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1 Introduction

One of the concerns of natural language processing is the quality valuation of a sentence. Infor-
mation which can be used for this purpose consist in form of a corpus, a collection of texts. A
set of novels or speeches delivered in the European Parliament may serve as an example for such
a corpus. As the corpus is created by humans, it can be assumed that the sentences within the
corpus are of good quality and therefore a suitable basis for the valuation. A small corpus could
consist of two sentences and look as follows:

Alice likes him Alice sees her

One way to use the corpus is by counting how many times the sentence that is to be valuated
occurs in the corpus. If it does so frequently, it is probably of high quality.
This approach has two disadvantages: On the one hand, for a large corpus there is an enormous
amount of memory required as the whole corpus respectively one occurrence of each sentence
of the corpus together with its frequency has to be stored. On the other hand, the problem of
overfitting [St3] occurs - the quality valuation is limited exclusively to the corpus: A sentence
which to human knowledge is of high quality, but does not appear in the corpus and differs merely
slightly from one sentence in the corpus, for example by using another verb, would get rated badly.
One possibility to encounter these problems is not to store the frequency of the whole sentence of
the corpus but to store the frequency of certain parts of it and to use these for the valuation. This
leads to a reduced amount of space needed as only all possible fragments of a sentence (the length
of these fragments is restricted) and its frequencies have to be stored. Furthermore, a sentence
that is to be rated, does not have to be part of the corpus itself. It is now sufficient that the
corpus contains the fragments of the sentence, possibly split across multiple different sentences in
the corpus. This allows a variety of sentence to be rated better.
A model which realizes this approach is the bigram model [Vog12]. The bigram model consists of
a conditional probability distribution b which specifies the probability that given a specific word,
this word is followed by another specific word in a sentence. To extract the conditional probability
distribution for the corpus above, the method of conditional relative frequency can be used. At
this the probability for a given a word v1 to be followed by a word v2 is calculated by counting
the occurrences of v1v2 in the corpus and dividing this by the number of occurrences of v1 in the
corpus. Hence the conditional probability distribution reads as follows:

b(. | .) # Alice likes sees him her

# 0 0 0 0 1 1
Alice 1 0 0 0 0 0
likes 0 0.5 0 0 0 0
sees 0 0.5 0 0 0 0
him 0 0 1 0 0 0
her 0 0 0 1 0 0

# marks the start and end of a sentence. Note that summing over the probabilities in a column
yields 1.
Applying the notion of a stochastic process from [MS99, p. 45], the bigram model can be considered
as a stochastic process which generates sentences according to a probability distribution. Generat-
ing a sentence respectively performing a random walk in the stochastic process based on a bigram
model works as follows: Starting with the # symbol, according to the conditional probability dis-
tribution b a word is selected randomly. In the same manner this procedure is repeated with the
selected word to choose the next word following in the sentence. This way of proceeding is done
until the # symbol is reached again.
For the conditional probability distribution above only two sentences can be generated, those in
the corpus above:

Alice likes him# #

0.51 1 1
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Alice sees her# #

0.51 1 1

The probability of a sentence is therefore calculated by multiplying the probabilities of transitioning
between neighboring words in the sentence as described before.
A remaining problem of the bigram model is the problem of sparse data [MS99, pp. 198-199].
According to this, even for huge corpora there are meaningful sentences where some neighboring
words of these sentences are not comprised in the corpora. Therefore, transitioning from the first
to the second of these words and thus the sentences consisting of these neighboring words are
assigned a probability of zero.
For example consider the sentence “Alice likes Alice”. Because “likes Alice” does not appear in
the corpus, b(likes | Alice) = 0 and therefore the probability of the sentence is zero.

One approach to describe the grammar behind the corpus better and thereby to solve the problem
above is the use of the hidden Markov model [BPSW70]. It comprises the idea of considering the
words of a sentence as observations, whereas each observation is evoked by a hidden state. Hidden
states can be imagined as syntactic categories such as nouns, verbs and adjectives [MS99, p. 81].
In this case the bigram model is not used with words, but with syntactic categories.
Referring to the example above, this abstraction shall cause that “Alice likes Alice” is rated with
a high probability, since “Alice” could be thought of being produced by the same state as “him”
or “her”, for example by the state “noun”.

In the following thesis, the definition of the hidden Markov model and solutions to two major
problems, calculating the probability of a sentence and finding a suitable hidden Markov model for
a given corpus, are presented. The latter problem is solved by using the Baum-Welch algorithm
[BPSW70]. Furthermore, an implementation of hidden Markov models is described and the quality
of the bigram model and hidden Markov model is compared empirically. Finally, two further
applications of hidden Markov models in natural language processing are described.
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2 Preliminaries

The following definitions, axioms, lemmas and theorems are obtained from [St3].

Definition 2.1: For every state of the world, a random variable X over a set X is assigned exactly
one value of X.

Let x ∈ X and Y ⊆ X.
Then X = x refers to the world being in a state at which X is assigned the value x and X ∈ Y
refers to the world being in a state at which X is assigned a value of Y .

Let X1 be a random variable over X1, X2 a random variable over X2, and X1
′ ⊆ X1, X2

′ ⊆ X2.
Then X1 ∈ X1

′,X2 ∈ Xn
′ refers to the world being in a state in which both X1 ∈ X1

′ and X2 ∈ X2
′

hold. �

Definition 2.2: Let X be a random variable over X and x ∈ X.
An event s represents a set of states of the world and is defined as follows using EBNF:

s ::= X = x | X 6= x | X ∈ X | X 6∈ X | true | s, s

whereas true is an event which holds for every state of the world. �

Axiom 2.3: Let s be an event, X a random variable over X, X ′ ⊆ X and (Xi | i ∈ I) a countable
partition of X ′.
The probability of set of states of the world satisfies the following conditions:

P (true) = 1

P (X ∈ X ′, s) =
∑
i∈I

P (X ∈ Xi, s)
�

Axiom 2.4: Let s and s′ be events. If s and s′ represent the same set of states of the world, s
and s′ are called equivalent, which is denoted as

s ≡ s′. �

Lemma 2.5: Let s and s′ be events. If s ≡ s′ then

P (s) = P (s′). �

Definition 2.6: Let s and s′ be events and P (s′) > 0. Then the conditional probability of s given
s’ is defined as

P (s | s′) =
P (s, s′)

P (s′)
.

�

Theorem 2.7: Let X be a random variable over the countable set X and s an event. The law of
total probability states that

P (s) =
∑
x∈X

P (X = x, s).
�

The following definitions are obtained from [Vog12].

Definition 2.8: Let X be a countable set.
Then p : X → [0, 1] with

∑
x∈X

p(x) = 1 is called a probability distribution over X.

The set of all probability distribution over X, M(X), is called probability model on X.
The function h : X → R≥0 is called corpus over X.
The supply of h is defined as supp(h) = {x ∈ X | h(x) 6= 0} �
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Definition 2.9: Let X and Y be countable sets.
A conditional probability distribution over X given Y is the function p : Y → M(X). To simplify
the notation, p(x | y) instead of (p(y))(x) is written. �

Definition 2.10: Let M⊆M(X) and h be a corpus over X.
Then the maximum likelihood estimate of M on h is defined as

mle(h,M) = arg max
p∈M

L(h, p)

whereas L(h, p) is called Likelihood of h under p and is defined as

L(h, p) =
∏
x∈X

p(x)
h(x)

.
�
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3 Hidden Markov models

Many different versions of hidden Markov models exist in the literature. Exemplarily, there are
versions of hidden Markov models, in which there is no final state [Rab89] and in which an obser-
vation depends on multiple hidden states [MS99, p. 324].
To achieve that the sum of probabilities of all sentence is one1, in this thesis a version with a final
state is presented, based on the idea of [JM09, pp. 210-226].

Definition 3.1: A hidden Markov model (HMM) is a tuple H = (Q,V,#, t, e) where

• Q is a finite, non-empty set of (hidden) states.

• V is a finite, non-empty set of observations.

• # represents the start and final state and is not a member of Q.

• t is a conditional probability distribution over Q∪{#} given Q∪{#}, whereas t(# | #) = 0.
t is called transition probability and t(qj | qi) refers to the probability of transitioning from
state qi to state qj .

• e is a conditional probability distribution over V given Q.
e is called emission probability and e(vj | qi) refers to the probability of observing vj in state
qi. �

Example 3.2: Considering the corpus from the introduction,

Alice likes him Alice sees her,

the set of observations respectively words V of choice is {Alice, likes,him, sees,her}. Furthermore,
one could think of the 2-element state respectively syntactic category setQ = {verb,noun}, whereas
the observations Alice, him and her could have been emitted by the state noun and the observations
sees and likes by the state verb in the sentences.
Under these assumptions using conditional relative frequency as described in the introduction to
calculate t and e yields the following graphically represented HMM:

#

verb noun

likessees Alicehim her

1

1

0.50.5

0.5
0.5

0.50.25
0.25

The transition probabilities are marked by sold lines, the emission probabilities are marked by
dashed lines. �

A random walk in the stochastic process based on a hidden Markov model H = (Q,V,#, t, e)
proceeds as follows: Beginning with the start state #, according to the conditional probability
distribution t it is transitioned randomly into another state of Q ∪ {#}. Notice that because

1A proof for this is cannot be provided here. However, in experiments the sum of probabilities of an increasing
amount of sentences tended to one.
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p(# | #) = 0, the start state cannot transition directly into the final state.2 In the same way, the
state transitioned to randomly transitions into another one. This procedure is repeated until one
transitions into the final state #. Furthermore, an observation of V is output randomly in each
of these states passed except the start and final state #, according to the conditional probability
distribution e.

Definition 3.3: Let ⊥ 6∈ Q ∪ {#},⊥ /∈ V . For all i ∈ N+ the following random variables are
defined and describe a random walk:

• V over V +, where V represents the sequence of observations made in the random walk.

• Vi over V ∪{⊥}, where Vi represents the observation at position i of the observation sequence
made in the random walk. Vi is assigned ⊥ if the random walk which was created did not
yield at least i observations.

• Q over Q+, where Q represents the sequence of states passed through in the random walk,
excluding the start and final state.

• Qi over Q ∪ {⊥}, where Qi represents the state at position i of the state sequence passed
through in the random walk, excluding the start and final state. Qi is assigned ⊥ if not at
least i states were passed in the random walk, excluding the start and final state.

• L over the positive integers, where L represents the length of the resulting observation se-
quence of the random walk.

The following assumptions are made:

P (Qt = qj | Qt−1 = qi) = t(qj | qi) for all t ≥ 2, qi, qj ∈ Q
P (Qt = qj | Qt−1 = ⊥) = 0 for all t ≥ 2, qj ∈ Q

(1)

P (Vt = vj |Qt = qi) = e(vj | qi) for all t ≥ 1, vj ∈ V, qi ∈ Q
P (Vt = vj |Qt = ⊥) = 0 for all t ≥ 1, vj ∈ V

(2)

P (Q1 = q1) = t(q1 | #) for all q1 ∈ Q (3)

P (L = n | Qn = qn) = t(# | qn) for all n ≥ 1, qn ∈ Q
P (L = n | Qn = ⊥) = 0 for all n ≥ 2

(4)

Furthermore, two important assumptions are made [Pfe13, p. 3]3:

P (Qt = qt | Q1 = q1, ...,Qt−1 = qt−1,V1 = v1, ...,Vt−1 = vt−1) = P (Qt = qt | Qt−1 = qt−1)

for all t ≥ 2, q1, ...qt ∈ Q ∪ {⊥}, v1, ..., vt−1 ∈ V ∪ {⊥}
(5)

P (Vt = vt | Q1 = q1, ...,Qt = qt,V1 = v1, ...,Vt−1 = vt−1) = P (Vt = vt | Qt = qt)

for all t ≥ 2, q1, ..., qt ∈ Q ∪ {⊥}, v1, ..., vt−1 ∈ V ∪ {⊥}
(6)

Finally, the following assumptions are needed in this thesis:

P (L = n | Q1 = q1, ...,Qn = qn,V1 = v1, ...,Vn = vn) = P (L = n | Qn = qn)

for all n ≥ 1, q1, ..., qn ∈ Q ∪ {⊥}, v1, ..., vn ∈ V ∪ {⊥}
(7)

P (Vt+1 = vt+1, ...,Vn = vn,L = n | V1 = v1, ...,Vt = vt,Q1 = q1, ...,Qt = qt) =

P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qt)

for all n ≥ 2, 1 ≤ t ≤ n− 1, v1, ..., vn ∈ V ∪ {⊥}, q1, ..., qt ∈ Q ∪ {⊥}
(8)

P (Vt = vt | V1 = v1, ...,Vt−1 = vt−1,Q = q1...qn) = P (Vt = vt | Qt = qt)

for all n ≥ 1, 1 ≤ t ≤ n, v1, ..., vt ∈ V ∪ {⊥}, q1...qn ∈ Q+
(9)

�

2This is no restriction since sentences to be valuated at least consist of one word.
3The HMM presented in [Pfe13, p. 3] do not contain a final state. Therefore the assumptions presented there

are extended by allowing the random variables to have the value ⊥.
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In assumption (1) it is formalized that the probability of transitioning from a state qi at position
t− 1 in a state sequence to state qj at position t in a state sequence is the same for every position
t in it. Likewise, the probability of observing the observation vj at state qi is the same for every
position t at which the observation and state can be located (assumption (2)). These assumptions
are called stationarity [Pfe13, p. 3]. However, if a random walk never reaches position t, the prob-
ability of observing an observation at t as well as transitioning into a state at t+ 1 is zero.
Analogous to this in (3) it is assumed that the probability that the first state of a state sequence
is q1 is the same as the probability of transitioning from the start state # to q1. In the same
way (4) states that the probability that qn is the last state of a state sequence is the same as the
probability of transitioning from qn to the final state #.

The Markov assumptions [Pfe13, p. 3] in (5) and (6) state that given the state and observation
sequence until a position t, the probability of being at t+ 1 in a specific state only depends on the
state given at t. In the same way given the first t− 1 observations and t states, the probability of
emitting an specific observation at t only depends on the given state at t.

Furthermore, the following equations are used in this thesis. Equation (10) and (11) can be deduced
from (5), equation (12) and (13) can be deduced from (6), equation (14), (15), (16) and (17) can
be deduced from (7) and equation (18), (19) and (20) can be deduced from (8).

P (Qt = qt | Q1 = q1, ...,Qt−1 = qt−1) = P (Qt = qt | Qt−1 = qt−1)

for all t ≥ 2, q1, ..., qt ∈ Q ∪ {⊥}
(10)

P (Qt = qt | V1 = v1, ...,Vt−1 = vt−1,Qt−1 = qt−1) = P (Qt = qt | Qt−1 = qt−1)

for all t ≥ 2, v1, ..., vt−1 ∈ V ∪ {⊥}, qt−1, qt ∈ Q ∪ {⊥}
(11)

P (Vt = vt | Qt = qt,Qt−1 = qt−1) = P (Vt = vt | Qt = qt)

for all t ≥ 2, vt ∈ V ∪ {⊥}, qt−1, qt ∈ Q ∪ {⊥}
(12)

P (Vt = vt | V1 = v1, ...,Vt−1 = vt−1,Qt = qt,Qt−1 = qt−1) = P (Vt = vt | Qt = qt)

for all t ≥ 2, v1, ..., vt ∈ V ∪ {⊥}, qt−1, qt ∈ Q ∪ {⊥}
(13)

P (L = n | Q1 = q1, ...,Qn = qn) = P (L = n | Qn = qn)

for all n ≥ 1, q1, ..., qn ∈ Q ∪ {⊥}
(14)

P (L = n, | V1 = v1, ...,Vn = vn,Qn = qn) = P (L = n | Qn = qn)

for all n ≥ 1, v1, ..., vn ∈ V ∪ {⊥}, qn ∈ Q ∪ {⊥}
(15)

P (L = n, | Vn = vn,Qn = qn,Qn−1 = qn−1) = P (L = n | Qn = qn)

for all n ≥ 2, vn ∈ V ∪ {⊥}, qn−1, qn ∈ Q ∪ {⊥}
(16)

P (L = n, | V1 = v1, ...,Vn = vn,Qn = qn,Qn−1 = qn−1) = P (L = n | Qn = qn)

for all n ≥ 2, v1, ..., vn ∈ V ∪ {⊥}, qn−1, qn ∈ Q ∪ {⊥}
(17)

P (Vt+1 = vt+1, ...,Vn = vn,L = n | V1 = v1, ...,Vt = vt,Qt = qt) =

P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qt)

for all n ≥ 2, 1 ≤ t ≤ n− 1, v1, ..., vn ∈ V ∪ {⊥}, qt ∈ Q ∪ {⊥}
(18)

P (Vt+1 = vt+1, ...,Vn = vn,L = n | V1 = v1, ...,Vt = vt,Qt = qt,Qt−1 = qt−1) =

P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qt)

for all n ≥ 3, 2 ≤ t ≤ n− 1, v1, ..., vn ∈ V ∪ {⊥}, qt−1, qt ∈ Q ∪ {⊥}
(19)

P (Vt+1 = vt+1, ...,Vn = vn,L = n | Vt = vt,Qt = qt,Qt−1 = qt−1) =

P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qt)

for all n ≥ 3, 2 ≤ t ≤ n− 1, vt, ..., vn ∈ V ∪ {⊥}, qt−1, qt ∈ Q ∪ {⊥}
(20)

Next, a pattern is shown which can be applied to deduce the equations above.
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Proof: Let X,Y1,Y2,Z be random variables over X,Y1, Y2, Z and let

P (X = x | Y1 = y1,Y2 = y2,Z = z) = P (X = x | Z = z) for all x ∈ X, y1 ∈ Y1, y2 ∈ Y2, z ∈ Z.
(21)

Then for all x ∈ X, y1 ∈ Y1, z ∈ Z it holds that

P (X = x | Y1 = y1,Z = z)

=
P (X = x,Y1 = y1,Z = z)

P (Y1 = y1,Z = z)
Definition 2.6

=

∑
y2∈Y2

P (X = x,Y1 = y1,Y2 = y2,Z = z)

P (Y1 = y1,Z = z)
Theorem 2.7

=
∑

y2∈Y2

P (X = x,Y1 = y1,Y2 = y2,Z = z)

P (Y1 = y1,Z = z)

=
∑

y2∈Y2

P (X = x,Y1 = y1,Y2 = y2,Z = z)

P (Y1 = y1,Y2 = y2,Z = z)
· P (Y1 = y1,Y2 = y2,Z = z)

P (Y1 = y1,Z = z)

=
∑

y2∈Y2

P (X = x | Y1 = y1,Y2 = y2,Z = z) · P (Y2 = y2 | Y1 = y1,Z = z) Definition 2.6

= P (X = x | Z = z) ·
∑

y2∈Y2

P (Y2 = y2 | Y1 = y1,Z = z) (21)

= P (X = x | Z = z) ·
∑

y2∈Y2

P (Y2 = y2,Y1 = y1,Z = z)

P (Y1 = y1,Z = z)
Definition 2.6

= P (X = x | Z = z) · P (Y1 = y1,Z = z)

P (Y1 = y1,Z = z)
Theorem 2.7

= P (X = x | Z = z) �

Example 3.4: Using the HMM given in Example 3.2, an exemplarily random walk looks as fol-
lows:

# noun verb noun #

Alice likes Alice

1 0.5

0.5 0.5

1

0.5

0.5

Or expressed in terms of random variables: Q = noun verb noun,V = Alice likes Alice. �

How can the probability of such an observation and state sequence be calculated?
In the following, a formula for P (V = v1...vn,Q = q1...qn) is derived [JM09, p. 214] using the
assumptions in Definition (3.3). Considering the definition of conditional probability (Definition
2.6) yields

P (V = v1...vn,Q = q1...qn) =P (V = v1...vn | Q = q1...qn) · P (Q = q1...qn). (22)
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Since Q = q1...qn ≡ Q1 = q1, ...,Qn = qn,L = n, for P (Q = q1...qn) from (22) using the definition
of conditional probability multiple times it appears that

P (Q = q1...qn) = P (Q1 = q1, ...,Qn = qn,L = n)

= P (Q2 = q2, ...,Qn = qn,L = n | Q1 = q1) · P (Q1 = q1)

= P (Q3 = q3, ...,Qn = qn,L = n | Q1 = q1,Q2 = q2)·
P (Q2 = q2 | Q1 = q1) · P (Q1 = q1)

= ...

= P (L = n | Q1 = q1, ...,Qn = qn)·
n∏

t=2

P (Qt = qt | Q1 = q1, ...,Qt−1 = qt−1) · P (Q1 = q1).

With the aid of (14) and (10), this is reduced to

P (Q = q1...qn) =P (L = n | Qn = qn) ·
n∏

t=2

P (Qt = qt | Qt−1 = qt−1) · P (Q1 = q1).

(23)

For P (V = v1...vn | Q = q1...qn) from (22) using the definition of conditional probability in the
same manner, it yields that

P (V = v1...vn | Q = q1...qn) = P (V1 = v1, ...,Vn = vn,L = n | Q = q1...qn) =

P (L = n | Q1 = q1, ...,Qn = qn,L = n,V1 = v1, ...,Vn = vn)·
n∏

t=1

P (Vt = vt | Q = q1...qn,V1 = v1, ...,Vt−1 = vt−1)

and with the help of (9)

P (V = v1...vn | Q = q1...qn) =

n∏
t=1

P (Vt = vt | Qt = qt).
4 (24)

By plugging (23) and (24) in (22), the following is obtained:

P (V = v1...vn,Q = q1...qn) = P (Q1 = q1) ·
n∏

t=1

P (Vt = vt | Qt = qt)·

n∏
t=2

P (Qt = qt | Qt−1 = qt−1) · P (L = n | Qn = qn)

= P (Q1 = q1) · P (L = n | Qn = qn) · P (V1 = v1 | Q1 = q1)·
n∏

t=2

P (Qt = qt | Qt−1 = qt−1) · P (Vt = vt | Qt = qt)

and with the help of (1), (2), (3) and (4)

= t(q1 | #) · t(# | qn) · e(v1 | q1) ·
n∏

i=2

t(qi | qi−1) · e(vi | qi). (25)

4Let s and s′ be events. Then P (s | s, s′) =
P (s,s,s′)
P (s,s′) =

P (s,s′)
P (s,s′) = 1. Therefore substituting s by L = n and s′

by Q1 = q1, ...,Qn = qn,V1 = v1, ...,Vn = vn yields that P (L = n | Q1 = q1, ...,Qn = qn,L = n,V1 = v1, ...,Vn =
vn) equals one. Furthermore, because P (L = n | L = n, s′) = 1 and according to the law of total probability∑
m∈N+

P (L = m | L = n, s′) = 1, it holds that P (L = m | L = n, s′) = 0 for m 6= n.
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Therefore the probability of a state and observation sequence is calculated by multiplying the
probability of starting and finishing the state sequence with the start and final state by all transition
probabilities of two neighboring states in the state sequence and by the probabilities of observing
the observations in their respective states.

Example 3.5: Calculating the probability of the observation and state sequence from Example
3.4 works as follows:

P (Q = noun verb noun,V = Alice likes Alice)

= t(noun | #) · t(verb | noun) · t(noun | verb) · t(# | noun)·
e(Alice | noun) · e(likes | verb) · e(Alice | noun)

= 1 · 0.5 · 1 · 0.5 · 0.5 · 0.5 · 0.5 = 0.03125. �

3.1 Forward and backward algorithm

However, regarding the valuation of a sentence, not the probability of a state and observation
sequence, but the probability of an observation sequence respectively a sentence v1...vn is of interest,
since the corresponding state sequence behind it is not known.
According to the law of total probability (Theorem 2.7), P (V = v1...vn) can be calculated by
summing over the probabilities of this observation sequence and all possible state sequences: [JM09,
p. 215]

P (V = v1...vn) =
∑

q1,...,qm∈Q,
m∈N+

P (V = v1...vn,Q = q1...qm)

=
∑

q1,...,qn∈Q
P (V = v1...vn,Q = q1...qn)+

∑
q1,...,ql∈Q,
l 6=n,l∈N+

P (V = v1...vn,Q = q1...ql).

Considering the derivation of (24), in the cases when the lengths of the observation and state
sequence differ, P (L = n | Q1 = q1, ...,Ql = ql,L = l,V1 = v1, ...,Vl = vl) and therefore the
product which comprises this probability evaluates to zero.4 Thus one obtains the following:

=
∑

q1,...,qn∈Q
P (Q1 = q1) · P (L = n | Qn = qn) · P (V1 = v1 | Q1 = q1)·

n∏
t=2

P (Qt = qt | Qt−1 = qt−1) · P (Vt = vt | Qt = qt).

(26)

Let T (n, |Q|) denote the number of occurrences of used calculations (multiplication and addition)
in (26) where n is the length of the observation and state sequence (excluding the start and final
state). For n ≥ 2 it yields that

T (n, |Q|) = (2 · n)︸ ︷︷ ︸
number of multiplications

in one addend

· |Q|n︸︷︷︸
number of
addends

+ (|Q|n − 1)︸ ︷︷ ︸
number of
additions

.

A time complexity T (n, |Q|) ∈ O(n · |Q|n) for P (V = v1...vn) is not feasible. To reduce the
complexity, the technique of dynamic programming is useful:

“Hier werden zur Lösung eines Problems der Größe n alle relevanten Probleme kleinerer
Größe (beginnend bei Problemgröße 1) gelöst und der Reihe nach in eine Tabelle geschrieben.
Dann kann bei der Lösung eines Problems der Größe i auf die Lösung aller Probleme
mit Größen 1, 2, ..., i − 1 zurückgegriffen werden, d.h. dass jedes Problem höchstens
einmal gelöst wird.[...]
Da bei diesem Prinzip der Aufbau der Gesamtlösung aus Teillösungen im Vordergrund
steht, ordnet man ihm auch das Atrribut bottom-up zu.” [Vog10, p. 152]
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Before describing how this technique is applied, the right-hand side of (26) is analyzed from a
mathematical point of view. Written in detail the equation reads as follows:∑

qn∈Q
...

∑
q1∈Q

P (L = n | Qn = qn)·

P (Vn = vn | Qn = qn) · ... · P (V1 = v1 | Q1 = q1)·
P (Qn = qn | Qn−1 = qn−1) · ... · P (Q2 = q2 | Q1 = q1)·
P (Q1 = q1).

To save multiplications, as much factors as possible are placed outside the brackets:∑
qn∈Q

P (L = n | Qn = qn)·

P (Vn = vn | Qn = qn) ·
∑

qn−1∈Q
P (Qn = qn | Qn−1 = qn−1)·

...·

P (V3 = v3 | Q3 = q3) ·
∑
q2∈Q

P (Q3 = q3 | Q2 = q2)·

P (V2 = v2 | Q2 = q2) ·
∑
q1∈Q

P (Q2 = q2 | Q1 = q1) · P (V1 = v1 | Q1 = q1) · P (Q1 = q1)︸ ︷︷ ︸
(∗)︸ ︷︷ ︸

(∗∗)

.

(27)

Considering the expressions marked with (∗) and (∗∗), one can see that

• (∗) is independent from all possible values which can be assigned to qn, ..., q2 and only depends
on q1.

• (∗∗) is independent from all possible values which can be assigned to qn, ..., q3 and only
depends on q2 and q1.

To save calculations, it therefore makes sense to calculate (∗) only once for every value which can
be assigned to q1. (∗) is equal to P (V1 = v1,Q1 = q1). Likewise, (∗∗) is calculated once for all
values of q2. In so doing, the previously calculated P (V1 = v1,Q1 = q1) can be used.

By continuing this approach and summarizing all possible expressions in (27) as done for (∗) and
(∗∗), one yields the forward algorithm [JM09, p. 217] to compute P (V = v1...vn):

Algorithm 3.1.1 Forward algorithm

Input: HMM H = (Q,V,#, t, e),
observation sequence v1...vn ∈ V +

Variables: P (V1 = v1, ...,Vt = vt,Qt = qt) for all 1 ≤ t ≤ n, qt ∈ Q,
P (V = v1...vn)

Output: P (V = v1...vn)

1: for all q1 ∈ Q do
2: P (V1 = v1,Q1 = q1) = e(v1 | q1) · t(q1 | #)

3: for all t = 2, ..., n do
4: for all qt ∈ Q do
5: P (V1 = v1, ...,Vt = vt,Qt = qt) = e(vt | qt) ·

∑
qt−1∈Q

t(qt | qt−1)·

P (V1 = v1, ...,Vt−1 = vt−1,Qt−1 = qt−1)

6: P (V = v1...vn) =
∑

qn∈Q
t(# | qn) · P (V1 = v1, ...,Vn = vn,Qn = qn)

7: output P (V = v1...vn)
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Line 2 holds as can be seen from (∗). Next it is shown that line 5 holds:5

P (V1= v1, ...,Vt = vt,Qt = qt)

=
∑

qt−1∈Q
P (V1 = v1, ...,Vt = vt,Qt = qt,Qt−1 = qt−1)+ Theorem 2.7

P (V1 = v1, ...,Vt = vt,Qt = qt,Qt−1 = ⊥)

where P (V1 = v1, ...,Vt = vt,Qt = qt,Qt−1 = ⊥) = 0, since it can be decomposed to P (V1 =
v1, ...,Vt = vt | Qt = qt,Qt−1 = ⊥) ·P (Qt = qt | Qt−1 = ⊥) ·P (Qt−1 = ⊥) and P (Qt = qt | Qt−1 =
⊥) is assigned zero according to (1).

=
∑

qt−1∈Q
P (Vt = vt | V1 = v1, ...,Vt−1 = vt−1,Qt = qt,Qt−1 = qt−1)· Definition 2.6

P (Qt = qt | V1 = v1, ...,Vt−1 = vt−1,Qt−1 = qt−1)·
P (V1 = v1, ...,Vt−1 = vt−1,Qt−1 = qt−1)

=P (Vt = vt | Qt = qt)· (11), (13)∑
qt−1∈Q

P (Qt = qt | Qt−1 = qt−1)·

P (V1 = v1, ...,Vt−1 = vt−1,Qt−1 = qt−1)

=e(vt | qt)· (2), (1)∑
qt−1∈Q

t(qt | qt−1) · P (V1 = v1, ...,Vt−1 = vt−1,Qt−1 = qt−1)

In the same way line 6 can be shown:

P (V = v1...vn) =
∑
qn∈Q

P (V1 = v1, ...,Vn = vn,L = n,Qn = qn)+ Theorem 2.7

P (V1 = v1, ...,Vn = vn,L = n,Qn = ⊥)

=
∑
qn∈Q

P (L = n | V1 = v1, ...,Vn = vn,Qn = qn)· Definition 2.6,

P (V1 = v1, ...,Vn = vn,Qn = qn) (15), (4)

=
∑
qn∈Q

P (L = n | Qn = qn)· (15)

P (V1 = v1, ...,Vn = vn,Qn = qn)

=
∑
qn∈Q

t(# | qn) · P (V1 = v1, ...,Vn = vn,Qn = qn) (4)

This approach used in the forward algorithm corresponds to the technique of dynamic program-
ming mentioned before:
The solution to a problem of size (t, qt) - the probability of the observation sequence v1...vt and the
state qt at position t - is calculated by summing over the solutions to problems of size (t− 1, qt−1),
qt−1 ∈ Q, whereas each suchlike solution to a problem is multiplied both by the probability of
transitioning from state qt−1 to state qt and by the probability of observing the observation vt at
position t at state qt.
The probability of the observation sequence v1...vn actually searched for is then calculated by using
the solutions to problems of size (n, qn), qn ∈ Q. This means that the already calculated proba-
bilities of observation sequences v1...vn, where at position n the state qn ∈ Q is, are multiplied by
the probability of transitioning from state qn to the final state # and then are added up.
By calculating and saving the solutions to problems of size (t, qt) in a bottom-up-fashion - meaning
that the probabilities of the observation sequences v1...vt and a state qt ∈ Q at position t are

5Compare [Pfe13, p. 6].

14



calculated according to the length of sequences, from 1 to n - a problem of size (j, qj) can be solved
with the help of solutions to problems of size (j − 1, qj−1),qj−1 ∈ Q. Therefore the solution to a
problem does not have to be calculated several times.

Next, the time complexity of the forward algorithm is analyzed. The chart below lists the number
of calculations used in the forward algorithm:

multiplications additions calculations
P (V1 = v1,Q1 = q1) 1 0 |Q|
P (V1 = v1,V2 = v2,Q2 = q2) |Q|+ 1 |Q| − 1 |Q|

n− 1... ... ... ...
P (V1 = v1, ...,Vn = vn,Qn = qn) |Q|+ 1 |Q| − 1 |Q|

P (V = v1...vn) |Q| |Q| − 1 1

Hence, the number of calculations used arises in this case as

T (n, |Q|) = (n− 1) · [(|Q|+ 1 + |Q| − 1) · |Q|] + 3 · |Q| − 1.

Compared to the time complexity O(n · |Q|n) of the naive approach in (26), this corresponds to a

time complexity of merely T (n, |Q|) ∈ O(n · |Q|2). [JM09, p. 215]

The forward algorithm bears its name, because P (V = v1...vn) is calculated by at first considering
only the first observation v1 (with all possible states at position 1), then moving forward and
considering the the first two observations (with all possible states at position 2) and so on until
the whole observation sequence v1...vn is considered.
There is also another approach of calculating P (V = v1...vn): The backward algorithm [JM09,
p. 222] at first considers the last observation vn (for all possible states given at n − 1), then the
last two observations vn−1vn (for all possible states given at n − 2) and so on until the whole
observation sequence v1...vn is considered. The algorithm reads as follows:

Algorithm 3.1.2 Backward algorithm

Input: HMM H = (Q,V,#, t, e),
observation sequence v1...vn ∈ V +

Variables: P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qt) for all 1 ≤ t ≤ n− 1, qt ∈ Q,
P (V = v1...vn)

Output: P (V = v1...vn)

1: for all qn ∈ Q do
2: P (Vn = vn,L = n | Qn−1 = qn−1) =

∑
qn∈Q

t(qn | qn−1) · e(vn | qn) · t(# | qn)

3: for all t = n− 2, ..., 1 do
4: for all qt ∈ Q do
5: P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qt) =

∑
qt+1∈Q

e(vt+1 | qt+1)· t(qt+1 | qt)·

P (Vt+2 = vt+2, ...,Vn = vn,L = n | Qt+1 = qt+1)

6: P (V = v1...vn) =
∑

q1∈Q
e(v1 | q1) ·t(q1 | #)·

P (V2 = v2, ...,Vn = vn,L = n | Q1 = q1)
7: output P (V = v1...vn)

Next it is shown that line 2 holds:

P (Vn = vn,L = n | Qn−1 = qn−1)

=
P (Vn = vn,L = n,Qn−1 = qn−1)

P (Qn−1 = qn−1)
Definition 2.6
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=

∑
qn∈Q∪{⊥}

P (Vn = vn,L = n,Qn = qn,Qn−1 = qn−1)

P (Qn−1 = qn−1)
Theorem 2.7

=
∑

qn∈Q∪{⊥}

P (Vn = vn,L = n,Qn = qn | Qn−1 = qn−1) Definition 2.6

=
∑

qn∈Q∪{⊥}

P (L = n | Vn = vn,Qn = qn,Qn−1 = qn−1)· Definition 2.6

P (Vn = vn | Qn = qn,Qn−1 = qn−1)·
P (Qn = qn | Qn−1 = qn−1)

=
∑

qn∈Q∪{⊥}

P (L = n | Qn = qn)· (16), (12)

P (Vn = vn | Qn = qn)·
P (Qn = qn | Qn−1 = qn−1)

=
∑
qn∈Q

t(# | qn) · e(vn | qn) · t(qn | qn−1) (1), (2), (4)

Line 5 holds as well:6

P (Vt+1= vt+1, ...,Vn = vn,L = n | Qt = qt)

=
∑

qt+1∈Q∪{⊥}

P (Vt+2 = vt+2, ...,Vn = vn,L = n,Vt+1 = vt+1,Qt+1 = qt+1 | Qt = qt) Theorem 2.7

=
∑

qt+1∈Q∪{⊥}

P (Vt+2 = vt+2, ...,Vn = vn,L = n | Vt+1 = vt+1,Qt+1 = qt+1,Qt = qt)· Definition 2.6

P (Vt+1 = vt+1 | Qt+1 = qt+1,Qt = qt)·
P (Qt+1 = qt+1 | Qt = qt)

=
∑

qt+1∈Q∪{⊥}

P (Vt+1 = vt+1 | Qt+1 = qt+1)· (12), (20)

P (Qt+1 = qt+1 | Qt = qt)·
P (Vt+2 = vt+2, ...,Vn = vn,L = n | Qt+1 = qt+1)

=
∑

qt+1∈Q
e(vt+1 | qt+1) · t(qt+1 | qt) · P (Vt+2 = vt+2, ...,Vn = vn,L = n | Qt+1 = qt+1) (1), (2), (4)

And so does line 6:

P (V = v1...vn) = P (V1 = v1, ...,Vn = vn,L = n)

=
∑

q1∈Q∪{⊥}

P (V1 = v1, ...,Vn = vn,L = n,Q1 = q1) Theorem 2.7

=
∑

q1∈Q∪{⊥}

P (V2 = v2, ...,Vn = vn,L = n | V1 = v1,Q1 = q1)· Definition 2.6

P (V1 = v1 | Q1 = q1)·
P (Q1 = q1)

=
∑

q1∈Q∪{⊥}

P (V2 = v2, ...,Vn = vn,L = n | Q1 = q1)· (18)

P (V1 = v1 | Q1 = q1)·
P (Q1 = q1)

=
∑
q1∈Q

P (V2 = v2, ...,Vn = vn,L = n | Q1 = q1) · e(v1 | q1) · t(q1 | #) (1), (2), (4)

6Compare [Pfe13, p. 7].
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Just as the forward algorithm, the backward algorithm uses the technique of dynamic programming
and has a time complexity of O(n · |Q|2).
Using these more efficient methods of calculation, the probability model of the hidden Markov
model on V + reads as follows:

MHMM = {pH : V + → [0, 1] | H = (Q,V,#, t, e) hidden Markov model}
pH(v1...vn) = P (V = v1...vn)

(28)

Either the forward algorithm or the backward algorithm can be used to calculate P (V = v1...vn).

3.2 Baum-Welch algorithm

Up to this point, a corpus was regarded as a collection of sentences. Now, a corpus will be consid-
ered as a function h : X → R≥0 as described in Definition 2.8, where X is the set of all possible
sentences and h assigns each sentence the number of occurrences in the collection of sentences.
Because each sentence is processed individually without considering its position in the collection
of sentences, these two notions of a corpus are equivalent.

In the earlier section the hidden Markov model and the procedure of calculating the probability
of an observation sequence given an HMM were introduced. An essential missing aspect is how to
determine suitable parameters of an HHM for a given corpus. Obtaining the set of observations is
done straightforwardly by considering all words appearing in the corpus. Then the way a HMM
H = (Q,V,#, t, e) fits to a corpus h : V + → R≥0 is expressed by L(h, pH), the likelihood of h under
pH , as described in Definition 2.10. Therefore, the maximum likelihood estimate mle(h,MHMM ),
the probability distribution pH of the probability modelMHMM given in 28 which maximizes L(h),
has to be found. Because pH is induced by the HMM H = (Q,V,#, t, e), finding a maximizing pH
means finding the maximizing parameters Q, t and e.
Assuming complete data, which means that for each sentence in the corpus the state sequence which
generated the sentence is known, Q can be be extracted from the state sequences in the corpus and
t and e can be calculated directly with the help of conditional relative frequency [MS99, pp. 345-
348] [Pfe13, p. 14].
However, if only incomplete data is present, which means that merely the sentences of the corpus
are known, Q, t and e cannot be calculated directly. Regarding the states, not their concrete
names, but the number of states is important, as the states are not used nominally. Determin-
ing a suitable number of states requires advanced procedures, but given a number of states, the
Baum-Welch algorithm [BPSW70] which is an instance of the Expectation-Maximization (EM) al-
gorithm [DLR77] [JM09, p. 221] can be used to iteratively specify the conditional probability distri-
butions t and e. The Baum-Welch algorithm takes as an input an initial HMM H = (Q,V,#, t0, e0)
and a corpus h : V + → R≥0 and calculates a sequence of pairs of tuples of conditional probabil-
ity distributions (t1, e1), (t2, e2), .... Because the Baum-Welch algorithm is an instance of the EM
algorithm, it holds that L(h, p(Q,V,#,tk,ek)) ≤ L(h, p(Q,V,#,tk+1,ek+1)) for all k ∈ N [DLR77]. The
sequence converges to a tuple of conditional probability distributions which at least reaches a sad-
dle point or locally maximizes the likelihood [Vog12] of the corpus given V and Q.

The Baum-Welch algorithm reads as follows: [JM09, p. 226]
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Algorithm 3.2.1 Baum-Welch algorithm

Input: HMM H = (Q,V,#, t0, e0),
corpus h : V + → R≥0

Variables: t : Q ∪ {#} →M(Q ∪ {#}), e : Q→M(V ),
tl : Q ∪ {#} →M(Q ∪ {#}), el : Q→M(V ), for all l ≥ 1,
counttrans : (Q ∪ {#})× (Q ∪ {#})→ R≥0, countem : V ×Q→ R≥0.

Output: A sequence of tuples of conditional probability distributions (t1, e1), (t2, e2), ...

1: for all k = 1, 2, ... do
2: (t, e) := (tk−1, ek−1)
3: counttrans(qj , qi) := 0 for every qj , qi ∈ Q ∪ {#}
4: countem(vj , qi) := 0 for every vj ∈ V, qi ∈ Q
5: for all v = v1...vn ∈ supp(h) do
6: for all t = 1, 2, ...n− 1 do
7: for all qj , qi ∈ Q do
8: counttrans(qj , qi) = counttrans(qj , qi)+

h(v) · P (Qt = qi,Qt+1 = qj | V = v1...vn)

9: for all t = 1, 2, ...n do
10: for all qi ∈ Q do
11: countem(vt, qi) = countem(vt, qi) + h(v) · P (Qt = qi | V = v1...vn)

12: for all qi ∈ Q do
13: counttrans(qi,#) = counttrans(qi,#) + h(v) · P (Q1 = qi | V = v1...vn)
14: counttrans(#, qi) = counttrans(#, qi) + h(v) · P (Qn = qi | V = v1...vn)

15: for all qj , qi ∈ Q ∪ {#} do

16: tk(qj | qi) =
counttrans(qj ,qi)∑

q
j
′ ∈Q

counttrans(qj′ ,qi)

17: for all vi ∈ V, qi ∈ Q do

18: ek(vi | qi) = countem(vi,qi)∑
v
i
′ ∈V

countem(v
i
′ ,qi)

19: output (tk, ek)

Starting with a pair of initial conditional probability distributions (t0, e0), in line two the pair (t, e)
which it is worked with in the current iteration is set to the pair calculated in the last iteration.
In line three and four count trans and countem are initialized. count trans(qj , qi) represents the
relevance for state qi to transition into state qj in possible state sequences for all observation
sequences in the corpus, given the current (t, e). In the same way countem(vj , qi) represents the
relevance for an observation vj being emitted in state qi. Both counts are calculated using the
current pair of conditional probability distributions (t, e) and the corpus h in the expectation step,
which is comprised in lines five to 14. Once these counts are calculated, they are used in lines 15
to 18 in the maximization step to calculate the next pair of conditional probability distributions.
Let qj , qi ∈ Q. Then count trans(qj , qi) is calculated in the expectation step by summing over
all observation sequences v1...vn of the support of the corpus and positions t in these sequences,
adding the probability of having the corresponding state sequence contain qi at position t and
qj at position t + 1, given v1...vn, and multiplying this by the frequency of v1...vn according to
the corpus. Because qj and qi are elements of Q, positions until n − 1 are considered. Different
from [JM09, p. 226] where one observation sequence is considered, here it is iterated over different
observation sequences in the corpus as done in other instances of the Baum-Welch algorithm as
well [Vog12]. Another difference is that in line 13 and 14 for a given observation sequence the
relevance for a state qi ∈ Q to transition into the final state # respectively the relevance the start
state # to transition into state qi ∈ Q is calculated. This is done in a similar way by calculating
the probability that given the observation sequence, qi is the first respectively the last state of the
corresponding state sequence. Note that the result of calculating this probability depends on the
current (t, e).
Iterating over all observation sequences of the corpus, countem is calculated in line nine to eleven
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by calculating for each position t of a given observation sequence and for each qi ∈ Q the proba-
bility that qi emitted the observation at position t of this sequence.

Next it is shown how to calculate P (Qt = qi,Qt+1 = qj | V = v1...vn) and P (Qt = qj | V = v1...vn)
from the Baum-Welch algorithm above [JM09, pp. 223-225].
All of these expressions can be transformed by using the definition of conditional probability:

P (Qt = qi,Qt+1 = qj | V = v1...vn) =
P (Qt = qi,Qt+1 = qj ,V = v1...vn)

P (V = v1...vn)
(29)

P (Qt = qj | V = v1...vn) =
P (Qt = qj ,V = v1...vn)

P (V = v1...vn)
(30)

P (V = v1...vn) can be calculated by using the forward or backward algorithm.
In the following the numerators are calculated by decomposing them into probabilities, which can
either be gained from (1), (2), (4) or be calculated alongside performing the forward and backward
algorithm.
For 1 ≤ t < n− 1 and t = n− 1, respectively, P (Qt = qi,Qt+1 = qj ,V = v1...vn) from (29) can be
decomposed to

P (V1 = v1, ...,Vt = vt,Qt = qi)·
P (Qt+1 = qj | V1 = v1, ...,Vt = vt,Qt = qi)·
P (Vt+1 = vt+1 | V1 = v1, ...,Vt = vt,Qt = qi,Qt+1 = qj)·
P (Vt+2 = vt+2, ...,Vn = vn,L = n | V1 = v1, ...,Vt+1 = vt+1,Qt = qi,Qt+1 = qj)

and

P (V1 = v1, ...,Vn−1 = vn−1,Qn−1 = qi)·
P (Qn = qj | V1 = v1, ...,Vn−1 = vn−1,Qn−1 = qi)·
P (Vn = vn | V1 = v1, ...,Vn−1 = vn−1,Qn−1 = qi,Qn = qj)·
P (L = n | V1 = v1, ...,Vn = vn,Qn−1 = qi,Qn = qj),

respectively, by applying the definition of conditional probability multiple times. Using equations
(11), (13), (19) and (17) this reduces to

P (V1 = v1, ...,Vt = vt,Qt = qi)·
P (Qt+1 = qj | Qt = qi)·
P (Vt+1 = vt+1 | Qt+1 = qj)·
P (Vt+2 = vt+2, ...,Vn = vn,L = n | Qt+1 = qj)

and

P (V1 = v1, ...,Vn−1 = vn−1,Qn−1 = qi)·
P (Qn = qj | Qn−1 = qi)·
P (Vn = vn | Qn = qj)·
P (L = n | Qn = qj),

respectively. Next, consider P (Qt = qj ,V = v1...vn) from (30). For 1 ≤ t < n and t = n,
respectively, it can be decomposed to

P (V1 = v1, ...,Vt = vt,Qt = qj)·
P (Vt+1 = vt+1, ...,Vn = vn,L = n | V1 = v1, ...,Vt = vt,Qt = qj),

and

P (V1 = v1, ...,Vn = vn,Qn = qj)·
P (L = n | V1 = v1, ...,Vn = vn,Qn = qj),
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respectively, in the same way. By applying definition (18) and (15) this is reduced to

P (V1 = v1, ...,Vt = vt,Qt = qj)·
P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = qj),

and

P (V1 = v1, ...,Vn = vn,Qn = qj)·
P (L = n | Qn = qj),

respectively. Finally, all components to perform the Baum-Welch algorithm are known.
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4 Implementation of the Baum-Welch algorithm

The program which implements hidden Markov models as described in section 3 is written in
Haskell. In the following, the structure of the program and some implementations of functions are
described exemplarily.
The following diagram created with the Haskell package Source Graph [Mil13] shows the modules
the program consists of:

HMM

Internal

Util

Test HMM

The HMM.Internal module comprises all functions related to HMM. Since not every function is
useful for the end user, the HMM module imports every function from HMM.Internal and exports
only these necessary for the end user. The HMM.Test module contains functions which help to
ensure that HMM are implemented correctly. Both the HMM.Test and HMM.Internal module use
the HMM.Util module which consists of auxiliary functions which are not related to HMM.

One problem occurring when implementing HMM is the problem of underflowing. Consider the
following example of a summation over the product of small probabilities. This could occur in a
similar way in the naive approach of calculating the probability of an observation sequence.

1 Prelude> sum $ take 10 $ repeat (1e-162 * 1e-162)
2 0.0

1 Prelude> 1e-323
2 1e-323

1 Prelude> 1e-324
2 0.0

Although 10 ·10−162 ·10−162 = 10−323, which could be stored in the computer memory, the compu-
tation evaluates to zero because 10−162 · 10−162 = 10−324 underflows. This is especially a problem
in the field of bioinformatics [MS99, p. 340] when long gene sequences are considered [Man06, p. 1].
One approach with the aim to prevent underflowing is to calculate in the logarithmic domain as
described in [Man06]. The Haskell module Data.Number.LogFloat [wnt10] implements this ap-
proach. The only modification which has to be done is to use the logarithm of the probabilities
which is achieved by the logFloat function. Then the LogFloat instance of the Num class takes
care of performing addition and multiplication in the logarithmic domain correctly:

1 Prelude> sum $ take 10
2 $ repeat ( logFloat (1e-162 :: Double) *
3 logFloat (1e-162 :: Double) )
4 LogFloat 1.0e-323

As the source code of Data.Number.LogFloat states, calculating in the logarithmic domain is a bit
slower and less accurate in the last decimal places, however it helps to prevent underflow.
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4.1 The HMM.Internal module

The following diagram, also created with the Haskell package Source Graph, shows the data type,
the functions and their dependencies inside the HMM.Internal module:

Exported root entities

Data: HMM

alpha

backward

backwardVbaumWelchbeta

forward

forwardV

likelihood

randomHMMuniHMM

uniHMM and randomHMM are functions that can be used to create an HMM. forward, backward
and baumWelch are implementations of the corresponding algorithms in section 3. likelihood uses
the forward function and can be used to calculate the likelihood for a given HMM and corpus.
forwardV, alpha, beta and backwardV are auxiliary functions which are also used by HMM.Test.

The export and import section of HMM.Internal looks as follows:7

1 module HMM.Internal
2 ( -- * HMM
3 HMM(..)
4 -- * Construction
5 -- ** Initialization
6 , uniHMM, randomHMM
7 -- * Algorithms
8 , forward, backward, baumWelch
9 , forwardV, backwardV

10 , alpha, beta
11 -- * Likelihood
12 , likelihood
13 ) where
14
15 import Control.Monad ( foldM, mapM )
16 import Data.Hashable ( Hashable )
17 import qualified Data.HashMap.Lazy as M ( HashMap, (!), fromList, member )
18 import qualified Data.List as L ( foldl’ )
19 import qualified Data.MemoCombinators as Memo ( integral, memo2 )
20 import Data.Number.LogFloat ( LogFloat, logFloat )
21 import qualified Data.Vector.Unboxed as V ( Vector, generate, imap, ifoldr’
22 , fromList, length, replicate
23 , unsafeAccum, unsafeIndex, )
24 import HMM.Util ( nubOrd, calcIndex, randomDist, sumIndices )

4.1.1 Data structure for HMM

1 type Dist = V.Vector LogFloat
2
3 data HMM state observation = HMM
4 { numberOfStates :: Int
5 , numberOfObservations :: Int
6 , transitionDist :: Dist
7 , emissionDist :: Dist
8 , stateMap :: M.HashMap state Int
9 , observationMap :: M.HashMap observation Int

10 }

7Due to lack of space and for reasons of clarity, in the following comments in the source code are omitted.
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An HMM is realized as an algebraic data type with one value constructor which contains six fields:
The first two fields comprise values of type Int and represent the number of states (excluding the
start and final state) and the number of observations of the HMM.
In the fifth and sixth field the states and observations of an HMM are stored, together with a
mapping to unique Integers, starting from zero to the number of states and observations minus
one, respectively.
The third and fourth field represent the two conditional probability distributions of an HMM,
whereas probabilities are stored in an unboxed vector, designed especially for element types [Les12].
Note that if the HMM contains m states, represented by Integers from 0 to m − 1, the Integer
m represents the start and final state # and the vector for transition probabilities has a size of
(m+ 1) · (m+ 1). To receive the probability for an observation/state given a state, the respective
mappings are used to yield the corresponding Integers. These can be used together with the
calcIndex function from HMM.Util to calculate the index at which the requested probability is
stored.
Note that although HMM state observation is polymorphic in the state and observation type, func-
tions which use HMM require state and observation for example to be in the Hashable typeclass,
because a hash map is used for the mapping to Integers.

4.1.2 Creating HMM

As mentioned before, two functions are provided to create HMM:

• uniHMM

• randomHMM

The type signature of uniHMM reads as follows:

1 uniHMM :: (Ord state, Ord observation, Hashable state, Hashable observation)
2 => [state]
3 -> [observation]
4 -> Maybe (HMM state observation)

uniHMM takes a list of states and a list of observations as an input. Duplicate states and obser-
vations are removed before proceeding. Because the set based nubOrd function from HMM.Util is
used for this, the state and observation type need to be in the Ord typeclass.
If zero states or zero observations are given as an input, Nothing is returned. Otherwise uniHMM
returns an HMM where for all states the probability of observing an observation is distributed uni-
formly. The same holds for the conditional probability distribution t, except that the probability
of transitioning from # to # is zero as described in Definition 3.1.

randomHMM acts as uniHMM but provides randomly distributed probabilities higher than zero.

Section 5 shows exemplarily that randomHMM is preferred over uniHMM and leads to a higher
likelihood. [MS99, p. 339] states that random initial transition probabilities are “normally satisfac-
tory”, however appropriate emission probabilities “turn out to be particularly important” in order
to find a global maximum of the likelihood function for a given corpus. The emission probabilities
could tried to be “roughly estimated”.
An approach I tried was to determine emission probabilities by using relative frequency of the
observations in the corpus and changing the emission probabilities for each state slightly. However,
this did not yield better results.
[Rab89, p. 274] describes further approaches for setting initial emission probabilities.

23



4.1.3 Forward algorithm

1 forward :: (Ord state, Ord observation, Hashable state, Hashable observation)
2 => HMM state observation
3 -> [observation]
4 -> Maybe LogFloat
5 forward hmm@(HMM _ _ _ _ _ observationMap) os =
6 if length os == 0 ||
7 not (all (‘M.member‘ observationMap) os)
8 then Nothing
9 else let osV = V.fromList . map (\o -> observationMap M.! o) $ os

10 in Just $ forwardV hmm osV

forward takes an HMM and an observation sequence as an input. If no observations are present
or if the observations in the sequence are not part of the observation set of the HMM, Nothing is
returned. Otherwise, the observations are transformed into Integers and forwardV is evoked.

11 forwardV :: (Ord state, Ord observation, Hashable state, Hashable observation)
12 => HMM state observation -> V.Vector Int -> LogFloat
13 forwardV (HMM m n tDist eDist _ _) osV =
14 let l = V.length osV
15 in L.foldl’ (\prob state ->
16 let a = alpha (l-1) state
17 transProb = tDist ‘V.unsafeIndex‘
18 calcIndex state (m+1) m
19 in prob + transProb * a) (logFloat (0 :: Double)) [0..(m-1)]
20 where alpha = Memo.memo2 Memo.integral Memo.integral alpha’
21 alpha’ 0 state =
22 let emissionProb = eDist ‘V.unsafeIndex‘
23 calcIndex state n (osV ‘V.unsafeIndex‘ 0)
24 transitionProb = tDist ‘V.unsafeIndex‘
25 calcIndex m (m+1) state
26 in emissionProb * transitionProb
27 alpha’ t state =
28 let emissionProb = eDist ‘V.unsafeIndex‘
29 calcIndex state n (osV ‘V.unsafeIndex‘ t)
30 as = L.foldl’ (\prob preState ->
31 let a = alpha (t-1) preState
32 transProb = tDist ‘V.unsafeIndex‘
33 calcIndex preState (m+1) state
34 in prob + transProb * a)
35 (logFloat (0 :: Double)) [0..(m-1)]
36 in emissionProb * as

forwardV is a realization of the forward algorithm described in Section 3.1. Line 15 to line 19 in
the implementation correspond to the termination in line 6 of the forward algorithm. Line 21 to
line 26 refer to the initialization in line 2 and line 27 to line 36 refer to line 5.
alpha t state is used as a paraphrase, because it is common to abbreviate P (V1 = v1, ...,Vt =
vt,Qt = state) by αt(state) [JM09, p. 215]. 8

The technique of dynamic programming is implemented by using the memo2 and integral func-
tions from Data.MemoCombinators in line 20. These functions turn alpha into a function which
memorizes passed arguments and corresponding results. The memorizing table is not discarded
until the forwardV function is left.

8In the same way beta t state used in the beta function corresponds to βt(state) which is an abbreviation for
P (Vt+1 = vt+1, ...,Vn = vn,L = n | Qt = state) (compare [JM09, p. 222]).
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4.1.4 Baum-Welch algorithm

1 baumWelch :: (Ord state, Ord observation,
2 Hashable state, Hashable observation)
3 => HMM state observation
4 -> [[observation]]
5 -> Int
6 -> Maybe (HMM state observation)
7 baumWelch hmm@(HMM _ _ _ _ _ observationMap) corpus i =
8 if corpus == [[]] || corpus == [] || not (all (not . null) corpus) ||
9 not (all (all (‘M.member‘ observationMap)) corpus)

10 then Nothing
11 else let corpusV = map (V.fromList . map (\o -> observationMap M.! o)) corpus
12 in Just $ baumWelch’ hmm corpusV i
13 where baumWelch’ hmm corpusV 0 = hmm
14 baumWelch’ hmm corpusV n = let newHmm = mstep $ estep hmm corpusV
15 in baumWelch’ newHmm corpusV (n-1)

The baumWelch function takes an HMM, a list of observation sequences and the number of it-
erations the Baum-Welch algorithm is to perform as an input. Similar to the forward function,
at first the observations in the corpus are verified to be comprised by the HMM. If they do, the
observations are transformed to Integers and estep and mstep of the Baum-Welch algorithm are
performed alternating until the requested number of iterations is reached.

16 estep hmm@(HMM m n tDist eDist stateMap observationMap) corpusV =
17 let tDist_initCount = V.fromList $ replicate ((m+1) * (m+1))
18 (logFloat (0 :: Double))
19 eDist_initCount = V.fromList $ replicate (m * n)
20 (logFloat (0 :: Double))
21 in L.foldl’ (\(HMM _ _ !tDist_count !eDist_count _ _) osV ->
22 let (tDistMid, eDistMid, tDistInit, tDistFinal)
23 = calcPartCounts hmm osV
24
25 tDist_count’ = V.unsafeAccum (+) tDist_count
26 (tDistInit ++ tDistFinal ++ tDistMid)
27 eDist_count’ = V.unsafeAccum (+) eDist_count eDistMid
28
29 in (HMM m n tDist_count’ eDist_count’ stateMap observationMap)
30
31 ) (HMM m n tDist_initCount eDist_initCount stateMap observationMap)
32 corpusV

The initial counts for transition and emission probabilities are set up in line 17 and 19. These
counts are used as starting values for folding over the corpus from line 21 to 32. Notice that
multiple occurrences of the same sentences are considered as well, therefore the multiplication
with h(v) for an observation sequence v in for example line eight in the Baum-Welch algorithm
drops out. In line 25 and line 27 the counts are updated. In form of a list of pairs tDistInit,
tDistMid, eDistMid and tDistFinal contain information about at which position in the count-
vectors which probability has to be added and are calculated for each sentence using the function
calcPartCounts. Because Haskell is lazy, values inside the two vectors tDist count and eDist count
are not updated immediately which leads to a lot of thunks. To avoid the fast increase of memory
the strictness annotation ! in line 21 is added.

33 calcPartCounts hmm osV = calcPartCounts’ hmm osV (V.length osV)
34 where calcPartCounts’ (HMM m n tDist eDist _ _) osV l =
35 let forwardProb = L.foldl’ (\prob state ->
36 let alphaProb = alpha 0 state
37 betaProb = beta 0 state
38 in prob + alphaProb * betaProb)
39 (logFloat (0 :: Double)) [0..(m-1)]
40 (tDistMid, eDistMid) =
41 V.ifoldr’ (\index word (tDistMid’, eDistMid’) ->
42 if index == (l-1)
43 then let eDistMid’New =
44 map (\(vt,qt) ->
45 let iE = calcIndex qt n vt
46 a = alpha index qt
47 b = beta index qt
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48 v = (a * b) / forwardProb
49 in (iE,v)) [ (word,q)
50 | q <- [0..(m-1)]
51 ]
52 in (tDistMid’, eDistMid’New ++ eDistMid’)
53 else let tDistMid’New =
54 map (\(qt1,qt) ->
55 let iT = calcIndex qt (m+1) qt1
56 iE = calcIndex qt1 n
57 (osV ‘V.unsafeIndex‘ (index+1))
58 a = alpha index qt
59 b = beta (index+1) qt1
60 t = tDist ‘V.unsafeIndex‘ iT
61 e = eDist ‘V.unsafeIndex‘ iE
62 v = (a * b * t * e) / forwardProb
63 in (iT,v)) [ (q1,q)
64 | q1 <- [0..(m-1)]
65 , q <- [0..(m-1)]
66 ]
67 eDistMid’New =
68 map (\(vt,qt) ->
69 let iE = calcIndex qt n vt
70 a = alpha index qt
71 b = beta index qt
72 v = (a * b) / forwardProb
73 in (iE,v)) [ (word,q)
74 | q <- [0..(m-1)]
75 ]
76 in ( tDistMid’New ++ tDistMid’,
77 eDistMid’New ++ eDistMid’)) ([],[]) osV
78
79
80 tDistInit = map (\(q1,sharp) ->
81 let iT = calcIndex sharp (m+1) q1
82 a = alpha 0 q1
83 b = beta 0 q1
84 v = (a * b) / forwardProb
85 in (iT,v)) [(q, m)
86 | q <- [0..(m-1)]
87 ]
88
89 tDistFinal = map (\(sharp,qn) ->
90 let iT = calcIndex qn (m+1) sharp
91 a = alpha (l-1) qn
92 b = beta (l-1) qn
93 v = (a * b) / forwardProb
94 in (iT,v)) [(m, q)
95 | q <- [0..(m-1)]
96 ]
97 in (tDistMid, eDistMid, tDistInit, tDistFinal)
98 where alpha = -- local definition, memorized alpha
99 beta = -- local definition, memorized beta

The calculation of tDistInit and tDistFinal corresponds to line twelve to line 14 in the Baum-
Welch algorithm. The two iterations over an observation sequence in line six to line eleven in the
Baum-Welch algorithm are combined in one iteration in line 40 to line 77.
In line 35 the probability of the current observation sequence is calculated. This is not done by
using the forward or backward algorithm directly, but by using the following observation:
P (Qt = qj ,V = v1...vn) from (30), page 19, was calculated by decomposing it for 1 ≤ t < n as
follows:

P (Qt = qj ,V = v1...vn)

=P (V1 = v1, ...,Vt = vt,Qt = qj) · P (Vt+1 = vt+1, ...,V = vn,L = n | Qt = qj)

=αt(qj) · βt(qj)

By using Theorem 2.7 it can be seen that calculating P (V = v1...vn) can be achieved by summing
over the equation above for all possible qj ∈ Q [JM09, p. 224] as it is done in line 35 for t = 1.
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The advantage of calculating the probability of the observation sequence this way is that because
the alpha and beta functions are memorized and defined locally in lines 98 and 99, values calculated
for alpha and beta can be reused when calculating tDistInit, tDistMid, eDistMid and tDistFinal.
The implementation of mstep which turns the two counts into two conditional probability distri-
butions is not displayed here.

4.2 The HMM.Test module

As stated before, the HMM.Test module provides functions which help to ensure that HMM work
correctly. Among others, the following functions are provided:

• forwardBackwardCheck

• likelihoodCheck

In Section 3 it was described that the forward and backward algorithms yield the same probability
for same input. forwardBackwardCheck hmm n creates for the HMM hmm 100 random sentences
of length n and checks if the forward and backward implementations yield the same results.
In the same way likelihoodCheck hmm o p q creates 100 random corpora which consist of p sen-
tences of length o and checks for each corpus if the likelihood stays the same or increases after
each of q iterations in the Baum-Welch algorithm.

An example usage could look as follows:

1 import HMM
2 import HMM.Test
3
4 main = do
5
6 case (uniHMM ([1..10] :: [Int]) ([1..6] :: [Int])) of
7 Nothing -> putStrLn $ "HMM cannot be constructed from " ++
8 "zero observations or zero states."
9 Just hmm -> do forwardBackwardCheck hmm 50

10 likelihoodCheck hmm 4 10 5

4.3 The HMM module

As mentioned above, the HMM module exports all functions which are of interest to the end user:
uniHMM, randomHMM, forward, backward, baumWelch and likelihood.

Referring to Example 3.2, performing 2000 iterations inside the Baum-Welch algorithm and cal-
culating the probability of the observation sequence (V = Alice likes Alice) can be realized as
follows:

1 import HMM
2
3 main = do
4
5 let states = ["subject", "verb"]
6 observations = ["Alice", "likes", "sees", "him", "her"]
7 corpus = [["Alice", "likes", "him"], ["Alice", "sees", "her"]]
8 iterations = 2000
9

10 initHMM <- randomHMM states observations
11
12 case initHMM of
13 Nothing -> putStrLn $ "HMM cannot be constructed from " ++
14 "zero observations or zero states."
15 Just hmm -> case baumWelch hmm corpus iterations of
16 Nothing -> putStrLn "Corpus does not match HMM."
17 Just trainedHMM -> print $ forward
18 trainedHMM ["Alice", "likes", "Alice"]
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5 Empirical comparison of the quality of the bigram model
and HMM

In the following the quality of the bigram model and the HMM is compared empirically on the
basis of the corpus from Section 1:

Alice likes him Alice sees her

The quality is valuated by considering the likelihood of the models given the corpus and the
probability sentences get assigned by the models. Sentences which to human understanding are
grammatically right, these which are grammatically wrong, these which are and these which are
not part of the corpus are regarded. Furthermore, for HMM different number of states and different
initial probabilities are considered. The results can be reproduced by using the functions described
in Section 4.

5.1 Quality of the bigram model

As mentioned in Section 1, conditional relative frequency yields the following conditional proba-
bility distribution:

b(. | .) # Alice likes sees him her

# 0 0 0 0 1 1
Alice 1 0 0 0 0 0
likes 0 0.5 0 0 0 0
sees 0 0.5 0 0 0 0
him 0 0 1 0 0 0
her 0 0 0 1 0 0

Table 5.1.1: Bigram model

The following table shows the probability for different sentences:

Probability

Alice likes him 0.5
Alice sees her 0.5
Alice likes her 0
Alice sees him 0
Alice sees Alice 0
Alice likes Alice 0
Alice sees sees 0
sees Alice sees 0
sees sees sees 0

Table 5.1.2: Probabilities for the bigram model

As the high likelihood of 0.5 · 0.5 = 0.25 indicates, the bigram model matches the corpus perfectly:
Both sentences in the corpus are assigned the probability of 0.5. However, all other sentences,
including these which are grammatically correct such as Alice likes her, are valuated with zero.

5.2 Quality of the HMM with uniform initial probabilities

As with the bigram model the set of observations is the set of words which occur in the corpus.
Assuming the one-element state set Q = {q0}, an initial HMM with uniform distributed probabil-
ities as described in Section 4.1.2 is displayed in Figure 5.2.1. Performing 2000 iterations of the
Baum-Welch algorithm yields the trained HMM shown in Figure 5.2.2.
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# q0

Alicehim herlikessees

1

0.5

0.5
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0.2

Figure 5.2.1: Initial HMM

# q0

Alicehim herlikessees

1

1/3

2/3

1/6
1/6 2/6

1/6
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Figure 5.2.2: Trained HMM

The obtained transition and emission probabilities of the trained HMM stand to reason: For ex-
ample the observation Alice occurs in the corpus consisting of six observation two times, therefore
observing Alice in the only emitting state q0 is done with a probability of 2

6 . In the same way the
probability t(# | q0) = 1

3 is reasonable: If all sentences in the corpus had the length 1, the proba-
bility of transitioning from q0 to # would be 1. If the sentences had the length 2 the probability
would be 1

2 and with a length of 3 the probability would be 1
3 , because for sentences of length 3

two transitions from state q0 to q0 and one transition from state q0 to # is made.

The following tables show the probabilities9 assigned to the sentences by the two HMM.

Probability

Alice likes him 1 · 10−3

Alice sees her 1 · 10−3

Alice likes her 1 · 10−3

Alice sees him 1 · 10−3

Alice sees Alice 1 · 10−3

Alice likes Alice 1 · 10−3

Alice sees sees 1 · 10−3

sees Alice sees 1 · 10−3

sees sees sees 1 · 10−3

Table 5.2.3: Probabilities for
the initial HMM

Probability

Alice likes him 1.37 · 10−3

Alice sees her 1.37 · 10−3

Alice likes her 1.37 · 10−3

Alice sees him 1.37 · 10−3

Alice sees Alice 2.74 · 10−3

Alice likes Alice 2.74 · 10−3

Alice sees sees 1.37 · 10−3

sees Alice sees 1.37 · 10−3

sees sees sees 6.86 · 10−4

Table 5.2.4: Probabilities for
the trained HMM

Compared to Table 5.2.3 Table 5.2.4 shows that the higher probability of observing Alice results
in a higher probability for sentence which contain Alice more often. However, the probabilities for
sentences, whether they are grammatically correct or not, does not differ much. Furthermore, the
likelihood of 1.88 · 10−6 under the trained HMM is not much higher than the likelihood of 1 · 10−6

under the initial HMM.
Training uniform HMM with more states leads to the same valuation of the given sentences and
to the same likelihood.

5.3 Quality of the HMM with random initial probabilities

In the following, HMM with randomly distributed probabilities as described in Section 4.1.2 are
considered.
Regardless of the exact initial probabilities, setting |Q| = 1 and performing 2000 iterations of the
Baum-Welch algorithm always yields the HMM described in Figure 5.2.2.
In the case of |Q| = 2 the obtained HMM after training depends on the initial probabilities. Table
5.3.1 shows the number of times an HMM got obtained after training hundred random HMM and
the corresponding likelihood. Because the names of the states are not important for calculating

9In the following, probabilities are rounded off to the second decimal place.
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the probability of a sentence, checking if an HMM is already observed in the list of HMM is done
by comparing if all parameters are the same except the naming of states.

Number of occurrences Likelihood

HMM 1 39 2.44 · 10−4

HMM 2 32 2.44 · 10−4

HMM 3 26 2.44 · 10−4

HMM 4 2 1.53 · 10−5

HMM 5 1 7.53 · 10−6

Table 5.3.1: HMM obtained after training 100 random HMM

HMM 4 and HMM 5 have a lower likelihood and occur less frequently then HMM 1, HMM 2 and
HMM 3 and thus they are not to be discussed here.

HMM 1 and HMM 2 read as follows:

#

q0

q1

Alice herlikeshim sees

1

1

1

0.5

0.5

0.25

0.25

0.25

0.25

Figure 5.3.2: HMM 1

#

q1

q0

herhim Alicelikes sees

11

0.5
0.5

0.5
0.5

0.50.25
0.25

Figure 5.3.3: HMM 2

The idea of HMM 1 is to first produce the Alice observation and then to produce a sequence of
him, likes, sees and her observations. In a similar way the HMM 2 at first produces a sequence of
likes, Alice and sees and then adds either him or her.
As can be seen in the following two tables, this allows to assign high probabilities to grammatically
correct sentences which are not part of the corpus.

Probability

Alice likes him 1.56 · 10−2

Alice sees her 1.56 · 10−2

Alice likes her 1.56 · 10−2

Alice sees him 1.56 · 10−2

Alice sees Alice 0
Alice likes Alice 0
Alice sees sees 1.56 · 10−2

sees Alice sees 0
sees sees sees 0

Table 5.3.4: Probabilities for HMM 1

Probability

Alice likes him 1.56 · 10−2

Alice sees her 1.56 · 10−2

Alice likes her 1.56 · 10−2

Alice sees him 1.56 · 10−2

Alice sees Alice 0
Alice likes Alice 0
Alice sees sees 0
sees Alice sees 0
sees sees sees 0

Table 5.3.5: Probabilities for HMM 2

HMM 3 is shown in figure 5.3.6.
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#

q1 q0

likessees Alicehim her

1

1

0.50.5

0.5
0.5

0.50.25
0.25

Figure 5.3.6: HMM 3

Substituting q0 by noun and q1 by verb one yields exactly the HMM intuitively constructed in
Example 3.2. This allows more grammatically correct sentences to be valuated better compared
to HMM 1 and HMM 2:

Probability

Alice likes him 1.56 · 10−2

Alice sees her 1.56 · 10−2

Alice likes her 1.56 · 10−2

Alice sees him 1.56 · 10−2

Alice sees Alice 3.13 · 10−2

Alice likes Alice 3.13 · 10−2

Alice sees sees 0
sees Alice sees 0
sees sees sees 0

Table 5.3.7: Probabilities for HMM 3

Another interesting HMM occurs if the number of states in Q is set to five. Generating 100 random
HMM and performing 200 iterations of the Baum-Welch algorithm, the following HMM is obtained
41 times:
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q0

q1 q2

q3 q4

#

Alice

likes him

sees her

1
0.5

0.5

1

1

1

1

1

1

1

1

1

Figure 5.3.8: HMM equivalent to the bigram model shown in Table 5.1.1

Note that for reasons of space the start and final state # appears twice.
Each of the states in this HMM is responsible for producing exactly one observation and each
of the observations in the corpus is emitted by exactly one state. Renaming the states by the
observation they produce it is obvious that the conditional probability distribution of the bigram
model in Table 5.1.1 is represented on the level of states in the HMM. In this sense this HMM is
equivalent to the bigram model. Therefore it also has a likelihood of 0.25 and matches the corpus
perfectly but also neglects the validity of other grammatically correct sentences.

Further increase of the number of states leads to a higher share of HMM obtained after the training
under which the likelihood is 0.25.

5.4 Comparison

The examples above show that it is probably appropriate to prefer random initial probabilities
over uniformly distributed initial probabilities. Furthermore, an HMM with a low complexity, for
example only consisting of one state, leads to a low likelihood and a greater mistake concerning the
level of abstraction (see Table 5.2.4). On the other hand a model which is too complex, for example
see Figure 5.3.8, leads to high likelihood but is restricted too much to the corpus. The optimal
complexity in the examples above amounts to |Q| = 2. HMM 3 (see Figure 5.3.6) shows that
HMM are able to capture the linguistic rules behind a corpus better than the bigram model. To
determine a suitable number of states and a specific HMM the method of cross validation [St3] can
be used. At this different HMM are tested against another corpus of similar shape. For example
testing HMM 1 (Figure 5.3.2), HMM 2 (Figure 5.3.3) and HMM 3 (Figure 5.3.6) against a corpus
consisting of sentences like Alice likes Alice, the likelihood of HMM 3 under this corpus will be the
highest because Alice likes Alice is assigned a higher probability by HMM 3 than by HMM 1 and
HMM 2.
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6 Further usage of HMM in natural language processing

Besides calculating the probability of a sentence, hidden Markov models can be used for further
tasks in natural language processing.

One important task is part-of-speech tagging [MS99, p. 341]. At this each word in a sentence is
assigned a corresponding part-of-speech respectively a tag, for example noun or verb. Regarding the
set of states Q of the HMM H = (Q,V,#, t, e) as the set of syntactic categories or tags, HMM can
be used to find the most likely tag sequence q1...qn ∈ Q+ for a given sentence v1...vn ∈ V +: [JM09,
p. 173] [MS99, p. 332]

q1...qn = arg max
q′1...q

′
n

P (Q = q′1...q
′
n | V = v1...vn)

= arg max
q′1...q

′
n

P (Q = q′1...q
′
n,V = v1...vn)

P (V = v1...vn)

= arg max
q′1...q

′
n

P (Q = q′1...q
′
n,V = v1...vn)

Considering the HMM from Example 3.2, the most likely state sequence for Alice likes Alice is
noun verb noun:

Probability

Alice likes Alice, noun noun noun 0
Alice likes Alice, noun noun verb 0
Alice likes Alice, noun verb noun 3.125 · 10−2

Alice likes Alice, noun verb verb 0
Alice likes Alice, verb noun noun 0
Alice likes Alice, verb noun verb 0
Alice likes Alice, verb verb noun 0
Alice likes Alice, verb verb verb 0

Table 6.0.1: Probabilities for
Alice likes Alice and all possible state sequences

Therefore the tags to the specific words in this sentence given this simple HMM are known. For
more complex cases, the Viterbi algorithm can be used to efficiently calculate the state sequence
q1...qn which maximizes P (Q = q1...qn,V = v1...vn) [MS99, p. 332].

A further area of application of HMM is in speech recognition, as described in [You06, pp. 3-5]:
In a step of preparation the audio signal is disassembled into a sequence of feature vectors. For
simplicity, the task of isolated word recognition is considered, which means that a given sequence of
feature vectors is known to belong to exactly one word. The procedure then is to construct a HMM
for each word one wants to recognize, whereas the set of observations of each HMM consists of all
possible feature vectors. Knowing different sequences of feature vectors for one specific word, the
HMM for this word can be trained trusting this HMM to assign a sequence of feature vectors which
represents the current word a high probability afterwards. The task of recognizing a word from a
given sequence of feature vectors then is done by finding the HMM which assigns the sequence the
highest probability.
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