
Technische Universität Dresden
Fakultät Informatik

Institut für Theoretische Informatik
Lehrstuhl Grundlagen der Programmierung

Bachelorarbeit

Training of probabilistic
context-free grammars

Michael Jobst

Eingereicht am 28.06.2013
Bearbeitet vom 08.04.2013

bis zum 28.06.2013

Verantwortlicher Hochschullehrer:
Prof. Dr.-Ing. habil. Heiko Vogler

Betreuer:
Dr. Torsten Stüber, M. Sc.

Contents

1. Introduction 2

2. Context-free grammars 4
2.1. Definition . 4
2.2. An example grammar . 6
2.3. Parse trees . 6

3. Probabilistic context-free grammars 9
3.1. Modelling probability . 10
3.2. Definition of probabilistic context-free grammars 11
3.3. Corpora . 13
3.4. Parsing . 14

4. Training with the EM algorithm 18
4.1. Maximum Likelihood Estimation . 18
4.2. The EM algorithm . 19
4.3. Supervised training . 22
4.4. Unsupervised training with the inside-outside-algorithm 23

5. Implementation for Vanda 28
5.1. Data structures . 28
5.2. Maximum likelihood estimate . 30
5.3. Supervised training . 30
5.4. The inside-outside algorithm . 30
5.5. Some tests . 31

6. What comes next 34
6.1. Resolving the drawbacks of the Chomsky normal form 34
6.2. A mixed approach between supervised and unsupervised training 36

A. Tags of the Penn Treebank 39

1

1 Introduction

Ever since the appearance of science fiction movies, man has dreamt of machines, which, or
better to be said who would act and think like humans. The field of artificial intelligence
is one of the most important and wide spread topics in modern computer science. In the
last years machines not only have gained the capability of answering to simple requests
just like a pocket calculator, but also of automatic driving on public roads or offroad,
of playing games like chess, even winning against world champions or of working with
human language. Latter has only been achieved in a basic way up to now: Neither
understanding nor translating nor speaking is working in general, though strongly limiting
the expectations has already led to surprisingly good results.

Today, speech recognition, without understanding the contents, has become a well-
functioning standard application. Also, machine translation of technical texts, like user
manuals, leads to usable results. But we do not only want to evaluate the quality of a
sentence, to translate without considering semantics or to produce text by using tricks
like having a chat bot ask the user questions in order to be perceived empathic. What
we are really looking for is to understand the contents of a text by structuring language
into objects with a function and linking the meaning of sentences together in order to
track objects through a text.

But how can we structure spoken language in order to make computers “understand” it
someday? A language consists of sentences, which themselves can be split into words.
Each of those words not only has a function, but also is related to a subset of the rest of
the sentence. For modeling this, linguists use grammars, which describe the structure of
a sentence and the function of its sub-sentences and words. Of course those grammars are
books written for humans, which describe a language but somehow have to be structured
so that they can be used by a program. Therefore several different approches exist, some
simpler and less accurate, some more complex and powerful.

Taking a strongly inflecting language like czech, the potential complexity of such a
grammar can quickly get enormous. Given a small dictionary of only 5000 words, we
already have at least 5000 entries for sorting each word into a grammatical category.
Furthermore for each noun there exist seven different declinations and the same amount
for its plural forms; verbs need an entry for three different persons in singular and plural
each, differing between male, female and neuter and so forth. We soon realize that our

2

initial amount of entries is far not enough. Now imagine a new entry for each grammatical
relation between the words - needless to say the grammar will get very big, which makes
manually writing it difficult and slows down the processing by a computer.

So it is better to keep things simple and especially to avoid overfitting1, which however
means that our grammar will “allow” all the possible sentences of a language, but also
a lot of sentences which make no sense at all. Even worse, we can not even use it for
recognizing the meaning of the words in a sentence as natural language is ambiguous.
The english word “saw” could for example be the simple past of “to see”, the tool used
for cutting or the infinitve of the verb associated with the tool.

We could now think, that it is a good decicion to find a grammar, which completely avoids
the misuse of a word by creating the rules in a way that there is only one grammatical
interpretation for each sentence. But what about the sentence “I saw her duck.” It can
have three meanings: I could have seen her as she ducks, or I could have seen her animal
or I could hurt it using a saw. As latter is not very nice it will probably be a less frequent
sentence as the other ones. And the first sentence is also probably less likely to appear
than the second.

Talking about frequencies and likelihood it is evident that the sentences and therefore the
grammar rules somehow have different probabilities of occurance. But it is not possible
to intuitively assign probabilities to the rules. However computer linguists have found
training methods, which can relieve us of this task and basically work by evaluating large
samples of language.

In this thesis, first a special type of such grammars is treated, called context-free grammars,
then it will be extended using probabilities and two training methods are described.
Furthermore, an implementation of those methods for Vanda, the modular machine
translation system of the Dresden University of Technology, using Haskell, is presented.

1Overfitting describes that a model is too adapted to a specific sample (for example a book) to work for
other samples, i.e. sentences which are not in the book. An extremely overfitted model would be a
grammar which accepts only the sentences in this book. The contrary would be one, which accepts
every sentence, no matter how senseless it is.

3

2 Context-free grammars

Looking for a grammar which is not that complicated but relatively powerful we come
across context-free grammars (short: CFG) (Booth 1969; Booth and Thompson 1973).
Like many grammars in formal language theory, context-free grammars basically are a set
of replacement rules for variables. What makes them special is that the applicability of a
rule is only decided by a single variable and not by its context. In the further sections,
context-free grammars will be pictured and defined.

2.1. Definition

A context-free grammar is a 4-tupel G := (V, T , S0,R) with:

• an alphabet of variables V

• an alphabet of terminals T with V ∩ T = ∅

• a starting symbol S0 ∈ V

• a set of rules R ⊆ V × (V ∪ T)∗

The variables are also called syntactic categories. (V ∪ T)∗ is the Kleene closure of the
both alphabets’ union. A word of the alphabet T is called sentence and a word of the
alphabet (V ∪ T)∗ is called sentential form.

An example for a valid rule R ∈ R with S,A,B ∈ V and c ∈ T is:

R = (S,ABc)

For easier reading each rule R ∈ R can be written by separating the elements of the pair
by a right-arrow, symbolizing an assignment to the variable on the left. Therefore our
example rule R can also be written as:

R : S → ABc

Following intuition, the first element of the pair R will also be called left(R) and the
second element will be called right(R).

4

2.1.1. Application of rules and derivations

The application of a rule (a derivation step) is defined as a relation ⇒ where G =
(V, T , S0,R) is the grammar which is used. For making the application of more than one
derivation step deterministic, we will only treat leftmost derivations, meaning that we
can only replace the leftmost variable in a sentential form. Given a rule R ∈ R, then

R==⇒:= {(lV r, lsr) | l ∈ T ∗, s, r ∈ (V ∪ T)∗, left(R) = V ∈ V, right(R) = s}

Let V be a variable and w be a sentence of G and d be a sequence of rules R0 . . . Rn with
V

R0==⇒ . . .
Rn==⇒ w. Then d is called the derivation of w from V . If V = S0, d is called a

complete derivation. The reflexive transitive closure of our relation (⇒∗) is also called
the derivation relation.

⇒∗:= {(V,w) | V ∈ V, w ∈ (V ∪ T)∗,∃d = R0 . . . Rn ∈ R∗ | V
R0==⇒ . . .

Rn==⇒ w}

We can also define the functions left and right for a derivation d = R0 . . . Rn:

left(d) := left(R0)
right(d) := w with left(R0) R0==⇒ . . .

Rn==⇒ w

The set of all complete derivations of a grammar G is called DG. It is defined as follows:

DG := {d | left(d) = S0, right(d) ∈ T ∗}

2.1.2. The language of a grammar

Having defined derivations we can now think about the language a grammar produces.
The language LG ⊆ T ∗ of a grammar G is the set of all sentences it can produce with
complete derivations. LG can be finite but does not necessarily have to. The definition
of the language of a grammar strongly relates to the definition of complete derivations:
If there exists a complete derivation from S0 to w, w is a sentence of the language.
Therefore:

LG = {w ∈ T ∗ | S0 ⇒∗ w}

5

2.2. An example grammar

As an example we will use the grammar G = (V, T , S0,R) which looks as follows:

• V = {DT, NNP, NN, NP, S, VP, VBD}

• S0 = S

• T = {a, man, John, Mary, saw}

• R is the set of the following rules:

(1) S → NP VP (2) NNP→ Mary (3) NN → man
(4) NP → DT NN (5) NNP→ John (6) VP → VBD NP
(7) NP → NNP (8) DT → a (9) VBD→ saw

The names of the variables are syntactical categories as used in the Penn Treebank
(Marcus, Santorini, and Marcinkiewicz 1993), for example NP stands for noun phrase.
The symbols used in this work are described in Appendix A.

The rules have been numbered, so that for example (1)==⇒ means a derivation step using
rule (1).

At first glance it is not easy to see which language even such a simple grammer produces.
Derivating a first sentence step by step can give us an idea. For easier reading the symbols
are marked as follows: An underlined symbol gets replaced by the next application of a
rule and the bold symbols are the result of the replacement of the last step.

S (1)==⇒ NP VP
(4)==⇒ DT NN VP
(8)==⇒ a NN VP
(3)==⇒ a man VP
(6)==⇒ a man VBD NP
(9)==⇒ a man saw NP
(7)==⇒ a man saw NNP
(2)==⇒ a man saw Mary

2.3. Parse trees

Derivations can also be depicted as trees, starting with S0 as root node and the nodes
having the results of the application of the next rule as child nodes. In Figure 2.1 are
the trees of some derivation steps of our example. The last one is a1 parse tree of the
sentence “a man saw Mary”. It can also be written in a compact form:

1Using a more complex grammar it is very probable that there exist more parse trees of a sentence.

6

S ⇒∗ S

VPNP

NNDT

a

⇒∗ S

VP

NP

NNP

Mary

VBD

saw

NP

N

man

DT

a

Figure 2.1.: Some steps of an example derivation of the sentence “a man saw Mary”

S (NP (DT (a) NN (man)) VP ((VBD saw) NP (NNP (Mary))))

Here an opening bracket depicts the beginning of a list of all child-nodes with their
respective subtrees again written in brackets behind themselves.

From this structure, all the rules which produced the tree can be read off without knowing
the trees of each derivation step. For example, looking at the root node of the parse
tree, the rule (1) can be reconstructed by taking the node S as the left side and its direct
children as the right side.

Reading off those rules can be done using the recursive function readoff.

Let T (G) be the set of all possible parse trees of G. First, we need an auxiliary function
head : T → V ∪ T , which returns the first symbol of the tree.

head(t) =
{
V if t = V (t0t1 . . . tn), V ∈ V and t, ti ∈ T (G)
a if t = a with a ∈ T

Now let R∗ be the set of all possible sequences of rules in R

readoff(t) =

∅ if t = a with a ∈ T
X → head(t0) . . . head(tn), readoff(t0), . . . , readoff(tn)

if t = X(t0t1 . . . tn) and t, ti ∈ T (G)

This sequence now can also be transformed into a complete derivation. Let R0, R1, . . . , Rn
be a sequence of rules from the application of readoff on a parse tree of a word w and S0
be the starting symbol of the grammar which was used. Then the derivation d of the
belonging parse tree is:

d = R0R1 . . . Rn

As we have seen, parse trees can be transformed to derivations and vice versa, therefore
in the future I will apply functions defined for parse trees to derivations and vice versa.

7

Though it is to be said, that a sentence can possibly have multiple derivations (and
therefore multiple parse trees) which means that sentences can only be transformed to
sets of parse trees or derivations whereas the best one has to be found. This is called
parsing and will be treated later.

Parse trees or parts of them can also be abbreviated if we are just interested in a specific
branch of the tree. For that computer linguists use a roof under which the part of the
sentence generated by the branch is written. Such a tree can look like this:

S

VP

saw Mary

NP

NN

man

DT

a

8

3 Probabilistic context-free grammars

In probabilistic context-free grammars (Booth 1969; Booth and Thompson 1973) the rules
are rated by probabilities. The reason for this approach is the assumption that each
sentence is “generated” by its speaker or writer with a certain frequency. A sentence like
“Hello!” is obviously used a lot more frequently than the one you are just reading.

Using probabilistic context-free grammars, it is also possible to disambiguate ambiguous
sentences (Prescher 2005, 32-37). Our example grammar is not ambiguous, which means
that each sentence has exactly one parse tree. For such a small and finite grammar this
can be easily checked by looking at all parse trees. There are no two of them which have
the same yield1. This however is not common in natural language: just think about our
initial example, “I saw her duck.” It could have one of the following parse trees:

S

VP

VP

VB

duck

NP

PRP

her

VBD

saw

NP

PRP

I

S

VP

NN

duck

NP

PP$

her

VBP/VBD

saw

NP

PRP

I

The first one describes her action of ducking. In the second one, the two possible other
meanings are included. The version with VBP is the usage of the tool and the one with
VBD describes that she sees the bird.

Using probabilities we can decide, which analyze would be the better (meaning more fre-
quent) one. In Prescher’s tutorial (2005) some more complex examples for disambiguation
can be found.

1The sentence which consists of all the terminals read from left. yield is defined in Section 4.2.1.

9

3.1. Modelling probability

For using probabilistic context-free grammars, we will first need some basic definitions
for modelling probability.

3.1.1. Probability distributions

A probability distribution p on a set X is defined as:

p : X → R

p has to assign a value between 0 and 1 to each element of X and all the probabilities
have to sum up to 1:

p(x) ∈ [0, 1] for each x ∈ X∑
x∈X

p(x) = 1

3.1.2. Probability models

A probability distribution over a set X is an instance of a probability model. The set of
all probability distributions over a given set X is called the unrestricted probability model
M(X).

M(X) := {p : X → R | p is a probability distribution}

A non-empty subsetM⊂M(X) is called restricted probability model. It can be used for
integrating information we already know about our model, like dependencies between
the probabilities.

As an example we could take a loaded die. As the die should still look like a normal die
it is of course physically impossible for the probabilities of each side to get too low. So
we could assume that each number has to occur with a probability of at least 0.1. This
also results in a maximum probability of 0.5 on each side. So our model over the set
D = {1, . . . , 6} would be:

M = {p ∈M(D) | ∀d ∈ D : 0.1 ≤ p(d) ≤ 0.5}

3.1.3. Conditional probability distribution

Conditional probability distributions are defined quite similar to probability distributions.
Given two sets A and B, a probability distribution on B is assigned to each element

10

a ∈ A. For a given a and a given b ∈ B this could be written as (p(a))(b) but is mostly
shortened to p(b | a), which is read as “p of b given a”. p has the following properties:

p : A→M(B)

p(b | a) ∈ [0, 1]

∀a ∈ A :
∑
b∈B

p(b | a) = 1

The unrestricted probability model for this conditional probability distribution is written
asM(B | A).

3.2. Definition of probabilistic context-free grammars

A probabilistic context-free grammars (short: PCFG) is a 5-tuple consisting of the four
elements of a CFG and a conditional probability distribution over the rules:

G := (V, T , S0,R, p)

p is a conditional probability distribution over R. A rule R ∈ R is only applicable if the
leftmost variable A corresponds to the syntactical category of R, thus left(R) = A.

Therefore we define:

p : V →M(R)

p(R|A) :=
{

0, if left(R) 6= A
p ∈ [0, 1], if left(R) = A

As p(R|A) is only interesting for one A, namely left(R), we will write short for it:

p(R) := p(R|A)

3.2.1. Probability of a derivation

As we have already seen in 2.3, parse trees are equivalent to derivations. Logically the
probability of a derivation should be the same as the one of its parse tree. We have
defined derivations in a way that each rule of a derivation has to be applicable. This
means: Let d = R1 . . . Rn be a derivation. After the application of the first i rules
(0 < i < n), the leftmost variable is left(Ri+1).

So we can say:

p(d) =
n∏
i=1

p(Ri|left(Ri))

11

This definition fits to what we expect: if a rule with a low probability is applied, the
probability of the derivation gets smaller than if one with a high probability is applied.
Furthermore, the application of more rules (mostly yielding longer sentences) leads to a
smaller probability.

As a sentence produced by a grammar often has different derivations, we also want to
assign a probability to it. Let S0 be the starting symbol, w be a sentence and p be a
conditional probability distribution as described in 3.1.3.

p(w) := p(V ⇒∗ w) :=
∑

d with left(d)=S0,
right(d)=w

p(d)

Again this makes sense: If we look at our example, “I saw her duck”, one derivation
would only cover one of the three meanings. As we want to consider all the meanings, we
will have to sum up the probabilities.

3.2.2. An example

Recalling our example with the duck, we would now finally like to know which is the best
derivation. For this, we take the rules which can be read off from the three “duck-trees”
and assume that someone has given us probabilities2 for them, which are written behind
the sharp. Note that the probabilities of the rules for each syntactical category add up to
1.0. The rule “VBP → see” was added to make it clearer that “to saw” is less frequent
than “to see”.

S → NP VP # 1.0
NP → PRP # 0.7
NP → PP$ # 0.3
PRP → I # 0.8
PRP → her # 0.2
PP$ → her # 1.0
VP → VBD NP VP # 0.1
VP → VBP NP NN # 0.4

VP → VBD NP NN # 0.4
VP → VB # 0.1
VB → duck # 1.0
VBP → see # 0.9
VBP → saw # 0.1
VBD→ saw # 1.0
NN → duck # 1.0

As all the probabilities of the rules in the trees are multiplied and some parts of the trees
are equal, there is a constant part pc, which we will calculate first.

pc = p(S → NP VP) · p(NP → PRP) · p(NP → PP) = 0.56

2how to calculate them is described in Chapter 4

12

The probabilities of the three trees are:

p(she ducks) =pc · p(VP → VBD NP VP) · p(VBD → saw) · p(NP → PRP)
·p(PRP → her) · p(VP → VB) · p(VB → duck) = 7,84 · 10−4

p(tool) =pc · p(VP → VBP NP NN) · p(VBP → saw) · p(NP → PP$)
·p(PP$ → her) · p(NN → duck) = 6.7 · 10−3

p(see the bird) =pc · p(VP → VBD NP NN) · p(VBD → saw) · p(NP → PP$)
·p(PP$ → her) · p(NN → duck) = 6.7 · 10−2

So we can decide that the most likely parse tree is the one, where the person sees her
bird. We have found a way of disambiguating the sentence, but yet we cannot be sure
whether we are right, as the result depends on the data which was used for annotating
the rules with probabilities.

3.3. Corpora

For the annotation of the rules we cannot simply invent probabilities as it was done in
the example before, but we need to calculate them on the basis of sample data. Such
training data is called corpus. A corpus can be seen in three ways. It can be

1. a sequence of data types3, which for example can be sets of words, phrases or
sentences of a language or also rules of a context-free grammar.

2. a multiset of data types

3. a normalized multiset of data types

The first type could be the raw input for a training algorithm that counts the data types
which results in the second type. A multiset-corpus c on a set X of data types is defined
as follows:

c : X → R≥0

The size of such a corpus is defined as

|c| :=
∑
x∈X

c(x)

The corpus size is also called quality as a bigger corpus potentially delivers more in-
formation and having more statistical samples results in errors in the data to be less
severe.

Dividing each value c(x) by the corpus size, we get a normalized corpus. It corresponds
to the relative frequency distribution of the corpus, which is a probability distribution as
defined in 3.1.1.

3The set of data types which occur in a corpus is considered to be finite.

13

3.4. Parsing

Given a probabilistic context-free grammar, we do not only want to decide the word
problem, i.e. the question whether a sentence can be derived or not, but also to evaluate
the quality of a sentence or a sub-sentence and get its best parse tree. This is called
stochastic parsing. For us the selection of the best parse tree is not important, as we
want to calculate the weights or counts of the rules.

In the following two sections, the calculation of the inside- and outside weights of a
sentence will be presented along with procedural algorithms for the computation. Those
are taken from (Prescher 2002, 91-94, 139-144).

3.4.1. Inside parsing

The inside algorithm, based on the CYK algorithm (Kasami 1965; Younger 1967), calcu-
lates the probability of a sentence and of its sub-sentences starting with the probabilities
of its words and then increasing the size of the subsets iteratively.

However the algorithm suffers a big problem: It operates using a grammar in Chomsky
normal form (short: CNF) (Chomsky 1959). This means that the grammar only consists
of the following two types of rules (with A,B,C being variables and a being a terminal):

A→ BC

A→ a

Epsilon rules, chain rules and identical rules are not allowed. It is easy to imagine that
this does not reflect natural language too well and might yield analyzes which cannot
easily be converted back to the original grammar. Moreover, though each grammar can
be converted to the Chomsky normal form, this can result in an exponential gain of size.

The inside algorithm takes a PCFG G = (V, T , S0,R, p) and a sentence w = w1 . . . wn
as input and outputs a parse forest consisting of all parse trees of each subset of w and
their respective probabilities. The parse forests of a sentence w1 . . . wn are denoted as:

Finner(s, t,A) :=
{
x ∈ T (G)

∣∣∣∣∣ head(x) = A
yield(x) = ws . . . wt

}
whereas 1 ≤ s ≤ t ≤ n,A ∈ V. The inside forests are illustrated in Figure 3.1. The
probability of an inside parse forest is named as follows:

p(Finner(s, t,A)) := in(s, t,A)

The values of in(s, t,A) are called inside probabilities and can be calculated from the
bottom up. They are defined as:

in(s, t,A) :=

p(A→ ws) if s = t∑
A → BC

t−1∑
i=s

p(A → BC) · in(s, i,B) · in(i+ 1, t,C) else

14

S0

A

ws . . . wtw0 . . . ws−1 wt+1 . . . wn

S0

A

ws . . . wtw0 . . . ws−1 wt+1 . . . wn

Figure 3.1.: Top: Finner(s, t,A): all possible trees with the root A, generating the sub-
sentence ws . . . wt
Bottom: Fouter(s, t,A): all trees starting from S0, leaving out their subtrees
starting with A, which yield ws . . . wt

This definition benefits of the property of grammars in CNF to only have two different
types of rules.

Algorithm 3.1 is a slightly modified version of the one written by Prescher (2002, p.91).
It can easily be seen that its complexity is O(n3). The value m in line 7 determines,
which part of the word is to be covered by the B-part of the rule and which part by the
C-part.

3.4.2. Outside weights

The contrary to inside parse trees are outside parse trees. They are defined as follows:

Fouter(s, t,A) :=
{
x ∈ T (G)

∣∣∣∣∣ head(x) = S0

yield(x) = w1 . . . ws−1 A wt+1 . . . wn

}
with 1 ≤ s ≤ t ≤ n. The outside probabilities are named similar to the inside probabilities:

p(Fouter(s, t,A)) := out(s, t,A)

Calculating the outside probabilities is not as easy as it was the case with inside prob-
abilities. We need to know the inside probabilies first. Again, we have to differentiate
between two cases:

15

Algorithm 3.1 The calculation of the inside weights
Input: A PCFG in Chomsky normal form and a sentence w = w1 . . . wn
Output: The inside probabilities in[s, t,A] of all subsentences of the length 1 ≤ t−s ≤ n

of all syntactic categories A.
1: in[., ., .] := 0
2: for all s := 1, . . . , n do
3: for all A→ ws do
4: in[s, s,A] := p(A→ ws)
5: for all l := 2, . . . , n do . Lenght of the subsentence
6: for all s := 1, . . . , n+ 1− l do . Start of the subsentence
7: for all m := 1, . . . , l − 1 do . Middle of the subsentence
8: for all A → BC do
9: in[s, s+ l,A] := in[s, s+ l,A]+

10: p(A → BC) · in[s, s+m,B] · in[s+m+ 1, s+ l,C]

if s = 1, t = n:

out(s, t,A) :=
{

1 if A=S
0 else

if 1 ≤ s ≤ t ≤ n and 1 < s or t < n

out(s, t,A) :=

∑
B,C∈V

(
s−1∑
r=1

out(r, t,C) · p(C → B A) · in(r, s− 1,B)

+
n∑

r=t+1
out(s, r,C) · p(C → A B) · in(t+ 1, r,B)

)

The two sums inside the brackets stand for the two possible forms of the rule R which
produces A: A can be the first or the second symbol generated by R. Now taking only
the outside weight of the parent symbol of A would be wrong, as we keep the branch,
which produces the sibling of A out. This is illustrated in Figure 3.2.

Algorithm 3.2 calculates the outside weights with a complexity of O(n3) (Prescher 2002).

16

S0

C

B

wt+1 . . . wr

A

ws . . . wt

S0

C

A

ws . . . wt

B

wr . . . ws−1

Figure 3.2.: The two possibilities how the outside tree could look.

Algorithm 3.2 The calculation of the outside weights
Input: A PCFG in Chomsky normal form and a sentence w = w1 . . . wn
Output: The outside probabilities out[s, t,A] with 1 ≤ s ≤ t ≤ A.
1: out[., ., .] := 0
2: out[1, n, S0] = 1
3: for all l := n− 1, . . . , 1 do
4: for all s := 1, . . . , n− l do
5: for all m := 0, . . . , l − 1 do
6: for all A → BC do
7: out[s, s+m,B] := out[s, s+m,B] + p(A → BC) · out[s, s+ l,A] · in[s+
m+ 1, s+ l,C]

8: out[s+m+1, s+ l,C] := out[s+m+1, s+ l,C]+p(A → BC) ·out[s, s+
l,A] · in[s, s+m,B]

17

4 Training with the EM algorithm

4.1. Maximum Likelihood Estimation

For measuring the quality of a probability distribution over a corpus, we can use the
corpus likelihood, which should be as big as possible. For a corpus c, it is defined as

Lp(c) =
∏
x∈X

p(x)c(x)

Maximum likelihood estimation aims at finding the probability distribution mle(f,M) ∈
M ⊂M(X) which maximizes the corpus likelihood.

mle(c,M) = argmaxp∈MLp(c)

Dividing the frequencies by the size of a corpus f results in a probability distribution as
defined in 3.1.1. As it is the direct representation of empirical data it is called empirical
probability distribution:

p : X → [0, 1] where p(x) = f(x)
|f |

Now interestingly mle(c,M) = p. This means, that the empirical probability distribution
represents the corpus best. This is proven by Prescher (2005, Chapter 2.4).

This can also be extended to conditional probability models. Given a set X , a set Y, a
corpus c′ : X × Y → R≥0 and a probability modelM⊂M(Y |X)

The maximum likelihood estimate now is:

mle(c′,M) := argmaxp∈MLp(c′)

where
Lp(c′) :=

∏
(x,y)∈X×Y

p(y | x)c(x,y)

18

The empirical probability distribution on c′ is calculated as follows:

p′ : X →M(Y) where p′(y | x) = c′(x, y)∑
y′∈Y c

′(x, y′)

p′ again is the maximum likelihood estimate on the corpus:

mle(c′,M) := p′

4.2. The EM algorithm

The expectation-maximization algorithm (shortened as EM algorithm) (Dempster, Laird,
and Rubin 1977; Prescher 2005) aims at finding the “best fitting” probability distribution
of a probability model. This means it tries to maximize the corpus likelihood defined in the
formula 4.1. Basically this is done in two (in the first instance) infinitely alternating steps.
Thereby the expectation step calculates the complete data corpus and the maximization
step computes the maximum likelihood estimate of the model on the complete data
corpus. The algorithm has to be terminated “manually” after a fixed amount of steps
or, better, after the results do not significally change anymore. As we will see later, the
algorithm does not find the global but only a local maximum, which depends on what
parameters are selected as an input.

In the following sections we will first define the general form of the algorithm and then
instantiate it.

4.2.1. Prerequisites

The EM algorithm takes several inputs. First of all, it needs a corpus h : X → R≥0. The
set X depends on the instance and is called the set of incomplete data types.

We also need a set Y of complete data types, to which the incomplete data types are
related by a function called yield1.

yield : Y → X

yield has to be surjective, which means that we can also define a function yield−1:

yield−1(x) := {y ∈ Y | yield(y) = x}

Next, we will need a probability modelM⊆M(Y). It is a restricted probability model
as we usually already know something about the structures we want to train using the

1Defining an instance the selection of this name will become clearer: in many cases it describes the
yield, i.e. a sentence, of a tree.

19

algorithm. Therefore we need three different sets, A, B and C. A and B depend on
which instance of the algorithm we have and C ⊆ A×B.

So how do these sets relate to the data types? For this, we need a function π : Y →
(A × B)∗. In the instances of the algorithm, π will strip down complete data types
to chunks in C. The probabilities of those chunks later are the wanted result of the
algorithm. The conditional probability distribution over A and B is a p ∈ M(A | B).
We define:

pπ : Y → R≥0

pπ(y) :=
n∏
i=1

p(ai | bi)

where π(y) = (a1 | b1) . . . (an | bn)

The last equation means that π is applied to y and the product function multiplies the
probabilities of each element of the resulting sequence.

Now we first define the restricted modelMC(A | B) ⊆M(A | B):

MC(A | B) := {p ∈M(A | B) | ∀(a, b) ∈ (A×B) \ C : p(a | b) = 0}

For this model we can now defineMC(A | B)π ⊆M(Y):

MC(A | B)π := {pπ | p ∈M}

The last prerequisite for the algorithm is an initial probability distribution p0 ∈ M,
which, as described, in fact is a distribution in MC(A | B), just mapped by π to a
distribution inM(Y). It has to be kept in mind, that each of the following distributions
pi will be such a distribution.

4.2.2. The algorithm

Now the algorithm computes iteratively probability distributions pi in two alternating
steps: The expectation step (E-step) and the maximization step (M-step). The E-step
computes the complete-data corpus hq and the M-step computes its maximum likelihood
estimate, which is the new probability distribution pi+1. The output of the algorithm is
the series of pi.

The probability distribution pi of the current step will be called q. Now the complete-data
corpus hq : Y → R≥0 is calculated as follows:

hq(y) := h(yield(y)) · q(y)∑
y′ with yield(y)=yield(y′) q(y′)

Now, for calculating the probability distribution pi+1 we first need to extract the corpus
h′ : A×B → R≥0:

h′(a, b) :=
∑
y∈Y

hq(y) ·#(a,b)(π(y))

20

Here #(a,b) returns the count of the pairs (a, b) in π(y). Now, we need to calculate the
maximum likelihood estimate on hq, which again is induced by a maximum likelihood
estimate on h′(a, b).

pi := argmaxp∈MLp(hq)

Algorithm 4.1 The EM algorithm
Input: corpus h : X → R on incomplete data types

set of complete data types Y
probability modelM =MC(A | B)π ⊆M(Y)
initial distribution p0 ∈M

Output: sequence p0, p1, . . . of pi ∈M
1: for all i = 1, 2, . . . do
2: q := pi−1
3: E-step: compute complete-data corpus hq : Y → R
4:

hq(y) = h(yield(y)) · q(y)∑
y′∈yield−1(yield(y)) q(y′)

5: M-Step: compute maximum likelihood estimate ofM on hq
6:

pi = argmaxp∈MLp(hq)

7: output pi

4.2.3. Training of PCFG on sentence corpora as an instance of the EM
algorithm

Prescher (2005) describes a form of training PCFG on a sentence corpus which is
explained here. We will first instantiate the inputs (the grammar which is being trained
is G = (V, T , S0,R)):

• X = LG
• Y = DG

• C = R with A = (V ∪ T)∗ (right sides of the rules) and B = V (left sides)

• yield(y) returns the sentence x ∈ X which is the result of the conjunction of all
leaf nodes of y, read from left

• π only formats the rules of a derivation d = R0 . . . Rn:

π(d) = (right(R0), left(R0)), . . . , (right(Rn), left(Rn))

21

• the probability distributions pπ ∈MC(A|B)π are therefore defined as:

pπ(R1 . . . Rn) =
n∏
i=1

p(right(Ri) | left(Ri))

Algorithm 4.2 Training PCFG using the EM algorithm
Input: G, p0 as already defined
Output: sequence pi ∈MC(A|B)π
1: for all i = 1, 2, . . . do
2: q := pi−1
3: E-step: compute complete-data corpus hq : DG → R≥0
4:

hq(d) = h(right(d)) · q(d)∑
d′ with right(d′)=right(d) q(d′)

5: M-Step: compute maximum likelihood estimate ofM on hq
6:

h′(R) =
∑
d∈DG

hq(d) ·#(right(R),left(R))(π(d))

7:

pi(R) = h′(R)∑
R′ with left(R′)=left(R) h

′(R′)

8: output pi

Taking a closer look at the algorithm, we can figure out a major problem: The whole
process is based on all derivations of the grammar, which is a potentially infinite amount.
We would like to reduce this list to just the derivations we really need, i.e. the derivations
of our parse trees. There are two possibilies for that:

1. manually assigning only one parse tree to each sentence (meaning that a tree corpus
is used)

2. calculating all the parse trees for each sentence

In the following sections those two methods will be handled more explicitely.

4.3. Supervised training

It seems to be a good idea to choose parse trees as training data, which allows us to skip
the difficult step of parsing the sentences. As the sentences are labeled by their parse
trees, training a grammar on a tree corpus is a form of supervised training. As we will
see, this makes the training process very simple. However preparing a tree corpus is very
costly, as the labeling has to be done manually, which is fault-prone and time consuming.

22

The procedural algorithm 4.3 for supervised training only consists of two steps: Counting
all the rules (the counts are named C[Ri] for rules Ri and C[Ai] for syntactical categories
Ai) and then calculating the respective conditional relative frequencies.

Algorithm 4.3 Supervised training of a PCFG
Input: A CFG G = (V, T , S0,R)

A corpus of trees/derivations h : DG → R≥0
Output: A PCFG G′

1: for all R in R do
2: C[R] := 0
3: C[A] := 0
4: for all d in h do
5: for all R in readoff(d) do
6: C[R] := C[R] + h(R)
7: C[left(R)] := C[left(R)] + h(d)
8: for all R in R do
9: p(R) := C[R]

C[left(R)

10: return G′ = (V, T , S0,R, p)

In fact, the algorithm is very similar to the EM algorithm: Already having a tree corpus
hq over DG, we don’t need a corpus h over L(G) anymore, as it is only used for calculating
hq. So the algorithm consists only of an M step, which is kept unchanged. The formula

h′(R) =
∑
d∈DG

hq(d) ·#(right(R),left(R))(π(d))

calculates the counts of the rules and

pi(R) = h′(R)∑
R′ with left(R′)=left(R) h

′(R′)

calculates the according probabilities, just as defined in the procedural form. The algo-
rithm also can be terminated after one iteration as hq is fixed and especially independent
of the new probability distribution p1.

4.4. Unsupervised training with the inside-outside-algorithm

Unsupervised training, in contrary to supervised training, uses an unlabeled corpus. Thus
it works a lot like Algorithm 4.2, except that it uses inside-outside-parsing for calculating
the probabilities. The algorithm therefore is called inside-outside algorithm. It is based
on the forward-backward algorithm by Baum (1972) and Baker (1979) respectively and
was was generalized to allow training corpora with more than one sentence by Lari and
Young (1990).

23

4.4.1. Counts

An important part of the algorithm will be the accumulation of the results of the inside-
outside-parsing for each sentence. The values of Cw are the rule counts for each sentence
and the counts of their syntactic categories.

p(w) := in(1, n, S0)

Cw(A → a) := 1
p(w)

∑
1≤t≤n,
wt=a

in(t, t,A) · out(t, t,A)

Cw(A) := 1
p(w)

n∑
s=1

n∑
t=s

in(s, t,A) · out(s, t,A)

Cw(A → BC) := 1
p(w)

n−1∑
s=1

n∑
t=s+1

t−1∑
r=s

p(A → BC)

· in(s, r,B) · in(r + 1, t,C) · out(s, t,A)

For each rule R the new probability is defined as follows using the re-estimation rules in
the form described by Lari and Young (1990):

p(R) :=
∑yN
w=y1 Cw(R)∑yN

w=y1 Cw(left(R))

Prescher (2002, 228-234) proved that p(R) in fact is a probability distribution. Therefore
for all A in V:

1 =
∑

R with left(R)=A
p(R)

=
∑
R with left(R)=A

∑yN
w=y1 Cw(R)∑yN

w=y1 Cw(A)

=
∑
R with left(R)=A

∑yN
w=y1 Cw(R)∑

R with left(R)=A
∑yN
w=y1 Cw(R) = 1

Thus:
yN∑
w=y1

Cw(A) =
∑

R with left(R)=A

yN∑
w=y1

Cw(R)

This means that for getting the counts for the grammatical categories, we can simply
sum up the rule counts which makes the algorithm more efficient than the one proposed
by Prescher or Lari and Young.

4.4.2. The algorithm

Algorithm 4.4 is, as already mentioned, an instance of the EM-algorithm. This is proven
by Prescher (2001).

24

Again this algorithm is written in procedural form, which makes it optically differ a
lot from Algorithm 4.2. The main difference is that in the E-Step we do not calculate
the complete data corpus hq but the counts of the rules in it, which in fact is the rule
corpus h′. We also count the number of rules for each syntactic category. This has three
advantages:

1. We do not need to consider every possible derivation of DG, which would, using a
realistic grammar, be at least very big, if not infinite.

2. Computing h′ we do not have to look at each derivation again for each single rule.

3. Already having the counts for each syntactic category, we do not need to calculate
them again in the M-Step.

In the M-Step we simply calculate the relative frequencies of the rules in C under the
condition of their respective syntactic categories.

Algorithm 4.4 Training of a PCFG with the inside-outside algorithm
Input: A CFG G = (V, T , S0,R)

sentence corpus h with the size |h| consisting of sentences h1, . . . , hn
initial probability distribution p0

Output: series of probability distributions p1 . . . pn
1: for all i := 1, 2, . . . do
2: for all R ∈ R do
3: C[R] := 0
4: q := pi
5: E-Step:
6: for all j := 1, . . . , |h| do
7: w := cj
8: compute in(., ., .), out(., ., .)
9: for all R ∈ R do

10: compute Cw(R)
11: C[R] = C[R] + Cw(R)
12: C[left(R)] = C[left(R)] + Cw(R)
13: M-Step:
14: for all R ∈ R do
15: pi(R) := C[R]

C[left(R)]

16: print pi

4.4.3. Termination of the algorithm

As the inside-outside-algorithm does not have a termination criteria itself, this has to be
considered in the implementation. There are two obvious possibilities for that:

25

1. Terminating after the results do not significantly change. Though this sounds
reasonable, it comes with some problems: Not only has each probability distribution
(or the corpus likelihood) to be compared with its predecessor, there also is the
chance that the probabilities just are lying in a plateau and will change significantly
after some steps.2 It is also rather unpretendable, how long the algorithm would
run.

2. Terminating after a fixed amount of steps. This amount has to be determined
experimentally, but it keeps us from checking a complicated termination condition
in each step.

4.4.4. Convergence characteristics

We hope for the algorithm to improve the resulting probability distribution with each
iteration, so that we approach a local maximum in the corpus likelihood. This means
that we want:

Lpi−1(h) ≤ Lpi(h)

According to Prescher (2002) this is fulfilled, meaning that the algorithm improves the
corpus likelihood.

4.4.5. Usage of the algorithm in practice

Using an implementation of the algorithm, like the one described in Chapter 5, we
could simple use our whole corpus as training data and without further thinking let
the algorithm run as long as possible. However as Prescher describes in his dissertation
(Prescher 2002, 148-154), this is not the best approach.

First of all it is necessary to split the corpus into training data and test data. Often
the division is 90% for training and 10% for evaluation. Prescher even goes further and
splits off a development test corpus and a test corpus for a final evaluation. The two test
corpora have to be manually annotated in order to be used.

Afterwards the training process is run multiple times, whereas three free parameters have
to be varied: The size of the corpus, the number of iterations (by using the probability
distribution generated in the intermediate steps of the EM algorithm) and the initial
probability distribution. Lari and Young (1990) in contrary simply use the last probability
distribution and do not stop the algorithm at a fixed number of iterations but after the
difference between two consecutive distributions gets below a bound. They also only use
a fixed initial grammar.

As the algorithm only converges to a local maximum, it is very likely that varying said
parameters (especially the initial distribution) could lead to a better result. But also the

2In experiments of Lari and Young this actually is the case. (Lari and Young 1990, 47, Figure 5)

26

other parameters are important: Let us say, we were lucky and the algorithm even found
the global maximum for one corpus. This does not necessarily have to be the best value
for a different corpus. If this result has a rule with a probability close to zero but an
entry of another corpus needs said rule, the (bigger) probability some steps before could
result in a bigger likelihood for this other corpus.

So in the end of the training process we get a lot of different probability distributions.
Those have to be evaluated using the development test data, whereas the best distribution
is selected and again evaluated using the final test data.

For the evaluation itself there exist several approaches. A simple approach is just to check
whether two parse trees are completely identical. As this alone is a very strong condition
another method there also exist other possibilies for evaluation (Prescher 2002, 74f.). For
example, if in the reference tree somewhere a variable V yields the words w3 to w6, in the
parse which is to be evaluated, there are points given for whether the same sub-sentence
is also produced by a single variable and also if the variable is the same. One could also
give points for the correct tagging of the words and thereby to evaluate the severity of
errors: still mistakenly tagging a noun as a verb is more severe than mixing up plural
and singular (like with “sheep”, where singular and plural are equal).

27

5 Implementation for Vanda

Vanda1 is a statistical machine translation developed at the Chair Foundations of Program-
ming at the Dresden University of Technology. Vanda studio is an integrated development
environment (IDE) which joins different applications for machine translation to allow
doing small-scale experiments with them. The application can come as binary modules
written in any language, but more importantly can imported from the accompanying
haskell library Vanda Toolkit, for which the following implementation of the two training
methods is written.

5.1. Data structures

The PCFG data structure consists of three parts storing the rules of the underlying
context-free grammar, the weights or probabilities of the rules and a mapping of variables
to integer values.

For fast lookups the latter is a Data.Vector. Its first entry is treated as the starting
symbol of the grammar. The rules are stored in a vector, which contains a vector for each
syntactic category. Those vectors again are ordered just as the mapping vector. Parallely
to the rules, their respective probabilities are stored in a vector of exactly the same form.

The rules are Hyperedges2, which are implemented in Vanda.Hypergraph. Each of
the Hyperedges has a variable “to”, which represents the left hand side of the rule. The
inside-outside algorithm expects the grammar to be in Chomsky normal form. Therefore
the edges can be of the type Nullary, with a terminal as label, or of the type Binary,
without label and the two variables on the right hand side of the rule are stored in from1
and from2. The values of “ident” signify, at which position of the vectors a rule is located,
so that the weights of a rule can be easily found. The two other egde types, Unary and
Hyperedge are used for grammars which are not in CNF and which can be trained
with the treebank algorithm.

An example for the data structure PCFG can be found in Figure 5.1.

1http://www.inf.tu-dresden.de/index.php?node_id=2550&ln=en
2What a hypergraph is, does not matter here, as only the edges are used, because they come with some
practical access functions.

28

ids
1 A

0 S

weight

1

2 0.5 p(A → a)

1 0.3 p(A → AA)

0 0.2 p(A → SS)

0

2 0.6 p(S → s)

1 0.2 p(S → SA)

0 0.2 p(S → SS)

edge

1

2 Nullary 1 ’a’ (1, 1)
A → a

1 Binary 1 1 1 ’ ’ (1, 0)
A → AA

0 Binary 1 0 0 ’ ’ (1, 0)
A → SS

0

2 Nullary 0 ’s’ (0, 1)
S → s

1 Binary 0 0 1 ’ ’ (0, 2)
S → SA

0 Binary 0 0 0 ’ ’ (0, 0)
S → SS

Nullary to label ident

Unary to from1 label ident

Binary to from1 from2 label ident

Hyperedge to _from label ident

Figure 5.1.: The data structure for the example PCFG (in CNF, using the same CFG as
the grammar used for testing in Section 5.5) in Vanda including the data
constructors for the rules (“Hyperedges”).

29

5.2. Maximum likelihood estimate

The function for the calculation of the maximum likelihood estimate of a given corpus
is called normalize. It is very simple as the division of the rules into their syntactic
categories makes counting and dividing them by the sum very easy. The calculation
works for grammars no matter whether they are in Chomsky normal form or not because
normalize only takes a weights-vector as input and returns a new one.

5.3. Supervised training

Supervised training besically is just a call of the function normalize with just the
vector of weights as input. As it contains the probabilities of the rules ordered by their
syntactical category, no knowledge of the underlying grammar is needed.

For some easier handling there also exists a set of function for parsing a tree bank from a
text file. First of all there are two parsers for the conversion of a textfile (with one tree
per line) to a list of trees. parseTree1 parses trees in the format described in this work
and parseTree2 parses trees which are notated like this:

(S (NP (DT This)) (VP (VBZ is) (NP (DT another) (NN notation))) (. .))

The same tree in the notation used in this work would be:

S(NP(DT(This)) VP(VBZ(is) NP(DT(another) NN(notation))) .(.))

ruleMap takes such a list of trees and splits it to a hashmap which contains triples of
the following form:

(left(R), [var], [Either var term])

The second value is the sequence of all variables of right(R) and the third one represents
the whole right(R) using the Either data type, where the items of the type Right are
variables and the ones of the type Left are terminals. The values of the map are the
counts of the rules.

Finally, ruleMapToPCFG takes such a hashmap and produces a grammar out of it.

5.4. The inside-outside algorithm

5.4.1. Inside and outside weights

The central part of the inside-outside algorithm is the calculation of the inside and outside
weights. The respective functions are called inside and outside.

30

inside takes a sentence (stored in a vector of words) and a PCFG as input. It returns
a Data.Hashmap, which looks very similar to the formal definition of the inside function:
The keys are triples of integers (s, t, a) where s and t are the same as in the formal
definition (minus one) and a is the id of a variable taken from ids of the grammar.

outside additionally takes the result of an application of inside and returns a map
similar to the one which is returned by inside.

The calculation of the weights is rather similar to the procedural algorithms 3.1 and 3.2.
The two big differences are that first for easier reading in the pseudocode the numbering
of the words starts with 1 and in the implementation with 0 and second the loops and
adding up of the inside weights are summarized in list comprehensions.

5.4.2. Calculation of the counts

The calculation of the counts C(R), or rather the probabilities induced by the counts, is
done by the functions count and counts.

count calculates Cw(R) for a sentence w. It takes a sentence (i.e. a vector of words)
and a grammar as input and outputs Cw(R) in the form of a weight vector. count calls
inside and outside and calculates Cw(R) as defined.

counts takes a corpus (i.e. a vector of senctences) and a grammar as input and outputs
the new grammar with the normalized new weights. It calls count on each sentence and
adds up all the values of the vectors and then calls normalize.

The function counts therefore in fact calculates a complete EM-step, where the weight
vector of the input grammar is pi−1.

5.5. Some tests

What makes PCFG interesting is their ability to disambiguate. For a test of this, very
small data is used. The rules of our grammar look like this:

(1) S → S S (2) S → S A (3) S → s
(4) A → S S (5) A → A A (6) A → a

First of all, we take a closer look at the rules in order to get an idea how well they might
be rated by the inside-outside algorithm. Rule (2) is very important, as it is the only
one which leads us from S to A. We can also see, that we have to generate at least one s,
which means that rule (3) also is important. If we have at least one a in our corpus, rule
(6) will get a probability greater than 0. What about rule (5)? If we only have words
with longer sequences of s than of a, it could be replaced using rule (2). If there are
longer sequences of a, it will get more important.

31

In both cases one of the rules (1) or (4) should get a very low probability and the other
one a quite high probability, so that we can sort the “bad” one out. But if we have the
word “ss” in our corpus rule (1) should definitely get a higher probability.

What are the test results? First we will try the following corpus and use evenly distributed
initial probabilitiies:

• s s s s

• s s s s s s s s

We get the following probabilities:

(1) 0.454 (2) 8.510e-7 (3) 0.545
(4) 1.0 (5) 2.334e-34 (6) 0.0

Rule (6) has a probability of 0, as no a occurs in the corpus. The really important rules,
(1) and (3) get very similar probabilities, whereas the one for (3) is slightly higher. This
makes the grammar consistent (Stüber 2012).

Rule (2) has a probability close to zero and rule (4) has a probability of 1, which means
that in the very unlikely case of generating an A, it will surely be replace by two S again.

Another corpus could be:

• s a s a s a s a s a

• s s s a a a a a a a

• s s s s s s s s s a

Now we get the following result:

(1) 0.350 (2) 0.224 (3) 0.426
(4) 2.245e-11 (5) 0.237 (6) 0.763

It seems to be relatively unlikely to switch the syntactical category: rule (2) has no high
probability and the probability of rule (4) is close to zero. So it clearly looks like rule (1)
is the “better” one for generating s.

What happens if we take a different initial probability distribution? We will use this
distribution, which rates rule (1) worse and rule (4) better from the beginning:

(1) 0.2 (2) 0.5 (3) 0.3
(4) 0.5 (5) 0.2 (6) 0.3

This gives us another result as before, which shows us, that the initial probability
distribution is an important parameter for the training.

(1) 0.0 (2) 0.537 (3) 0.463
(4) 0.345 (5) 1.510e-2 (6) 0.640

32

The initially better rating of rule (4) and the worse rating of rule (1) caused the
probabilities of the rules to change significantly. And what happens, if we additionally
insert the sentence “s s” into our corpus? As expected, regardless of how bad the rule
(1) is rated initially, it always gets a similar probability as with the corpus without “s s”
using the even distribution.

33

6 What comes next

In the next sections I will explain some of my thoughts about improving the training
algorithms which could be a topic for further research. Those are only unproven ideas as
finding proves for them would have exceeded the scope of this thesis. Some approaches
found in other papers are also included.

6.1. Resolving the drawbacks of the Chomsky normal form

An important topic of further research is how to avoid or to deal with the necessity of
using a grammar in Chomsky normal form.

6.1.1. Transforming parses back to the original grammar

An option could be to find a way to transform a parse tree back to one of the original
grammar. The transformation to Chomsky normal form consists of five steps:

1. the treatment of the exception S0 → ε

2. the introduction of rules Va → a for each terminal a and replacement of all terminals
in rules R where right(R) contains at least one variable

3. the introduction of rules VXY → XY for each pair of variables which occurs in
rules R where right(R) has more than two variables and the replacement of the
pairs

4. the removal of ε-rules

5. the removal of chain rules

If we do not allow ε-rules in the initial grammar, we can skip steps 1 and 4 and do not
need to transform them back. This actually is no big problem, as those rules do not really
represent natural language. Take the two rules A→ BEC and E→ ε as an example. We
can also keep the first one and replace the second one by a modification of the first one
where the E-symbol is missing: A→ BC.

34

S

CDE

E

e

D

d

VAaB

B

b

Aa

a

−→ S

E

e

D

d

B

b

Aa

a

−→ S

E

e

D

d

B

b

a

Figure 6.1.: The flattening of rules in the transformation from a parse tree in CNF back
to the initial grammar

The rules introduced by steps 2 and 3 can also be flattened again, as the variables are
labeled by their child symbols. This is illustrated in Figure 6.1.

The bigger problem is the elimination of chain rules in step 5. As the rules are removed,
for transfering the parse tree back to the initial grammar we need to introduce rules again.
Also the elimination itself could maybe result in a shift of the “meaning” of the original
grammar, making it possible to train the probabilities wrong. Consider for example the
following rules:

(1) : A→ B
(2) : A→ AA
(3) : B→ AA

During the transformation, rule (1) will get deleted and a new rule will be introduced. This
rule however is identical with rule (2) and cannot be distinguished using the definitions
given in this thesis. Therefore we cannot decide whether the original chain rule (1)
followed by rule (3) or only rule (2) has to be used when the parse tree is transformed
back.

So technically, if we have a grammar without chain rules, we can transform it to Chomsky
normal form and back. But it is yet to be proven, that there are no significant changes
in the probabilities doing so.

6.1.2. Allowing a more general grammar using a different parsing algorithm

The inside and outside weights could be redefined to also allow longer rules, rules with
mixed terminals and variables and chain rules. An approach to do this is the CYK+
algorithm by Chappelier and Rajman (1998). It allows all rules of CFG except mixed
rules. This restriction is called nplCFG (non-partially lexicalized CFG) by the authors.

nplCFG represent the grammar behind the Penn Treebank well as each word is part-of-
speech-tagged, meaning that mixed rules do not occur. The algorithm can even deal

35

with unknown words. They are relatively likely to occur in a corpus and would otherwise
cause the sentence with the word to be “lost”.

However the authors only mention the calculation of the inside weights. So using their
calculation, the outside weights have to be redefined, too.

6.2. A mixed approach between supervised and unsupervised
training

Zhou and Lua (1998) have found an interesting approach for training probabilistic context-
free grammars. What if we already have a tree corpus, which is however too small to
produce a well trained grammar? They use a relatively simple idea for that: first they
calculate the initial probabilities using the tree corpus and use those training results as
input for the unsupervised training, where in each step again the probabilities of the tree
corpus are considered.

This works as some sort of a guideline for the unsupervised training. Based on experiments
the writers of the paper conclude that this approach leads to a significant improvement
of the training results.

36

References

Baker, J. K. (1979). Trainable grammars for speech recognition. In D. H. Klatt and
J. J. Wolf (Eds.), Speech Communication Papers for the 97th Meeting of the
Acoustical Society of America, pp. 547–550.

Baum, L. E. (1972). An inequality and associated maximization technique in statistical
estimation for probabilistic functions of markov processes. Inequalities 3, 1–8.

Booth, T. and R. Thompson (1973). Applying probability measures to abstract
languages. IEEE Transactions on Computers C-22 (5), 442–450.

Booth, T. L. (1969). Probabilistic representation of formal languages. In Proceedings
of the 10th Annual Symposium on Switching and Automata Theory (swat 1969),
SWAT ’69, Washington, DC, USA, pp. 74–81. IEEE Computer Society.

Chappelier, J.-C. and M. Rajman (1998). A practical bottom-up algorithm for on-line
parsing with stochastic context-free grammars.

Chomsky, N. (1959). On certain formal properties of grammars. Information and
Control 2 (2), 137 – 167.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society,
Series B 39 (1), 1–38.

Francis, W. N. (1964). A standard sample of present-day English for use with digital
computers. Cooperative research project. Brown University.

Kasami, T. (1965). An efficient recognition and syntax-analysis algorithm for
context-free languages. Technical report, Air Force Cambridge Research Lab,
Bedford, MA.

Lari, K. and S. Young (1990). The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech & Language 4, 35–56.

Marcus, M., B. Santorini, and M. Marcinkiewicz (1993). Building a large annotated
corpus of english: The penn treebank. Computational Linguistics 19 (2), 313–330.

Prescher, D. (2001). Inside-outside estimation meets dynamic em. In Proceedings of
the 7th International Workshop on Parsing Technologies (IWPT-01), October
17-19. Beijing, China, pp. 241–244.

Prescher, D. (2002). EM-basierte maschinelle Lernverfahren für natürliche Sprachen.
Phd-thesis, Universität Stuttgart, Institut für Maschinelle Sprachverarbeitung
(IMS), Stuttgart.

Prescher, D. (2005). A tutorial on the expectation-maximization algorithm including

37

maximum-likelihood estimation and em training of probabilistic context-free
grammars. Technical report, Institute for Logic, Language and Computation,
University of Amsterdam.

Stüber, T. (2012). Consistency of probabilistic context-free grammars. Technical
report, Faculty of Computer Science, Technische Universität Dresden.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3.
Information and Control 10 (2), 189 – 208.

Zhou, G. and K. Lua (1998). Training of probabilistic context-free grammar. Technical
report, Dept. of Computer Science, National University of Singapore.

38

A Tags of the Penn Treebank

In this work, tags for syntactical categories and single words (latter also referenced to
as part-of-speech, a terminology which was first introduced by Francis (1964)). A very
common set of such tags is the one used by the Penn Treebank Project1, a corpus of
parse trees, which is further described by Marcus, Santorini, and Marcinkiewicz (1993).

The following list of tags is an excerpt of the whole list in the article of said authors:

S Simple declarative clause
NP Noun phrase
VP Verb phrase
DT Determiner
NN Noun, singular or mass
NNP Proper noun, singular
PRP Personal pronoun
PP$ Possessive pronoun
VB Verb, base form
VBD Verb, past tense
VBP Verb, non-3rd ps. sing. present

1http://www.cis.upenn.edu/~treebank/

39

