(α, β), δ(γ(α))〉 ∈ k-dil(T (Σ))1
0

τ3 := 〈6, δ(x2), α, δ(x5), α〉 ∈ k-dil(T (Σ))2
3

τ4 := 〈4, x1, σ(x1, x2), γ(x3), γ(x3)〉 ∈ k-dil(T (Σ))2
2.

The next step in constructing Tk(Σ, V ) is to allow occurrences of elements of a second
ranked alphabet V , which will be used as nonterminals for magmoid grammars. �

Example 14. Let Σ, V be ranked alphabets, k ∈ N. The elements of k-dil(T (Σ))1 are
together with their subranks a possibly infinite ranked alphabet. Define T̂k(Σ, V ) :=
T (k-dil(T (Σ))1 ∪ V ). That is, T̂k(Σ, V ) is the magmoid of trees over k-dil(T (Σ))1 ∪ V –
meaning any vertex in a tree in a lava is either an element of V or a k-tuple of trees over
Σ. We continue by giving several graphical examples of elements of T̂k(Σ, V ). Moreover
to distinguish between lavas in T̂k(Σ, V ) and lavas in k-dil(T (Σ))1, we denote the latter
ones using double angle brackets.

From now on let Σ := {σ(2), γ(1), β(0), α(0)}, V := {A(0), B(1), C(2)}, k := 2. To
construct elements of T̂k(Σ, V ), we need some trees over k-dil(T (Σ))1 ∪ V . The trees

C

y1 B

y2

〈〈4, σ(x1, x2), σ(x3, x4)〉〉

y1 B

y2

〈〈4, σ(x1, x2), σ(x3, x4)〉〉

y1 〈〈2, γ(x1), x1〉〉

y2

can be formally written as

χ1 = C(y1, B(y2))

χ2 = 〈〈4, σ(x1, x2), σ(x3, x4)〉〉(y1, B(y2))
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χ3 = 〈〈4, σ(x1, x2), σ(x3, x4)〉〉(y1, 〈〈2, γ(x1), x1〉〉(y2)).

To be able to distinguish between variables in T̂k(Σ, V ) and those in T (Σ), we denoted
the variables of the trees χ1, χ2 and χ3 with y1 and y2.

Finally, we now have

〈2, χ1, χ2, χ3〉 ∈ T̂k(Σ, V )3
2.

The idea of replacing exactly one element of V (a nonterminal) in a tree over k-dil(T (Σ))1∪
V will be heavily used by the derivation relation of CFMGs, which is why in this exam-
ple χ2 results from χ1 by replacing C and respectively χ3 results from χ2 by replacing
B. In CFMGs however it is possible to derive any tree in T̂k(Σ, V )1 from a nonterminal. �

Definition 15. The components of an element in T̂k(Σ, V ) are from a CFMG point of
view composited terminals and nonterminals. Derivations in a CFMG will eventually
produce adjacent terminals in a lava which we want to be viewed as a single terminal. To
achieve this, we construct a congruence relation on T̂k(Σ, V ) that allows us to execute
substitutions within a derived tree. This has the advantage of a much easier handling
of example derivations and permits the use of k-dil(T (Σ))1 to express the terminals
produced by a CFMG. This construction does not affect the language generated by a
CFMG as we will prove in Corollary 17 and Lemma 19.

We call lavas ω1, ω2 ∈ T̂k(Σ, V )pq sub-congruent if there exists an i ∈ [p] and a, b, c ∈
N0, l1, . . . , la,m1, . . . ,mb, r1, . . . , rc ∈ Tk-dil(T (Σ))1∪V (X), v ∈ T̃k-dil(T (Σ))1∪V (X1), u ∈
k-dil(T (Σ))1

a+1+c, m ∈ k-dil(T (Σ))1
b such that for every j ∈ [p]\{i} we have πjp ·ω1 = πjp ·ω2

and πip · ω1 = v[φ] and πip · ω2 = v[ψ] where

φ := u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)

ψ := (u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1, . . . , rc).

The calculation of u · (a ⊕ m ⊕ c) takes place in k-dil(T (Σ)). Define the relation
�⊆ T̂k(Σ, V )× T̂k(Σ, V ) as the smallest equivalence relation that includes sub-congruence.
That is, � is the symmetric, reflexive, transitive closure of sub-congruence.
We observe that two lavas are equivalent if and only if they can be derived from each
other by merging and decomposing terminal-parts. It especially holds that two equivalent
lavas contain the same nonterminals.

The fact that � is a congruence relation with respect to the tensor product in T̂k(Σ, V )
is obvious.

We prove the fact that � is a congruence relation with respect to the product of
composition in T̂k(Σ, V ).

Let p, q, r ∈ N0, u1, u2 ∈ T̂k(Σ, V )pq , w ∈ T̂k(Σ, V )qr such that u1,u2 are sub-congruent.
Moreover let u1 and u2 be decomposed as in the definition of sub-congruence:

πip · u1 = v[u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)]
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πip · u2 = v[(u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1, . . . , rc)].

Now we have by associativity of the product of composition that

πip · (u1 · w) = v · (u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc) · w)

= v · u(l1 · w, . . . , la · w,m(m1 · w, . . . ,mb · w), r1 · w, . . . , rc · w)

� v · (u · (a ⊕m⊕ c))(l1 · w, . . . , la · w,m1 · w, . . . ,mb · w, r1 · w, . . . , rc · w)

= v · ((u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1, . . . , rc) · w)

= πip · (u2 · w).

For any j ∈ [p] \ {i} it trivially holds that πjp · (u1 ·w) = πjp · (u2 ·w). Thus u1 ·w, u2 ·w
are sub-congruent. We can prove analogously that if u2, u1 are sub-congruent, so are
u2 · w and u1 · w.

Now let u1, u2 ∈ T̂k(Σ, V )pq , w ∈ T̂k(Σ, V )qr such that u1 � u2. Since � is the symmetric,
reflexive, transitive closure of sub-congruence, there exist n ∈ N, w1, . . . , wn ∈ T̂k(Σ, V )pq
such that u1 = w1, u2 = wn and for any i ∈ [n − 1] either wi, wi+1 or wi+1, wi are
sub-congruent. Thus we have

u1 · w = w1 · w � · · · � wn · w = u2 · w

which proves the congruence property of � for left multiplication.
Let p, q, r ∈ N0, w ∈ T̂k(Σ, V )pq , u1, u2 ∈ T̂k(Σ, V )qr such that u1,u2 are sub-congruent.

Moreover let u1 and u2 be decomposed as in the definition of sub-congruence:

πiq · u1 = v[u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)]

πiq · u2 = v[(u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1, . . . , rc)].

Let j ∈ [p] and let m be the number of occurrences of xi in πjp · w. Straightforward
induction on m yields that πjp · w · u1 � πjp · w · u2. Thus

w · u1 = 〈r, π1
p · w · u1, . . . , π

p
p · w · u1〉

� 〈r, π1
p · w · u2, . . . , π

p
p · w · u1〉

. . .

� 〈r, π1
p · w · u2, . . . , π

p
p · w · u2〉

= w · u2.

Analogous to the case of left multiplication it is true that for any w ∈ T̂k(Σ, V )pq , u1, u2 ∈
T̂k(Σ, V )qr such that u1 � u2 we have w · u1 � w · u2.

Therefore � is a congruence relation with respect to all magmoid operations.
Finally we define Tk(Σ, V ) := T̂k(Σ, V )/� and T̃k(Σ, V ) denotes the torsion-free subset

of Tk(Σ, V ) (i.e., the equivalence classes of torsion-free lavas).
Note that in [5], the structure Tk(Σ, V ) is denoted by T (Σ ∪ V ). �
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Corollary 16. Let Σ be a ranked alphabet, k ≥ 1, ζ ∈ Tk(Σ, ∅)1
0. There exists a unique

ξ ∈ k-dil(T (Σ))1
0 such that ξ ∈ [ζ]�. We will denote ξ by µ(ζ).

Proof. We use the fact that � is the symmetric, reflexive, transitive closure of sub-
congruence.

Define the mapping µ : Tk(Σ, ∅)1
0 −→ k-dil(T (Σ))1

0 recursively by

µ(σ(s1, . . . , sn)) = σ · (µ(s1)⊕ · · · ⊕ µ(sn))

for n ∈ N0, σ ∈ k-dil(T (Σ))1
n, s1, . . . , sn ∈ Tk(Σ, ∅)1

0.
Note that µ(σ) = σ for every σ ∈ k-dil(T (Σ))1

0.
Let u1, u2 ∈ Tk(Σ, ∅)1

0 such that u1, u2 are sub-congruent. We show that µ(u1) = µ(u2).
Let therefore u1 and u2 be decomposed as in the definition of sub-congruence:

u1 = v[u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)]

u2 = v[(u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1 . . . , rc)].

Using the recursive definition of µ we have for some ν ∈ k-dil(T (Σ))1
1 (that depends on

v) that

µ(u1) = ν ·
(
µ
(
u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)

))
= ν ·

(
u ·
(
µ(l1)⊕ · · · ⊕ µ(la)⊕ µ(m(m1, . . . ,mb))⊕ µ(r1)⊕ · · · ⊕ µ(rc)

))
= ν ·

((
u · (a ⊕ ⊕ c)

)
·
(
µ(l1)⊕ · · · ⊕ µ(la)⊕

(m · (µ(m1)⊕ · · · ⊕ µ(mb)))⊕ µ(r1)⊕ · · · ⊕ µ(rc)
))

= ν ·
(
u ·
(
(a ⊕m⊕ c) · (µ(l1)⊕ · · · ⊕ µ(la)⊕

µ(m1)⊕ · · · ⊕ µ(mb)⊕ µ(r1)⊕ · · · ⊕ µ(rc))
))

= ν ·
(
µ
(
(u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1, . . . , rc)

))
= µ(u2).

Analogously it is true that if u2, u1 are sub-congruent, then µ(u2) = µ(u1).
Let u,w ∈ Tk(Σ, ∅)1

0 such that u � w. Thus there exists n ∈ N, u1, . . . , un ∈ Tk(Σ, ∅)1
0

such that u = u1, w = un and for every i ∈ [n − 1] either ui, ui+1 or ui+1, ui are
sub-congruent. Since it holds that

µ(ui) = µ(ui+1) for every i ∈ [n− 1],

we deduce that µ(u) = µ(u1) = µ(un) = µ(w).
It is obvious that µ(ζ) ∈ k-dil(T (Σ))1

0, µ(ζ) ∈ [ζ]�. Moreover let α, β ∈ k-dil(T (Σ))1
0

such that α, β ∈ [ζ]�. Using

α = µ(α) = µ(β) = β,

we have that µ(ζ) is the only element of k-dil(T (Σ))1
0 that is equivalent to ζ.
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Corollary 17. Let Σ, V be ranked alphabets, k ≥ 0, B ∈ V , ξ, ξ′ ∈ Tk(Σ, V )1
0 such

that ξ � ξ′. Let moreover ξ1 ∈ T̃k(Σ, V ), ξ2 ∈ Tk(Σ, V ) such that ξ = ξ1 ·B · ξ2 and the
right hand side is defined (note that this forces ξ1 to have subrank 1). Then there exist
ξ′1 ∈ T̃k(Σ, V ), ξ′2 ∈ Tk(Σ, V ) such that

ξ′ = ξ′1 ·B · ξ′2 is defined and ξ′i � ξi for i ∈ [2].

Proof. We again use the fact that � is the symmetric, reflexive, transitive closure of
sub-congruence.

Let ξ, ξ′ ∈ Tk(Σ, V )1
0 such that ξ and ξ′ are sub-congruent and be decomposed as in

the definition of sub-congruence:

ξ = v[u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)],

ξ′ = v[(u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1 . . . , rc)].

Let moreover B ∈ V , ξ1 ∈ T̃k(Σ, V )1
1, ξ2 ∈ Tk(Σ, V ) such that ξ = ξ1 ·B · ξ2. We observe

that this decomposition labels a single occurrence of B in ξ. Obviously the position of
this occurrence of B in ξ is equal to the position of x1 in ξ1. Let ω be this position.

Case 1 – ω ∈ pos(v): There exists ζ ∈ Tk(Σ, V )1 such that v = ξ1 ·B · ζ. Thus we have

ξ2 = ζ[u(l1, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)]

and deduce that for

ξ′1 := ξ1,

ξ′2 := ζ · ((u · (a ⊕m⊕ c))(l1, . . . , la,m1, . . . ,mb, r1 . . . , rc))

we get ξ′1 � ξ1, ξ′2 � ξ2 and ξ′ = ξ′1 ·B · ξ′2.
Case 2 – ω 6∈ pos(v): Since B is neither u nor m, w.l.o.g. the occurrence of interest of

B can be assumed to be in l1. Thus there exists ζ ∈ Tk(Σ, V )1
1 such that l1 = ζ[B · ξ2].

Therefore

ξ1 = v[u(ζ, . . . , la,m(m1, . . . ,mb), r1, . . . , rc)]

and we deduce that for

ξ′1 := v[(u · (a ⊕m⊕ c))(ζ, . . . , la,m1, . . . ,mb, r1 . . . , rc)],

ξ′2 := ξ2

we get ξ′1 � ξ1, ξ′2 � ξ2, ξ′ = ξ′1 ·B · ξ′2 and ξ′1 ∈ T̃k(Σ, V ).
This proves the claim for sub-congruent ξ and ξ′. Analogously we can prove that for

sub-congruent ξ′ and ξ the claim also holds.
Now let ξ, ξ′ ∈ Tk(Σ, ∅)1

0 such that ξ � ξ′. Thus there exist n ∈ N, ζ1, . . . , ζn ∈ Tk(Σ, ∅)1
0

such that ξ = ζ1, ξ
′ = ζn and for every i ∈ [n−1] either ζi, ζi+1 or ζi+1, ζi are sub-congruent.

Let moreover B ∈ V , ξ′(1,1) ∈ T̃k(Σ, V )1
1, ξ
′
(1,2) ∈ Tk(Σ, V ) such that ξ = ξ′(1,1) ·B · ξ

′
(1,2).

Since it holds that for any i ∈ {2, . . . , n} there are ξ′(i,1) ∈ T̃k(Σ, V ), ξ′(i,2) ∈ Tk(Σ, V )
such that

ζi = ξ′(i,1) ·B · ξ
′
(i,2) and ξ′(i,j) � ξ

′
(i−1,j) for j ∈ [2],

we have that ξ′ = ξ′(n,1) ·B · ξ
′
(n,2) where ξ′(1,1) � ξ

′
(n,1) and ξ′(1,2) � ξ

′
(n,2).
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3.3 Context-Free Magmoid Grammars (CFMG)

The most important difference between the construction of Tk(Σ, V ) and context-free
magmoid grammars is that the latter ones will always only use lavas from Tk(Σ, V ) with
superrank 1. Thus, we can at every point express the derivations and productions of a
CFMG using trees over k-dil(T (Σ))1∪V instead of the (notationally correct) corresponding
1-tuples. The constructed magmoid-machinery from the last subchapter will prove to be
useful when we start proving properties and giving examples.

Definition 18. Let k ≥ 1. A k-dilated context-free magmoid grammar (k-dilated
CFMG) is a tuple G = (V,Σ, Z, P ) such that

- V,Σ are ranked alphabets, V are called nonterminals
- Z ∈ V (0) and
- P is a finite set of productions of the form
A −→ ζ, with q ∈ N0, A ∈ V (q), ζ ∈ Tk(Σ, V )1

q .
Furthermore we call the elements of k-dil(T (Σ))1 terminals.
A context-free magmoid grammar (CFMG) is a tuple G = (V,Σ, Z, P ) such that

G is a k-dilated CFMG for some k ≥ 1. We will call k the dilatation index of G.
The derivation relation induced by G is the relation =⇒G⊆ Tk(Σ, V )1×Tk(Σ, V )1

that has for ξ1, ξ2 ∈ Tk(Σ, V )1

ξ1 =⇒G ξ2 :⇐⇒ ∃ζ1 ∈ T̃k(Σ, V )1
1, ζ2 ∈ Tk(Σ, V ), (A −→ ζ) ∈ P :

ξ1 = ζ1 ·A · ζ2 ∧ ξ2 = ζ1 · ζ · ζ2.

The language generated by G is L(G) := {π1
k · ζ | Z =⇒∗

G
ζ, ζ ∈ k-dil(T (Σ))1

0}.
Note that formally 〈0, Z〉 produces (some tree over k-dil(T (Σ))1 equivalent to) 〈0, ζ〉. A
first “layer of notation” allows us to say that Z produces ζ. But since ζ ∈ k-dil(T (Σ))1

0,
we can work with ζ as an element of T (Σ)k0. Thus in the definition of L(G), π1

k is the
projection in T (Σ), not in k-dil(T (Σ)). Then again the result of π1

k · ζ is in T (Σ)1, but is
notationally identified with an element of TΣ. Therefore we can perpend L(G) ⊆ TΣ and
will use this identity throughout the rest of this thesis.

A CFMG G = (V,Σ, Z, P ) is called linear or l-CFMG :⇐⇒ for every production
(A −→ ζ) ∈ P , ζ is linear as an element of Tk-dil(T (Σ))1∪V (X).

Note that this is not the same definition of linear CFMGs as in [5].
The class of tree-languages generated by context-free magmoid grammars

over Σ is denoted L (CFMG(Σ)).
The class of tree-languages generated by context-free magmoid grammars

is denoted L (CFMG).
Analogously, the classes L (l-CFMG(Σ)) and L (l-CFMG) are defined for the case of

linear context-free magmoid grammars and the classes L (CFMG(Σ)k) (L (l-CFMG(Σ)k))
and L (CFMGk) (L (l-CFMGk)) are defined for the case of k-dilated (and linear) context-
free magmoid grammars respectively. �

The derivation relation of CFMGs is defined on Tk(Σ, V ) which contains equivalence
classes. Thus we can swap the representatives of such equivalence classes while deriving.
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The following lemma proves that a change of representatives does not affect the possible
derivations in a CFMG.

Lemma 19. Let G = (V,Σ, Z, P ) be a k-dilated CFMG, n ∈ N0, ξ, ξ′, ζ ∈ Tk(Σ, V )1

such that ξ � ξ′ and ξ =⇒n
G
ζ. Then

∃ζ ′ ∈ [ζ]� : ξ′ =⇒n
G
ζ ′. (2)

Proof. We use complete induction on n.
For n = 0 we have ξ = ζ, thus ξ′ � ζ and moreover ζ ′ = ξ′. This proves the induction

base.
Assume that for some n ∈ N0 we have

∀ξ, ξ′, ζ ∈ Tk(Σ, V )1, ξ � ξ′ : (ξ =⇒n
G
ζ) =⇒ (∃ζ ′ ∈ [ζ]� : ξ′ =⇒n

G
ζ ′).

Let ξ, ξ′, ζ ∈ Tk(Σ, V )1, ξ � ξ′ such that ξ =⇒n+1
G

ζ. By definition of (n + 1)-fold
composition of =⇒G we have

∃θ ∈ Tk(Σ, V )1 : ξ =⇒n
G
θ and θ =⇒1

G
ζ.

Thus by assumption there exists some θ′ ∈ [θ]� such that ξ′ =⇒n
G
θ′.

The definition of =⇒G implies the existence of θ1 ∈ T̃k(Σ, V ), θ2 ∈ Tk(Σ, V ) and
(B −→ θ̃) ∈ P such that

θ = θ1 ·B · θ2 and ζ = θ1 · θ̃ · θ2.

By Corollary 17 there exist θ′1, θ
′
2 ∈ Tk(Σ, V ) such that

θ′ = θ′1 ·B · θ′2 and θi � θ′i for i ∈ [2].

We deduce that for ζ ′ := θ′1 · θ̃ · θ′2 we have

θ′ =⇒1
G
ζ ′

and furthermore since � is a congruence relation it holds that ζ ′ � ζ.
We thus have ξ′ =⇒n+1

G
ζ ′ for some ζ ′ ∈ [ζ]� which by the principle of complete

induction proves the lemma.

Example 20. Let Σ := {σ(2), η(1), γ(1), δ(1), β(0), α(0)}, V := {A(0), B(2), C(1), D(1)}. We
give an introductory example for CFMGs. For the sake of keeping track of the used
notations we successively construct the right hand sides of rules, one by one abbreviating
the mathematical objects. We shall then use these notations unmentioned throughout
the rest of this thesis.

Let G := (V,Σ, A, P ) where

P : A
r1−→

〈
0;B(C(〈〈0, β, α〉〉), 〈〈0, α, β〉〉)

〉
B

r2−→
〈

2; 〈〈2, η(x1), α〉〉(B(C(x1), D(x2)))
〉
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B
r3−→

〈
2; 〈〈4, σ(x1, x3), σ(x2, x4)〉〉(x1, x1)

〉
C

r4−→
〈

1; 〈〈2, γ(x1), γ(x2)〉〉(x1)
〉

C
r5−→

〈
1; 〈〈2, δ(x2), δ(x1)〉〉(x1)

〉
D

r6−→
〈

1; 〈〈2, δ(x1), γ(x2)〉〉(x1)
〉

This is a 2-dilated CFMG. The right hand sides of productions are not abbreviated and
formally represent the mathematical objects in P . Note that this time we also did not
differentiate between the variables in T2(Σ, V ) and those in 2-dil(T (Σ))1. As discussed
earlier, we can reduce the right hand sides of productions to the trees that are enclosed in
the tuples. Moreover using a graphical representation of those trees, we get the following

P : A
r1−→ B

C

〈〈0, β, α〉〉

〈〈0, α, β〉〉

B
r2−→ 〈〈2, η(x1), α〉〉

B

C

x1

D

x2

B
r3−→ 〈〈4, σ(x1, x3), σ(x2, x4)〉〉

x1 x1

C
r4−→ 〈〈2, γ(x1), γ(x2)〉〉

x1

C
r5−→ 〈〈2, δ(x2), δ(x1)〉〉

x1

D
r6−→ 〈〈2, δ(x1), γ(x2)〉〉.

x1

The right hand sides of the rules r4 to r6 are of the form τ(x1, . . . , xk) for some

τ ∈ 2-dil(T (Σ))1
k. Thus we can abbreviate e.g. rule r4 to be C

r4−→ 〈〈2, γ(x1), γ(x2)〉〉.
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An example for a derivation in G is

A
r1=⇒G B

C

〈〈0, β, α〉〉

〈〈0, α, β〉〉

r2=⇒G 〈〈2, η(x1), α〉〉

B

C

C

〈〈0, β, α〉〉

D

〈〈0, α, β〉〉

r2=⇒G 〈〈2, η(x1), α〉〉

〈〈2, η(x1), α〉〉

B

C

C

C

〈〈0, β, α〉〉

D

D

〈〈0, α, β〉〉

r3=⇒G 〈〈2, η(x1), α〉〉

〈〈2, η(x1), α〉〉

〈〈4, σ(x1, x3), σ(x2, x4)〉〉

C

C

C

〈〈0, β, α〉〉

C

C

C

〈〈0, β, α〉〉
r6

=⇒2
G

〈〈2, η(x1), α〉〉

〈〈2, η(x1), α〉〉

〈〈4, σ(x1, x3), σ(x2, x4)〉〉

〈〈2, γ(x1), γ(x2)〉〉

〈〈2, δ(x2), δ(x1)〉〉

〈〈2, γ(x1), γ(x2)〉〉

〈〈0, β, α〉〉

C

C

C

〈〈0, β, α〉〉

r4,r5

=⇒3
G

〈〈2, η(x1), α〉〉

〈〈2, η(x1), α〉〉

〈〈4, σ(x1, x3), σ(x2, x4)〉〉

〈〈2, γ(x1), γ(x2)〉〉

〈〈2, δ(x2), δ(x1)〉〉

〈〈2, γ(x1), γ(x2)〉〉

〈〈0, β, α〉〉

〈〈2, δ(x2), δ(x1)〉〉

〈〈2, δ(x2), δ(x1)〉〉

〈〈2, γ(x1), γ(x2)〉〉

〈〈0, β, α〉〉

The last tree is in T2(Σ, V ) equal to 〈〈0, η(η(σ(γ(δ(γ(α))), δ(δ(γ(β)))))), α〉〉, thus we have

A =⇒∗
G
〈〈0, η2σ(γδγα, δ2γβ), α〉〉 ∈ 2-dil(T (Σ))1

0.

Moreover η2σ(γδγα, δ2γβ) is in L(G). The structure of the productions of G makes it easy
to verify that L(G) = {ηnσ(ω1a1, ω2a2) | n ∈ N0, ω1, ω2 ∈ {γ, δ}n+1, ai = o(ωi), i ∈ [2]}
where

o : {γ, δ}∗ → {α, β}
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o(ω) =

{
α , |ω|δ ≡ 1 mod 2

β , |ω|δ ≡ 0 mod 2.

�

Definition 21. Let G = (V,Σ, Z, P ) be a CFMG. The OI derivation relation in-
duced by G is the relation ◦=⇒G ⊆=⇒G such that for any (ξ[A[ζ1, . . . , ζq]], ξ[ζ[ζ1, . . . , ζq]]) ∈
◦=⇒G the path from the root of ξ to the single occurrence of x1 in ξ only consists of elements
of k-dil(T (Σ))1 (or x1).

The OI language generated by G is L◦(G) := {π1
k · ζ | Z ◦=⇒G

∗ζ, ζ ∈ k-dil(T (Σ))1
0}.

Lemma 22. Let G = (V,Σ, Z, P ) be a CFMG. It holds that

L(G) = L◦(G).

Proof. Defining G′ := (V,∆, Z, P ) where ∆ := {Λ ∈ k-dil(T (Σ))1 | Λ occurs in P}, we
get a context-free tree grammar that has

∀n,m ∈ N0, A ∈ V (m), ζ ∈ Tk(Σ, V )1
m : (A =⇒n

G
ζ)⇐⇒ (∃ξ ∈ [ζ]� : A =⇒n

G′
ξ),

as we will prove in proposition 26, equation (5). Thus G′ already expresses every possible
derivation in G. Since G′ is a CFTG, we can always use OI derivations in G′ to derive a
tree over k-dil(T (Σ))1 which implies the claimed property for G.

Definition 23. Let G = (V,Σ, Z, P ) be a CFMG. We say G is in normal form or
nf-CFMG if for any rule (A −→ ζ) ∈ P , ζ is of one of the following forms:

ζ ∈ TV (X) ζ ∈ k-dil(T (Σ))1.

Note that for CFMGs there exist normal forms that restrict right hand sides of produc-
tions even more – e.g. Chomsky-like normal forms as seen in [19] – but for our purposes
the given normal form is completely adequate. �

Lemma 24. Let G = (V,Σ, Z, P ) be a CFMG. There exists a CFMG in normal form
G′ such that L(G) = L(G′).

Proof. We give a construction of G′.
For p = (A −→ ζ) ∈ P define κp := {κ ∈ k-dil(T (Σ))1 | ∃ω ∈ pos(ζ) : κ = ζ(ω)}. Let

κ :=
⋃
p∈P κp.

By defining V ′ := V ∪̇{V (0)
K | K ∈ κ}, we add a new nonterminal to V for each lava

that occurs in a right hand side of a rule in P. Moreover let τ be the relabeling that
replaces any occurrence of K ∈ κ in a tree over k-dil(T (Σ))1 ∪ V with VK and υ the
relabeling that replaces any occurrence of VK in a tree over k-dil(T (Σ))1 ∪ V ′ with K.
We immediately deduce that τ and υ extended to Tk(Σ, V ) are homomorphisms with
respect to the magmoid structure of Tk(Σ, V ).
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The CFMG G′ = (V ′,Σ, Z, P ′) where

P ′ := {(A −→ ξ) | (A −→ ζ) ∈ P, ξ = τ(ζ)}
∪{(VK −→ K) | K ∈ κ}

has the claimed properties. Obviously the right hand side of any rule in P ′ is either a
tree over V ′ or an element of k-dil(T (Σ))1.

Now we show L(G) = L(G′). To do that we prove the more general claim

∀A ∈ V, ζ ∈ Tk(Σ, V )1
0 : (A =⇒+

G
ζ)⇐⇒ (∃ξ ∈ Tk(Σ, V ′)1

0 : A =⇒+
G′
ξ ∧ υ(ξ) = ζ) (3)

by induction over the length of the derivations.
“=⇒”: Let A ∈ V, ζ ∈ Tk(Σ, V )1

0 such that A =⇒1
G
ζ. Thus by definition of =⇒G we

have (A −→ ζ) ∈ P , which by construction of G′ implies A −→ τ(ζ) ∈ P ′. Then again
by definition we have A =⇒1

G′
τ(ζ). Obviously υ(τ(ζ)) = ζ, thus the induction base is

proven.
Assume for some n ∈ N we have

∀A ∈ V, ζ ∈ Tk(Σ, V )1
0 : (A =⇒n

G
ζ) =⇒ (∃ξ ∈ Tk(Σ, V ′)1

0 : A =⇒+
G′
ξ ∧ υ(ξ) = ζ).

Now let A ∈ V, ζ ∈ Tk(Σ, V )1
0 such that A =⇒n+1

G
ζ. Thus

∃ζ ′ ∈ Tk(Σ, V )1
0 : A =⇒n

G
ζ ′ ∧ ζ ′ =⇒G ζ

and by induction assumption

∃ξ′ ∈ Tk(Σ, V ′)1
0 : A =⇒+

G′
ξ′ ∧ υ(ξ′) = ζ ′.

Moreover by definition of =⇒G we have

∃ζ1 ∈ T̃k(Σ, V )1
1, ζ2 ∈ Tk(Σ, V ), (B −→ ζ̃) ∈ P : ζ ′ = ζ1 ·B · ζ2 ∧ ζ = ζ1 · ζ̃ · ζ2.

By construction it holds that (B −→ τ(ζ̃)) ∈ P ′. Since υ(ξ′) = ζ ′ we can decompose ξ′

in the same way as ζ ′:

∃ξ1 ∈ T̃k(Σ, V )1
1, ξ2 ∈ Tk(Σ, V ′) : ξ′ = ξ1 ·B · ξ2 ∧ υ(ξ1) = ζ1 ∧ υ(ξ2) = ζ2.

Thus in G′ we can derive ξ′ =⇒1
G′

(ξ1 ·τ(ζ̃) ·ξ2) =: ξ. Finally because υ is a homomorphism
we have υ(ξ) = υ(ξ1) · υ(ζ̃) · υ(ξ2) = ζ1 · ζ̃ · ζ2 = ζ.

All in all, there exists ξ ∈ Tk(Σ, V ′)1
0 such that A =⇒+

G′
ξ and υ(ξ) = ζ.

“⇐=”: Let A ∈ V, ζ ∈ Tk(Σ, V )1
0 such that there exists ξ ∈ Tk(Σ, V

′)1
0 : A =⇒1

G′
ξ∧

υ(ξ) = ζ. Thus, we have (A −→ ξ) ∈ P ′ which implies by construction (A −→ υ(ξ)) ∈ P
since A ∈ V . This gives the fact that A =⇒1

G
ζ.

Assume for some n ∈ N we have

∀A ∈ V, ζ ∈ Tk(Σ, V )1
0 : (∃ξ ∈ Tk(Σ, V ′)1

0 : A =⇒n
G′
ξ ∧ υ(ξ) = ζ) =⇒ (A =⇒+

G
ζ).
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Now let A ∈ V, ζ ∈ Tk(Σ, V )1
0 such that there exists ξ ∈ Tk(Σ, V

′)1
0 : A =⇒n+1

G′

ξ ∧ υ(ξ) = ζ. By definition of the n-fold composition of =⇒G′ we have

∃ξ′ ∈ Tk(Σ, V ′)1
0 : A =⇒n

G′
ξ′ ∧ ξ′ =⇒1

G′
ξ.

Fix ζ ′ := υ(ξ′). By induction assumption we get A =⇒+
G
ζ ′ and again by definition of

=⇒G′ it holds that

∃ξ1 ∈ T̃k(Σ, V )1
1, ξ2 ∈ Tk(Σ, V ′), (B −→ ξ̃) ∈ P ′ :

ξ′ = ξ1 ·B · ξ2 ∧ ξ = ξ1 · ξ̃ · ξ2.

Case 1 – B ∈ V : The production (B −→ υ(ξ̃)) is in P and since υ is a homomorphism
we have

ζ ′ = υ(ξ1) ·B · υ(ξ2) ∧ ζ = υ(ξ1) · υ(ξ̃) · υ(ξ2).

Thus we can derive ζ ′ =⇒1
G
ζ but then A =⇒+

G
ζ.

Case 2 – B = VK , K ∈ k-dil(T (Σ))1: Using the homomorphism property of υ we can
decompose

ζ ′ = υ(ξ1) · υ(VK) · υ(ξ2) ∧ ζ = υ(ξ1) · υ(ξ̃) · υ(ξ2).

Finally since ξ̃ = K = υ(VK) we have that A =⇒+
G
ζ ′ = ζ. This proves (3).

Let A ∈ V , ζ ∈ Tk(Σ, V )1
0. It obviously holds that

(∃ξ ∈ Tk(Σ, V ′)1
0 : A =⇒+

G′
ξ ∧ υ(ξ) = ζ)⇐⇒ (A =⇒+

G′
ζ),

which together with (3) results in

∀A ∈ V, ζ ∈ Tk(Σ, V )1
0 : (A =⇒+

G
ζ)⇐⇒ (A =⇒+

G′
ζ). (4)

Therefore we deduce for t ∈ TΣ

t ∈ L(G)
def.⇐⇒ ∃ζ ∈ k-dil(T (Σ))1

0 : Z =⇒+
G
ζ ∧ π1

k · ζ = t

(4)⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0 : Z =⇒+

G′
ζ ∧ π1

k · ζ = t

def.⇐⇒ t ∈ L(G′).

Example 25. We construct the normal form of the CFMG G = (V,Σ, A, P ) from
Example 20. Therefore we extract all lavas from vertices on right sides of productions in
P. It is

κ = {〈〈0, β, α〉〉, 〈〈0, α, β〉〉, 〈〈2, η(x1), α〉〉, 〈〈4, σ(x1, x3), σ(x2, x4)〉〉,
〈〈2, γ(x1), γ(x2)〉〉, 〈〈2, γ(x2), γ(x1)〉〉, 〈〈2, δ(x1), δ(x2)〉〉}
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and labeling the elements of κ with K1, . . . ,K7 we have

V ′ = {A(0), B(2), C(1), D(1), V
(0)
K1
, V

(0)
K2
, V

(0)
K3
, V

(0)
K4
, V

(0)
K5
, V

(0)
K6
, V

(0)
K7
, }.

The productions turn out to be

P ′ : A
r′1−→ B(C(VK1), VK2)

B
r′2−→ VK3(B(C(x1), D(x2))

B
r′3−→ VK4

C
r′4−→ VK5

C
r′5−→ VK6

D
r′6−→ VK7

VKi

r′6+i−→ Ki (i ∈ [7]).

�

This structure is very close to a context-free tree grammar (see Definition in Chapter
2.2). We thus want to examine the connection between CFTGs and CFMGs in the next
chapter.
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Chapter 4: Comparison of CFMG and CFTG

4.1 The Language Classes and their Connection

As we have observed earlier, a context-free magmoid grammar behaves much like a
context-free tree grammar except for the terminals and the definition of its generated
language. The following propositions and corollaries explore this kinship.

Our first result is a decomposition of any CFMG G into a total and deterministic td-tt
T and a CFTG G′. Therefor, G′ is defined to use the lavas that occur in productions of
G as a ranked alphabet and have the same productions as G. Thus the only difference
between the two grammars is that G is allowed to use the structure given by Tk(Σ, V ).
The transducer T is constructed to “plug together” the resulting trees from G′ and by
that compensates the unlikeness of G and G′.

Our second result is the composition that is inverse to the first result. That is, we take
a CFTG G′ (in normal form) and a total and deterministic td-tt T and compose them
into a CFMG G. The idea behind this construction is to let G simulate the processing of
T on every output of G′ for every state of T . Thus G dilates the terminal productions of
G′ to store information about T . By chosing appropriate variables in the derived lavas,
we achieve the claimed composition.

Proposition 26. The following relations hold:

L (CFMG) ⊆ td-TOP(L (CFMG)),

L (l-CFMG) ⊆ td-TOP(L (l-CFMG)).

Proof. Let Σ be a ranked alphabet and L ∈ L (CFMG) a tree language over Σ. Thus
there exist k ∈ N and a k-dilated nf-CFMG G = (V,Σ, Z, P ) such that L(G) = L.

We construct a CFTG G′ and a td-td-tt T such that L(G) = τ(T )(L(G′)).

Hence let G′ = (V,∆, Z, P ) and T = (Q,∆,Σ, {q1}, R) where

∆ := {Λ ∈ k-dil(T (Σ))1 | Λ occurs in P},
Q := {q1, . . . , qk}

and R contains the rules

qi(u(x1, . . . , xn)) −→ (πik · u)[q1(x1), . . . , qk(x1), . . . , q1(xn), . . . , qk(xn)]

for any i ∈ [k], u ∈ ∆.
Note that R is well-defined since we identify πik · u with its single component – a tree

over Σ with variables in Xkn. Thus since ∆ is finite, G′ and T are well-defined and we
easily verify that T is a td-td-tt. Moreover if G is linear, then so is G′.

First we prove the following claim:

∀n,m ∈ N0, A ∈ V (m), ζ ∈ Tk(Σ, V )1
m : (A =⇒n

G
ζ)⇐⇒ (∃ξ ∈ [ζ]� : A =⇒n

G′
ξ) (5)
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by complete induction on n.
“=⇒”: The induction base is trivial.
Assume that for some n ∈ N0 it holds that

∀m ∈ N0, A ∈ V (m), ζ ∈ Tk(Σ, V )1
m : (A =⇒n

G
ζ) =⇒ (∃ξ ∈ [ζ]� : A =⇒n

G′
ξ).

Let m ∈ N0, A ∈ V (m), ζ ∈ Tk(Σ, V )1
m such that A =⇒n+1

G
ζ. Thus there exists

ζ ′ ∈ Tk(Σ, V )1
m such that

A =⇒n
G
ζ ′ and ζ ′ =⇒1

G
ζ.

By induction assumption there exists ξ′ ∈ [ζ ′]� such that A =⇒n
G′
ξ′. Moreover by

definition of =⇒G there exist ζ1 ∈ T̃k(Σ, V ), ζ2 ∈ Tk(Σ, V ) and (B −→ ζ̃) ∈ P with

ζ ′ = ζ1 ·B · ζ2 and ζ = ζ1 · ζ̃ · ζ2.

Corollary 17 implies the existence of ξ1, ξ2 ∈ Tk(Σ, V ) such that

ξ′ = ξ1 ·B · ξ2 and ξi � ζi for i ∈ [2].

Thus we can derive ξ′ =⇒1
G′
ξ1 · ζ̃ ·ξ2 =: ξ. Since � is a congruence relation we furthermore

get ξ � ζ, which proves the implication.
“⇐=”: The induction base is trivial.
Assume that for some n ∈ N0 it holds that

∀m ∈ N0, A ∈ V (m), ζ ∈ Tk(Σ, V )1
m : (∃ξ ∈ [ζ]� : A =⇒n

G′
ξ) =⇒ (A =⇒n

G
ζ).

Let m ∈ N0, A ∈ V (m), ζ ∈ Tk(Σ, V )1
m such that there exists ξ ∈ [ζ]� with A =⇒n+1

G′
ξ.

We again decompose the derivation:

A =⇒n
G′
ξ′ and ξ′ =⇒1

G′
ξ

for some ξ′ ∈ Tk(Σ, V )1
m. We get by induction assumption that A =⇒n

G
ξ′ and the

definition of =⇒G′ implies the existence of ξ1, ξ2 ∈ Tk(Σ, V ) and (B −→ ξ̃) ∈ P such that

ξ′ = ξ1 ·B · ξ2 and ξ = ξ1 · ξ̃ · ξ2.

Thus we can derive ξ′ =⇒G ξ in G which implies that A =⇒n+1
G

ξ. The derivation relation
for G does not distinguish between ξ and ζ (since ξ � ζ) what gives A =⇒n+1

G
ζ.

This proves claim (5).

Next we prove the following claim:

∀ζ ∈ Tk-dil(T (Σ))1 , i ∈ [k] : qi(ζ) =⇒∗
T
πik · µ(ζ) (6)

by structural induction over ζ (recall the definition of µ(ζ) from Corollary 16). Note that
this implies

(I) qi(ζ) =⇒∗
T
πik · ζ , for ζ ∈ k-dil(T (Σ))1,
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(II) τ(T )(ζ) = π1
k · µ(ζ) , for ζ ∈ Tk-dil(T (Σ))1 and

(III) τ(T )(ζ) = τ(T )(ξ) , for ζ ∈ Tk-dil(T (Σ))1 , ξ ∈ [ζ]�.

Let ζ = σ(s1, . . . , sm) for some m ∈ N0, σ ∈ k-dil(T (Σ))1, s1, . . . , sm ∈ Tk-dil(T (Σ))1 such

that for all i ∈ [k], j ∈ [m] we have qi(sj) =⇒∗
T
πik · µ(sj). Let moreover ι ∈ [k]. By

definition of T and induction assumption it holds that

qι(ζ) =⇒1
T

(πιk · σ)[q1(s1), . . . , qk(s1), . . . , q1(sm), . . . , qk(sm)]

=⇒∗
T

(πιk · σ)[π1
k · µ(s1), . . . , πkk · µ(s1), . . . , π1

k · µ(sm), . . . , πkk · µ(sm)].

Using the operations from T (Σ) and the fact that T (Σ) is a (projectable) magmoid we
get

(πιk · σ)[π1
k · µ(s1), . . . , πkk · µ(s1), . . . , π1

k · µ(sm), . . . , πkk · µ(sm)]

=(πιk · σ) · ((π1
k · µ(s1))⊕ · · · ⊕ (πkk · µ(s1))⊕ · · · ⊕ (π1

k · µ(sm))⊕ · · · ⊕ (πkk · µ(sm)))

=(πιk · σ) · (µ(s1)⊕ · · · ⊕ µ(sm))

=πιk · (σ · (µ(s1)⊕ · · · ⊕ µ(sm)))

=πιk · µ(σ(s1, . . . , sm))

=πιk · µ(ζ).

Thus qι(ζ) =⇒∗
T
πιk · µ(ζ) as claimed.

Using (5) and corollaries (I)–(III) from claim (6) we can now prove L(G) = τ(T )(L(G′)).

Let t ∈ TΣ. We have

t ∈ L(G)
def.⇐⇒ ∃ζ ∈ k-dil(T (Σ))1

0 : Z =⇒+
G
ζ ∧ π1

k · ζ = t

(5)⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0, ξ ∈ [ζ]� : Z =⇒+

G′
ξ ∧ π1

k · ζ = t

(II)⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0, ξ ∈ [ζ]� : Z =⇒+

G′
ξ ∧ τ(T )(ζ) = t

(III)⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0, ξ ∈ [ζ]� : Z =⇒+

G′
ξ ∧ τ(T )(ξ) = t

Cor.16⇐⇒ ∃ξ ∈ Tk-dil(T (Σ))1 : Z =⇒+
G′
ξ ∧ τ(T )(ξ) = t

def.⇐⇒ t ∈ τ(T )(L(G′))

This proves Proposition 26.

Example 27. Let Σ := {σ(2), γ(1), β(0), α(0)}. It is known that the tree language

L := {σ(t, t) | t ∈ TΣ}

is not in L (CFTG) ([2], there: Theorem 4.1. and based on this also [18]). We therefore
construct a CFMG G with L(G) = L and apply the construction given in Proposition
(26).
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Consider V := {Z(0), A(0)} and the 1-dilated CFMG G := (V,Σ, Z, P ) where P consists
of the following productions:

Z −→ 〈〈1, σ(x1, x1)〉〉(A)

A −→ 〈〈2, σ(x1, x2)〉〉(A,A)

A −→ 〈〈1, γ(x1)〉〉(A)

A −→ 〈〈0, β〉〉
A −→ 〈〈0, α〉〉.

It is obvious that L(G) = L holds.
The constructed CFTG and td-td-tt are G′ := (V,∆, Z, P ) and T := (Q,∆,Σ, {q1}, R)

where Q := {q1},

∆ := {〈〈1, σ(x1, x1)〉〉, 〈〈2, σ(x1, x2)〉〉, 〈〈1, γ(x1)〉〉, 〈〈0, β〉〉, 〈〈0, α〉〉}

and R consists of the following rules:

q1(〈〈1, σ(x1, x1)〉〉(x1)) −→ σ(q1(x1), q1(x1))

q1(〈〈2, σ(x1, x2)〉〉(x1, x2)) −→ σ(q1(x1), q1(x2))

q1(〈〈1, γ(x1)〉〉(x1)) −→ γ(q1(x1))

q1(〈〈0, β〉〉) −→ β

q1(〈〈0, α〉〉) −→ α.

The important difference between CFTGs and CFMGs that makes the construction
of G generate the lanuage L (in contrast to the same approach for a CFTG) is that we
can not copy occurrences of A into generated terminal parts as the following example
derivation in G portrays:

Z =⇒G 〈〈1, σ(x1, x1)〉〉

A

=⇒G 〈〈1, σ(x1, x1)〉〉

〈〈1, γ(x1)〉〉

A

� 〈〈1, σ(γ(x1), γ(x1))〉〉

A

=⇒G 〈〈1, σ(γ(x1), γ(x1))〉〉

〈〈0, α〉〉

� 〈〈1, σ(γ(α), γ(α))〉〉.

Note that since #Q = 1, we have that T is a homomorphism. This points out the fact
that L (CFTG) is not closed under homomorphisms – which was a major motivation to
introduce the structure of magmoids.

Proposition 28. The following relations hold:

L (CFMG) ⊇ td-TOP(L (CFTG)),

L (l-CFMG) ⊇ td-TOP(L (l-CFTG)).
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Proof. Let Σ be a ranked alphabet and L ∈ td-TOP(L (CFTG)) a tree language over
Σ. Thus there exists a ranked alphabet ∆, a nf-CFTG G = (V,∆, Z, P ) and a td-td-tt
T = (Q,∆,Σ, I, R) such that L = τ(T )(L(G)). W.l.o.g. we can assume that for some
k ∈ N it is Q = {q1, . . . , qk} and I = {q1}.

Moreover define the mapping η : TΣ(Q〈X〉) −→ TΣ(X) by

η(ξ) = ξ[qi(xj)/x(j−1)k+i] , ξ ∈ TΣ(Q〈X〉).

We construct a CFMG G′ such that τ(T )(L(G)) = L(G′).

Hence let G′ = (V,Σ, Z, P ′) where P ′ contains on the one hand for every production
(A −→ ζ) ∈ P with ζ ∈ TV (X) the production

A −→ ζ

and on the other hand for every (A −→ σ(x1, . . . , xn)) ∈ P the production

A −→ 〈〈kn, η(t1), . . . , η(tk)〉〉(x1, . . . , xn)

where for any i ∈ [k], ti = τ(Tqi)(σ(x1, . . . , xn)).
Note that if G is linear, so is G′.

First we show the claim

∀n ∈ N, ζ ∈ TV , ξ ∈ T∆ : (ζ ◦=⇒G

nξ) =⇒ (ζ ◦=⇒G′
n〈〈0, τ(Tq1)(ξ), . . . , τ(Tqk)(ξ)〉〉) (7)

by (strong) complete induction on n.
Let ζ ∈ TV , ξ ∈ T∆. Since G is in normal form, the following implications hold:

ζ ◦=⇒G

1ξ =⇒ ζ = A ∈ V (0) ∧ ξ ∈ ∆(0) ∧ (A −→ ξ) ∈ P
=⇒ ζ ◦=⇒G′

1〈〈0, τ(Tq1)(ξ), . . . , τ(Tqk)(ξ)〉〉.

This proves the induction base.
Now let n ∈ N such that for all derivations of length 1 ≤ m ≤ n the claim (7) holds.

Let ζ ∈ TV , ξ ∈ T∆, l ∈ N0, ζ1, . . . , ζl ∈ TV , A ∈ V (l) such that

ζ = A(ζ1, . . . , ζl)

Let ζ ◦=⇒G
n+1ξ be true. There exists ξ′ ∈ T∆∪V such that

ζ ◦=⇒G

1ξ′ ◦=⇒G

nξ.

Note that the derivation mode is OI. Thus ξ′ derives from ζ by applying a rule to the
root of ζ.

Case 1: The first applied rule is of the form (A(x1, . . . , xl) −→ ζ̃) ∈ P for some
ζ̃ ∈ TV (Xl). Thus ξ′ = ζ̃ · 〈0, ζ1, . . . , ζl〉 and by construction we can also derive

ζ ◦=⇒G′
1ξ′ ∈ TV .
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By induction assumption we have

(ξ′ ◦=⇒G

nξ) =⇒ (ξ′ ◦=⇒G′
n〈〈0, τ(Tq1(ξ), . . . , τ(Tqk)(ξ)〉〉)

which implies the derivation ζ ◦=⇒G′
n+1〈〈0, τ(Tq1(ξ), . . . , τ(Tqk)(ξ)〉〉.

Case 2: The first applied rule is of the form (A(x1, . . . , xl) −→ σ(x1, . . . , xl)) ∈ P for
some σ ∈ ∆. Thus there exist ν1, . . . , νl ∈ T∆ such that

ζ ◦=⇒G

1σ(ζ1, . . . , ζl) ◦=⇒G

nσ(ν1, . . . , νl)

with ξ′ = σ(ζ1, . . . , ζl), ξ = σ(ν1, . . . , νl) and moreover the rule

A −→ 〈〈kl, η
(
τ(Tq1)(σ(x1, . . . , xl))

)
, . . . , η

(
τ(Tqk)(σ(x1, . . . , xl))

)
〉〉︸ ︷︷ ︸

=:σ̃

is by construction in P ′.
There exist n1, . . . , nl ∈ N with

∑l
j=1 nj such that

ζi ◦=⇒G

niνi for all i ∈ [l],

thus by (strong) induction assumption we have that

ζi ◦=⇒G′
ni〈〈0, τ(Tq1)(νi), . . . , τ(Tqk)(νi)〉〉 for all i ∈ [l].

Together with the first derivation step we get

ζ ◦=⇒G′
n+1σ̃(〈〈0, τ(Tq1)(ν1), . . . , τ(Tqk)(ν1)〉〉, . . . , 〈〈0, τ(Tq1)(νl), . . . , τ(Tqk)(νl)〉〉)

=σ̃ · 〈〈0, τ(Tq1)(ν1), . . . , τ(Tqk)(ν1), . . . , τ(Tq1)(νl), . . . , τ(Tqk)(νl)〉〉
=〈〈0, τ(Tq1)(σ)[qi(xj)/τ(Tqi)(νj)], . . . , τ(Tqk)(σ)[qi(xj)/τ(Tqi)(νj)]〉〉
=〈〈0, τ(Tq1)(σ(ν1, . . . , νl)), . . . , τ(Tqk)(σ(ν1, . . . , νl))〉〉.

Thus ζ ◦=⇒G′
n+1〈〈0, τ(Tq1)(ξ), . . . , τ(Tqk)(ξ)〉〉. This proves the induction step for the claim

(7).

Next we show the following claim:

∀n ∈ N,ζ ∈ TV , ν ∈ k-dil(T (Σ))1
0 :

(ζ ◦=⇒G′
nν) =⇒ (∃ξ ∈ T∆ : ζ ◦=⇒G

nξ ∧ ν = 〈〈0, τ(Tq1)(ξ), . . . , τ(Tqk)(ξ)〉〉)
(8)

by (strong) induction on n.
Let ζ ∈ TV , ν ∈ k-dil(T (Σ))1

0 and ζ ◦=⇒G′
1ν. Thus we have ζ ∈ V (0) and the production

(ζ −→ ν) is in P ′. By construction of P ′ there exist α ∈ ∆(0) and (ζ −→ α) ∈ P such
that

ν = 〈〈0, τ(Tq1)(α), . . . , τ(Tqk)(α)〉〉.

Therefore ξ := α satisfies the claimed properties.
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Now let n ∈ N such that for all 1 ≤ m ≤ n the claim (8) holds. Let ζ ∈ TV ,
ν ∈ k-dil(T (Σ))1

0, l ∈ N0, ζ1, . . . , ζl ∈ TV , A ∈ V (l) such that

ζ = A(ζ1, . . . , ζl),

and let ζ ◦=⇒G′
n+1ν be true. There exists ξ′ ∈ Tk(Σ, V )1

0 such that

ζ ◦=⇒G′
1ξ′ ◦=⇒G′

nν.

Case 1: The first applied rule is of the form (A(x1, . . . , xl) −→ ζ̃) ∈ P ′ for some
ζ̃ ∈ TV (Xl). Thus ξ′ = ζ̃ · 〈0, ζ1, . . . , ζl〉 and by construction we can also derive

ζ ◦=⇒G

1ξ′ ∈ TV .

By induction assumption we have

(ξ′ ◦=⇒G′
nν)

=⇒(∃ξ ∈ T∆ : ξ′ ◦=⇒G

nξ ∧ ν = 〈〈0, τ(Tq1(ξ), . . . , τ(Tqk)(ξ)〉〉)

which implies the claimed derivation ζ ◦=⇒G
n+1ξ.

Case 2: The first applied rule is of the form

(A −→ 〈〈kl, η
(
τ(Tq1)(σ(x1, . . . , xl))

)
, . . . , η

(
τ(Tqk)(σ(x1, . . . , xl))

)
〉〉︸ ︷︷ ︸

=:σ̃

) ∈ P ′

for some σ ∈ ∆(l) such that (A(x1, . . . , xl) −→ σ(x1, . . . , xl)) ∈ P . Thus ξ′ = σ̃(ζ1, . . . , ζl)
and ζ ◦=⇒G

1σ(ζ1, . . . , ζl).
There exist n1, . . . , nl ∈ N, ν1, . . . , νl ∈ k-dil(T (Σ))1

0 such that
∑l

j=1 nj = n, ζi ◦=⇒G′
niνi

for all i ∈ [l] and σ̃(ν1, . . . , νl) � ν.
By (strong) induction assumption we have that for any i ∈ [l] there exists ξi ∈ T∆ such

that

ζi ◦=⇒G

niξi ∧ νi = 〈〈0, τ(Tq1(ξi), . . . , τ(Tqk)(ξi)〉〉.

Thus we can derive ζ ◦=⇒G
n+1ξ where ξ := σ(ξ1, . . . , ξl).

Since by definition of η it holds that

ν = σ̃(ν1, . . . , νl)

= σ̃ · 〈〈0, τ(Tq1)(ξ1), . . . , τ(Tqk)(ξ1), . . . , τ(Tq1)(ξl), . . . , τ(Tqk)(ξl)〉〉
= 〈〈0, τ(Tq1)(σ(x1, . . . , xl))[qi(xj)/τ(Tqi)(ξj)], . . . , τ(Tqk)(σ(x1, . . . , xl))[qi(xj)/τ(Tqi)(ξj)]〉〉
= 〈〈0, τ(Tq1)(σ(ξ1, . . . , ξl)), . . . , τ(Tqk)(σ(ξ1, . . . , ξl))〉〉
= 〈〈0, τ(Tq1)(ξ), . . . , τ(Tqk)(ξ)〉〉,

the claimed properties are satisfied for ξ. This especially proves the induction step for
claim (8). Using (7) and (8) we can now prove L(G′) = τ(T )(L(G)).
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Let t ∈ TΣ. We have

t ∈ τ(T )(L(G))
def.
=⇒ ∃ξ ∈ T∆ : Z ◦=⇒G

+ξ ∧ τ(T )(ξ) = t

(7)
=⇒ ∃ξ ∈ T∆ : Z ◦=⇒G′

+〈〈0, τ(Tq1)(ξ)︸ ︷︷ ︸
=τ(T )(ξ)

, . . . , τ(Tqk)(ξ)〉〉 ∧ τ(T )(ξ) = t

def.
=⇒ t ∈ L(G′)

and moreover we have

t ∈ L(G′)
def.
=⇒ ∃ν ∈ k-dil(T (Σ))1

0 : Z ◦=⇒G′
+ν ∧ π1

k · ν = t

(8)
=⇒ ∃ξ ∈ T∆ : ζ ◦=⇒G

+ξ ∧ τ(Tq1)(ξ) = t

def.
=⇒ t ∈ L(G′).

This proves Proposition 28.

Example 29. Recall Σ and L from Example 27. We construct a nf-CFTG G and a
td-td-tt T such that τ(T )(L(G)) = L and apply the construction from Proposition (28).

Let V := {Z(0), A
(2)
σ , A

(1)
γ }, G := (V,Σ, Z, P ) and T := ({q1, q2},Σ,Σ, {q1}, R) where

P consists of the following productions:

Z −→ Aσ(Z,Z) | Aγ(Z) | β | α
Aσ −→ σ(x1, x2)

Aγ −→ γ(x1)

and R consists of the following rules:

q1(σ(x1, x2)) −→ σ(σ(q2(x1), q2(x1)), σ(q2(x1), q2(x1)))

q1(γ(x1)) −→ σ(γ(q2(x1)), γ(q2(x1)))

q1(β) −→ σ(β, β)

q1(α) −→ σ(α, α)

q2(σ(x1, x2)) −→ σ(q2(x1), q2(x1))

q2(γ(x1)) −→ γ(q2(x1))

q2(β) −→ β

q2(α) −→ α.

Thus, L(G) = TΣ and τ(T )(ξ) = σ(ξ, ξ) for every ξ ∈ TΣ.
The CFMG G′ := (V,Σ, Z, P ′) with productions

Z −→ Aσ(Z,Z) | Aγ(Z) | 〈〈0, σ(β, β), β〉〉 | 〈〈0, σ(α, α), α〉〉
Aσ −→ 〈〈4, σ(σ(x2, x4), σ(x2, x4)), σ(x2, x4)〉〉
Aγ −→ 〈〈2, σ(γ(x2), γ(x2)), γ(x2)〉〉

is the result of the construction from Proposition (28).
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Theorem 30. The following relations hold:

L (CFMG) = td-TOP(L (CFTG)),

L (l-CFMG) = td-TOP(L (l-CFTG)).

Proof. This immediately follows from propositions 26 and 28.

Corollary 31. It holds that

L (CFMG1) = h-TOP(L (CFTG)),

L (CFMG1) = h-TOP(L (l-CFTG)).

We especially deduce that the class of 1-dilated CFMGs and the class of 1-dilated
l-CFMGs are closed under homomorphisms.

Proof. The equations immediately follow from the constructions from propositions 26
and 28. The closedness under homomorphisms follows from the fact that homomorphisms
are closed under composition as proven in [24].

Corollary 32. It holds that

L (CFMG) = td-TOP(L (CFMG)),

L (l-CFMG) = td-TOP(L (l-CFMG)).

Proof. As Baker has proven in [8] (there: Corollary 2), the class of tree transformations
induced by total deterministic top-down tree transducers is closed under composition:
td-TOP ◦ td-TOP = td-TOP. Thus we have

td-TOP(L (CFMG))
Th.30

= td-TOP(td-TOP(L (CFTG)))

Baker
= td-TOP(L (CFTG))

Th.30
= L (CFMG).

This obviously also holds for linear CFMGs.

Corollary 33. Let k ≥ 1. It holds that

L (CFMGk) = h-TOP(L (CFMGk)),

L (l-CFMGk) = h-TOP(L (l-CFMGk).

Proof. Let td-TOPk be the class of tree transformations induced by total deterministic
top-down tree transducers with k states.

It is h-TOP ⊆ td-TOP by definition of homomorphisms. Moreover Baker has by
construction proven in [8] that the composition of a homomorphism and a total deter-
ministic top-down tree transducer with k states can be expressed by a total deterministic
top-down treee transducer with k states: h-TOP ◦ td-TOPk = td-TOPk. Thus we have

h-TOP(L (CFMGk) = h-TOP(td-TOPk(L (CFTG)))
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Baker
= td-TOPk(L (CFTG))

= L (CFMGk).

This obviously also holds for linear CFMG.

Corollary 34. The following relation holds:

L (CFMG) = d-TOP(L (CFTG)),

L (l-CFMG) = d-TOP(L (l-CFTG)).

Proof. “⊆”: This follows from Theorem 30.
“⊇”: Let D be a deterministic td-tt and G a context-free tree grammar. As proven in

[14] (there: Chapter 4, Corollary 3.17), there exist a budet-fta B and a total, deterministic
td-tt T , such that

τ(D) = τ(T ) ◦ τ(B).

Moreover as proven in [23] and [22], we know that there exists a context-free tree grammar
H, such that

τ(B)(L(G)) = L(H).

Thus we have that

τ(D)(L(G)) = τ(T )(L(H)),

where the right hand side is an element of td-TOP(L (CFTG))
Thm.30
⊆ L (CFMG).

Therefore we have that τ(D)(L(G)) ∈ L (CFMG).
If G is linear, the proof is analogous except for the construction of H. In this case, the

results in [21] imply that there exists a linear context-free tree grammar H, such that

τ(B)(L(G)) = L(H).

This proves the second equation.
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Chapter 5: Intersection of CFMG-Languages with
Recognizable Tree Languages

5.1 A Construction for the Intersection

As proven in [1], the intersection of a language from L (CFMG) with a recognizable
language is again in L (CFMG). In this chapter we give an alternative constructive proof
of this claim which we derived from the construction given in [23] and [22]. In contrast to
Rounds, who used top-down transducers, we will require the use of bottom-up transducers.
The main reason for this difference lies within the particular normal forms of CFMGs
and CFTGs. Lavas within a derivation tree of a CFMG in normal form can very well
copy and delete variables, which is not the case for a CFTG in normal form. Therefore
we ensure the identical processing of copies of trees by using deterministic bottom-up
transducers. Since Rounds’ construction is correct for a larger class of transducers than
just top-down ftas, namely linear top-down transducers, and budet-ftas can be expressed
by linear top-down transducers (see e.g. [24]), we can apply the given construction
mutatis mutandis.

For a CFMG in normal form, G, that has V as the set of nonterminals and a budet-fta,
B, that has Q as the set of states, the main idea for the construction is to blow up
nonterminal productions in G. To achieve this, we define the set V(Q) to be the elements
of V indexed by k-tuples of states from Q with increased ranks. Whenever a nonterminal
production is in G, we horizontally dilate the right hand side to state-indexed trees
that “carry” every possible state-labeling. The processing of B is now combined with
the terminal productions in G by using only those successors of a derived symbol whose
corresponding state-indices coincide with a possible derivation of the generated lava.

For the sake of straightforward proof structure, we first examine the aforementioned
processing of budet-ftas on tuples of trees and continue by proving our construction.

Definition 35. Let B = (Q,Σ,Σ, F,R) be a budet-fta, k ≥ 1. Define the mapping

Υk(B) : {(t, q1, . . . , qn) ∈ k-dil(T (Σ))1
n × (Qk)n | n ∈ N0} −→ Qk

where for any n ∈ N0, t = 〈〈kn, t1, . . . , tk〉〉 ∈ k-dil(T (Σ))1
n, (q1

1, . . . , q
1
k), . . . , (qn1 , . . . , q

n
k ),

(q1, . . . , qk) ∈ Qk the equivalence

Υk(B)(t, (q1
1, . . . , q

1
k), . . . , (q

n
1 , . . . , q

n
k )) = (q1, . . . , qk)

:⇐⇒ ti[q
1
1(x1), . . . , q1

k(xk), . . . , q
n
1 (x(n−1)k+1), . . . , qnk (xnk)] =⇒∗

B
qi(ti) for all i ∈ [k]

holds.
Note that because B is a budet-fta, this is well-defined. Thus for some t ∈ k-dil(T (Σ))1

0,
Υk(B)(t) is the unique tuple of states derived by B on the components of t.

Moreover it is correct that we can decompose such a tuple t and successively calculate
the resulting states as Lemma 36 proves. �
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Lemma 36. Let B = (Q,Σ,Σ, F,R) be a budet-fta, k ≥ 1, n ≥ 0, u, u1, . . . , un ∈
k-dil(T (Σ))1

0 and ũ ∈ k-dil(T (Σ))1
n. Whenever u = ũ · (u1 ⊕ · · · ⊕ un) holds, we have that

Υk(B)(u) = Υk(B)(ũ,Υk(B)(u1), . . . ,Υk(B)(un)). (9)

Proof. We assume the following decomposition:

u = 〈〈0, v1, . . . , vk〉〉,
ui = 〈〈0, wi1, . . . , wik〉〉 for any i ∈ [n],

ũ = 〈〈kn, ṽ1, . . . , ṽk〉〉.

Moreover for any q ∈ Qk, i ∈ [k], we denote the i-th component of q by qi.
We know that

vi = ṽi[w
1
1, . . . , w

1
k, . . . , w

n
1 , . . . , w

n
k ],

which B derives to

ṽi[Υk(B)(u1)1(w1
1), . . . ,Υk(B)(u1)k(w

1
k), . . . ,Υk(B)(un)1(wn1 ), . . . ,Υk(B)(un)k(w

n
k )]

by definition of Υk(B) applied to u1, . . . , un. Note that any variable in ṽi may be copied
or deleted. Whilst the latter case is trivial, the property of Υk(B) to be a mapping gives
that every copy of a specific tree derives to the same state. Thus again by definition of
Υk(B) applied to ũ we get that

vi =⇒∗
B

Υk(B)(ũ,Υk(B)(u1), . . . ,Υk(B)(un))i(ṽi[w
1
1, . . . , w

1
k, . . . , w

n
1 , . . . , w

n
k ])

= Υk(B)(ũ,Υk(B)(u1), . . . ,Υk(B)(un))i(vi)

which, since Υk(B)(u) is a mapping, proves the claim.

Proposition 37. Let k ≥ 1, G = (V,Σ, Z, P ) be a k-dilated CFMG in normal form,
B = (Q,Σ,Σ, F,R) a budet-fta. There exists a CFMG, G̃, such that

L(G̃) = τ(B)(L(G)).

Proof. Let m := #Qk and (q̄1, . . . , q̄m) be an enumeration of Qk.

Define the set V(Q) := {A(lm)
(q) | A ∈ V

(l), q ∈ Qk, l ∈ N0} and the mapping

π : Qk × TV (X) −→ TV(Q)
(X)

by

π(q̄i, xj) := x
(q̄i)
j := x(j−1)m+i

for any i ∈ [m] and j ∈ N and

π(q,A(t1, . . . , tl)) := A(q)(π(q̄1, t1), . . . , π(q̄m, t1), . . . , π(q̄1, tl), . . . , π(q̄m, tl))
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for any q ∈ Qk, l ≥ 0, A ∈ V (l), t1, . . . , tl ∈ TV (X). Note that the definition of π depends
on the particular enumeration of Qk.

Construct the k-dilated CFMG G̃ := (V(Q) ∪ {Z},Σ, Z, P̃ ) where P̃ consists of the
following productions:

For any (f, q) ∈ F ×Qk−1 the production

Z −→ Z(f,q)

is in P̃ (called type-1-production). Moreover for any q ∈ Qk, u ∈ TV (X) and (A −→
u) ∈ P , the production

A(q) −→ π(q, u)

is in P̃ (called type-2-production). Finally for any q, q1, . . . , ql ∈ Qk, σ ∈ k-dil(T (Σ))1
l

and (A −→ σ(x1, . . . , xl)) ∈ P such that Υk(B)(σ, q1, . . . , ql) = q, we have that

A(q) −→ σ(x
(q1)
1 , . . . , x

(ql)
l )

is a production in P̃ (called type-3-production). Note that Z does not occur on a
right hand side of a production in P̃ .

To prove that G̃ satisfies the claimed property, we first show that the statement

∀l ∈ N0, w ∈ TV (Xl), u1, . . . , ul ∈ TV , q ∈ Qk :

π(q, w[u1, . . . , ul]) = π(q, w)[π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)]
(10)

holds by structural induction on w.
Let l ∈ N (for l = 0 the claim is trivially correct), w ∈ TV (Xl), u1, . . . , ul ∈ TV , q ∈ Qk.

If w = xj for some j ∈ [l], then we deduce that π(q, w) = x
(q)
j and w[u1, . . . , ul] = uj .

The definition of x
(q)
j now gives that

π(q, w[u1, . . . , ul]) = π(q, uj)

= x
(q)
j [π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)],

which proves the claim.
If w = B(w1, . . . , wp) for some p ∈ N0, B ∈ V (p), w1, . . . , wp ∈ TV (Xl) such that (10)

holds for w1, . . . , wp, then we have that

π(q, w) = B(q)(π(q̄1, w1), . . . , π(q̄m, w1), . . . , π(q̄1, wp), . . . , π(q̄m, wp)).

Moreover by definition of substitution and induction assumption we know that

π(q, w)[π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)]

=B(q)(π(q̄1, w1[u1, . . . , ul]), . . . , π(q̄m, w1[u1, . . . , ul]), . . .

. . . , π(q̄1, wp[u1, . . . , ul]), . . . , π(q̄m, wp[u1, . . . , ul]))
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=π(q,B(w1[u1, . . . , ul], . . . , wp[u1, . . . , ul]))

=π(q,B(w1, . . . , wp)[u1, . . . , ul])

=π(q, w[u1, . . . , ul]).

This proves (10).

Next we prove that the statement

∀n ∈ N, u ∈ TV , q ∈ Qk, ζ ∈ k-dil(T (Σ))1
0 :

(π(q, u) ◦=⇒G̃

nζ)⇐⇒ (u ◦=⇒G

nζ ∧Υk(B)(ζ) = q)
(11)

holds by (strong) complete induction on n.
Let u ∈ TV , q ∈ Qk, ζ ∈ k-dil(T (Σ))1

0 such that π(q, u) ◦=⇒G̃
1ζ. By construction of

type-3-productions, π(q, u) consists of a single nonterminal A(q). Thus u = A ∈ V , there
exists (A −→ ζ) ∈ P and Υk(B)(ζ) = q. This moreover implies A ◦=⇒G

1ζ.
Let u ∈ TV , q ∈ Qk, ζ ∈ k-dil(T (Σ))1

0 such that u ◦=⇒G
1ζ and Υk(B)(ζ) = q. Since G

is in normal form, u consists of a single nonterminal A and by construction of type-3-
productions, (A(q) −→ ζ) ∈ P̃ . Since π(q, A) = A(q), this implies π(q, u) ◦=⇒G̃

1ζ.
This proves the induction base.
Let n ∈ N such that for each m ∈ [n] the claim (11) holds. We will continue by

deducing that (11) also holds for n+ 1.
“=⇒”: Let u ∈ TV , q ∈ Qk, ζ ∈ k-dil(T (Σ))1

0 such that π(q, u) ◦=⇒G̃
n+1ζ. The definition

of ◦=⇒G̃
∗ implies the existence of ξ ∈ Tk(Σ, V(Q))

1
0 such that

π(q, u) ◦=⇒G̃

1ξ ◦=⇒G̃

nζ.

Let u = A(u1, . . . , ul) for some l ≥ 0, A ∈ V (l), u1, . . . , ul ∈ TV . We deduce that

π(q, u) = A(q)(π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)).

Note that we use OI-derivations, thus the first derived nonterminal is A(q). We differentiate
between the possible first applied productions.

Case 1: The first applied production is a type-2-production A(q) −→ π(q, w) for some
w ∈ TV (Xl). The construction implies

(A −→ w) ∈ P

and thus we have that

ξ = π(q, w)[π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)]

(10)
= π(q, w[u1, . . . , ul]).

Moreover we deduce that

π(q, w[u1, . . . , ul]) ◦=⇒G̃

nζ,
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which by induction assumption implies

w[u1, . . . , ul] ◦=⇒G

nζ and Υk(B)(ζ) = q.

Therefore it holds that

u ◦=⇒G

n+1ζ,

which proves one direction of the the induction step for type-2-productions.

Case 2: The first applied production is a type-3-production A(q) −→ σ(x
(q1)
1 , . . . , x

(ql)
l )

for some q1, . . . , qk ∈ Qk and σ ∈ k-dil(T (Σ))1
l .

The construction of type-3-production implies

(A −→ σ(x1, . . . , xl)) ∈ P and Υk(B)(σ, q1, . . . , ql) = q.

We moreover deduce that

ξ = σ(x
(q1)
1 , . . . , x

(ql)
l )[π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)]

= σ(π(q1, u1), . . . , π(ql, ul)).

Since ξ derives in n steps to ζ, we know that there exist n1, . . . , nl ∈ N and ζ1, . . . , ζl ∈
k-dil(T (Σ))1

0 such that
∑l

i=1 ni = n and

π(qi, ui) ◦=⇒G̃

niζi for each i ∈ [l].

We therefore get the decomposition ζ = σ · (ζ1 ⊕ · · · ⊕ ζl) and by induction assumption
we know that

ui ◦=⇒G

niζi and Υk(B)(ζi) = qi for each i ∈ [l].

Finally we deduce that

u ◦=⇒G

1σ(u1, . . . , ul) ◦=⇒G

nσ(ζ1, . . . , ζl) � ζ

and by Lemma 36, equation (9) we have that

Υk(B)(ζ) = Υk(B)(σ,Υk(B)(ζ1), . . . ,Υk(B)(ζl))

= Υk(B)(σ, q1, . . . , ql) = q.

This proves one direction of the induction step for type-3-productions. Since the first
applied production is not of type 1, this also proves the whole induction step for this
direction.

“⇐=”: Let u ∈ TV , q ∈ Qk, ζ ∈ k-dil(T (Σ))1
0 such that u ◦=⇒G

n+1ζ and Υk(B)(ζ) = q.
By definition of ◦=⇒G

∗ it holds that there exists ξ ∈ Tk(Σ, V )1
0 such that

u ◦=⇒G

1ξ ◦=⇒G

nζ.
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Let u = A(u1, . . . , ul) for some l ≥ 0, A ∈ V (l), u1, . . . , ul ∈ TV . We deduce that

π(q, u) = A(q)(π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)).

Note that we use OI-derivations, thus the first derived nonterminal is A(q). We differentiate
between the possible first applied productions.

Case 1: The first applied rule is of the form A −→ w for some w ∈ TV (Xl). The
construction of type-2-productions implies the existence of

(A(q) −→ π(q, w)) ∈ P̃ .

Therefore since ξ = w[u1, . . . , ul], we have that

π(q, u) ◦=⇒G̃

1 π(q, w)[π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)]

(10)
= π(q, w[u1, . . . , ul]) = π(q, ξ).

By induction assumption we know that π(q, ξ) ◦=⇒G̃
nζ, which implies

π(q, u) ◦=⇒G̃

n+1ζ.

Case 2: The first applied rule is of the form A −→ σ(x1, . . . , xl) for some σ ∈
k-dil(T (Σ))1

l . This implies ξ = σ(u1, . . . , ul). Furthermore there exist n1, . . . , nl ∈ N and

ζ1, . . . , ζl ∈ k-dil(T (Σ))1
0 such that

∑l
i=1 ni = n, ζ = σ · (ζ1 ⊕ · · · ⊕ ζl) and

ui ◦=⇒G

niζi for each i ∈ [l].

We define for any i ∈ [l] the state qi := Υk(B)(ζi). By Lemma 36, equation (9) we have
that

q = Υk(B)(ζ)

= Υk(B)(σ,Υk(B)(ζ1), . . . ,Υk(B)(ζl))

= Υk(B)(σ, q1, . . . , ql).

Moreover by induction assumption we know that

π(qi, ui) ◦=⇒G̃

niζi for each i ∈ [l]

and

(A(q) −→ σ(x
(q1)
1 , . . . , x

(ql)
l )) ∈ P̃ ).

Thus because of

σ(x
(q1)
1 , . . . , x

(ql)
l )[π(q̄1, u1), . . . , π(q̄m, u1), . . . , π(q̄1, ul), . . . , π(q̄m, ul)]

= σ(π(q1, u1), . . . , π(ql, ul)),
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we can derive

π(q, u) ◦=⇒G̃

1σ(π(q1, u1), . . . , π(ql, ul)) ◦=⇒G̃

nσ(ζ1, . . . , ζl) � ζ.

This proves the second direction of the the induction step. Thus claim (11) is proven.

We continue by showing that L(G̃) = τ(B)(L(G)).
Let t ∈ TΣ. It holds that

t ∈ L(G̃)
def.⇐⇒ ∃ζ ∈ k-dil(T (Σ))1

0 : Z ◦=⇒G̃

+ζ ∧ π1
k · ζ = t

constr.⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0, (f, q) ∈ F ×Qk−1 :

Z ◦=⇒G̃

1Z(f,q) ∧ Z(f,q) ◦=⇒G̃

+ζ ∧ π1
k · ζ = t

(11)⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0, (f, q) ∈ F ×Qk−1 :

Z ◦=⇒G

+ζ ∧Υk(B)(ζ) = (f, q) ∧ π1
k · ζ = t

def. Υk(B)⇐⇒ ∃ζ ∈ k-dil(T (Σ))1
0, f ∈ F : Z ◦=⇒G

+ζ ∧ π1
k · ζ = t ∧ t =⇒∗

B
f(t)

def.⇐⇒ t ∈ L(G) ∧ (t, t) ∈ τ(B)

def.⇐⇒ t ∈ τ(B)(L(G)).

This proves the proposition.

Example 38. Consider the ranked alphabet Σ and the tree language L where

Σ := {σ(2), β(0), α(0)}
L := {σ(t, t) | t ∈ TΣ}.

A 1-dilated CFMG in normal form that generates L is G := (V,Σ, Z, P ) where V :=
{Z(0), A(0), S(1), B(2)} and P consists of the rules

Z
r1−→ S(A)

S
r2−→ 〈〈1, σ(x1, x1)〉〉(x1)

A
r3−→ B(A,A)

A
r4−→ 〈〈0, β〉〉

A
r5−→ 〈〈0, α〉〉

B
r6−→ 〈〈2, σ(x1, x2)〉〉(x1, x2).

Let moreover B := (Q,Σ,Σ, F,R) be the budet-fta with

Q := {0, 1, 2},
F := {0}
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and rules

σ(n(x1),m(x2)) −→ ((n+m) mod 3)(σ(x1, x2)) ∀n,m ∈ Q
α −→ 1(α)

β −→ 0(β).

It is fairly easy to see that B accepts exactly the trees over Σ that contain 0 ‘α’s modulo
3. Thus we deduce that

τ(B)(L(G)) = {σ(t, t) | t ∈ TΣ, (t, t) ∈ τ(B)}.

We construct the CFMG G̃ as in the proof of Proposition 37. The new set of nonter-
minals is given by

V(Q) = {Z(0), Z(1), Z(2), A(0), A(1), A(2), S(0), S(1), S(2), B(0), B(1), B(2)}.

The only constructed type-1-production is

Z −→ Z(0),

whilst the type-2-productions constructed from production r1 are

Z(0) −→ S(0)

A(0) A(1) A(2)

Z(1) −→ S(1)

A(0) A(1) A(2)

Z(2) −→ S(2)

A(0) A(1) A(2)

.

The production r3 is analogously translated.
To correctly construct type-3-productions we have to consider the processing of B on

right hand sides of the corresponding productions in G. This coincides with the mapping
Υk(B) from Definition 35.

Production r2 is thus translated to the following productions:

S(0) −→ 〈〈1, σ(x1, x1)〉〉(x(0)
1 )

S(2) −→ 〈〈1, σ(x1, x1)〉〉(x(1)
1 )

S(1) −→ 〈〈1, σ(x1, x1)〉〉(x(2)
1 )

and production r6 is translated to the productions

B(0) −→ 〈〈2, σ(x1, x2)〉〉(x(0)
1 , x

(0)
2 )
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B(1) −→ 〈〈2, σ(x1, x2)〉〉(x(0)
1 , x

(1)
2 )

B(2) −→ 〈〈2, σ(x1, x2)〉〉(x(0)
1 , x

(2)
2 )

B(1) −→ 〈〈2, σ(x1, x2)〉〉(x(1)
1 , x

(0)
2 )

B(2) −→ 〈〈2, σ(x1, x2)〉〉(x(1)
1 , x

(1)
2 )

B(0) −→ 〈〈2, σ(x1, x2)〉〉(x(1)
1 , x

(2)
2 )

B(2) −→ 〈〈2, σ(x1, x2)〉〉(x(2)
1 , x

(0)
2 )

B(0) −→ 〈〈2, σ(x1, x2)〉〉(x(2)
1 , x

(1)
2 )

B(1) −→ 〈〈2, σ(x1, x2)〉〉(x(2)
1 , x

(2)
2 ).

The construction on productions r4 and r5 is analogous.
Now the CFMG G̃ := (V(Q) ∪ {Z},Σ, Z, P̃ ) (where P̃ consists of all the constructed

productions) has L(G̃) = τ(B)(L(G)) as Proposition 37 proves.
To illustrate the language generated by G̃, we show that we can not derive the tree

σ(α, α) but the tree σ(β, β). Therefore we consider the unique OI-derivation of Z to the
following tree:

Z ◦=⇒G̃ Z(0) ◦=⇒G̃ S(0)

A(0) A(1) A(2)

◦=⇒G̃ 〈〈1, σ(x1, x1)〉〉

A(0)

.

Equation (11) from the proof of Proposition 37 tells us that A(0) derives exactly the
trees that A derives in G and that are processed into state 0 by the fta B. Thus we can
not derive a single occurrence of α (since α is processed into state 1 by B) but a single
occurrence of β from A, which we can verify with the given constructed productions.

The following derivation shows that we can derive the tree

σ

σ

σ

α α

α

σ

σ

α α

α

.

Z ◦=⇒G̃

3 〈〈1, σ(x1, x1)〉〉

A(0)

◦=⇒G̃ 〈〈1, σ(x1, x1)〉〉

B(0)

A(0) . . . A(2)
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◦=⇒G̃ 〈〈1, σ(x1, x1)〉〉

〈〈2, σ(x1, x2)〉〉

A(2) A(1)

◦=⇒G̃

2 〈〈1, σ(x1, x1)〉〉

〈〈2, σ(x1, x2)〉〉

B(2)

A(0) . . . A(2)

〈〈0, α〉〉

◦=⇒G̃ 〈〈1, σ(x1, x1)〉〉

〈〈2, σ(x1, x2)〉〉

〈〈2, σ(x1, x2)〉〉

A(1) A(1)

〈〈0, α〉〉

◦=⇒G̃

2 〈〈1, σ(x1, x1)〉〉

〈〈2, σ(x1, x2)〉〉

〈〈2, σ(x1, x2)〉〉

〈〈0, α〉〉 〈〈0, α〉〉

〈〈0, α〉〉

where the last tree is equivalent to 〈〈0, σ(σ(σ(α, α), α), σ(σ(α, α), α))〉〉, which contains the
tree we wanted to derive. Note how the derivation trees are derived in such a way, that
the corresponding states that B would derive are propagated through the nonterminals.
�

Theorem 39. Let Σ be a ranked alphabet, Λ1 ∈ L (CFMG(Σ)), Λ2 ∈ REC(Σ). It
holds that

Λ1 ∩ Λ2 ∈ L (CFMG(Σ)).

Proof. This follows directly from Proposition 37.

We can moreover deduce that the dilatation index is not changed by our construction.
Thus we have the following Corollary.

Corollary 40. Let Σ be a ranked alphabet, Λ1 ∈ L (CFMGk(Σ)), Λ2 ∈ REC(Σ). It
holds that

Λ1 ∩ Λ2 ∈ L (CFMGk(Σ)).

Proof. This follows from the construction given in the proof of Proposition 37.

Theorem 41. The emptiness and membership problems for context-free magmoid
grammars are solvable.

Proof. For a CFMG G there exist a td-td-tt T and a CFTG G′ such that

L(G) = τ(T )(L(G′))

by Theorem 30. Thus since T is total and deterministic, L(G) is empty if and only if
L(G′) is empty. As Maibaum has proven in [20], the emptiness problem for context-free
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tree grammars is solvable. Therefore the emptiness problem for context-free magmoid
grammars is solvable.

Let G be a CFMG over a ranked alphabet Σ and ξ ∈ TΣ. It is

ξ ∈ L(G)⇐⇒ {ξ} ∩ L(G) 6= ∅.

Since {ξ} is a regular tree language, by Theorem 39 we have that

{ξ} ∩ L(G) ∈ L (CFMG(Σ)).

Therefore the membership problem is solvabe for context-free magmoid grammars.
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Chapter 6: Conclusion

6.1 Prospectus

In this thesis we proved that context-free magmoid grammars differ from context-free tree
grammars in the application of total and deterministic top-down tree transducers. We
additionally proved that this connection holds for linear CFMGs and linear CFTGs. By
applying known results, we deduced for example the closure of CFMGs under application
of homomorphisms as well as total and deterministic top-down tree transducers.

Furthermore we gave a constructive proof of closure of languages generated by CFMGs
under intersection with recognizable tree languages and proved our construction. This
was done by adapting Rounds’ solution given in [23] and [22] to the case of magmoid
grammars and bottom-up deterministic finite-state tree automata.

An important implication of our results was that the emptiness and membership
problems are solvable for context-free magmoid grammars.

The results proven in this thesis were based on a thorough formulation of the structures
of T (Σ), Tk(Σ, V ) and context-free magmoid grammars which we gave beforehand.

Thus all in all we portrayed the concept of context-free magmoid grammars and
proved two important results for the theory of the corresponding tree languages. To our
knowledge, one of these results was not known in current research and for the second one
we gave a constructive proof in contrast to the known algebraic proof.

6.2 Future Work

A possible task for the future is to generalize different types of tree automata to the
structure of magmoids, for example pushdown tree automata as seen in [17].

Moreover a Greibach normal form (as in [6] or [13]) might be generalized for context-
free magmoid grammars. For this, the first major result of this thesis could be applied to
constructions for the case of context-free tree grammars. Since Greibach normal forms
play an important role for research in properties of CFTGs, a generalization might be
useful for a deeper understanding of CFMGs.
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[24] H. Vogler. Formale Übersetzungsmodelle. Lecture Notes, 2015.

57


