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Hintergrund: Ein aktueller Trend in den Forschungsgebieten des Natural Language Processing
(NLP) und der Machine Translation (MT) ist der zunehmende Bezug auf die syntaktische, d.h.
grammatikalische, Struktur der zu verarbeitenden Satze, welche in Form eines Parsebaums des Sat-
zes vorliegt [12, 16]. Als formale Modelle fiir die syntaxbasierte NLP dienen u.a. reguldare Baumgram-
matiken (RTG) [8, 13] und verwandte Formalismen, fiir die Ubersetzung werden diese oft paarweise
synchronisiert, um die entsprechenden Eingabe- und Ausgabebaume parallel abzuleiten [3].

Die Tatsache, dass bei regularen Baumgrammatiken nur in der Front der Satzformen Nichttermi-
nale auftauchen und substituiert werden konnen, stellt allerdings eine Einschrankung in Bezug auf
die Modellgiite dar: vom linguistischen Standpunkt her bedarf es der Mdglichkeit, Nichtterminale
auch innerhalb eines Baumes zu verwenden und im Zuge der Anwendung einer Regel durch einen
Baumkontext zu ersetzen [4, 15]. Dieser Vorgang wird als Adjunktion oder Substitution zweiter Ord-
nung bezeichnet. Er zeichnet den Formalismus der kontextfreien Baumgrammatiken (CFTG) [5, 6]
aus, sowie den der Tree Adjoining Grammars (TAG) [9]. Letztere sind in der maschinellen Verar-
beitung natirlicher Sprache weiter verbreitet, stellen jedoch lediglich eine Einschriankung von CFTG
dar [10]. Sowohl von TAG als auch von CFTG existieren synchrone Varianten zur syntaxbasierten
maschinellen Ubersetzung (STAG bzw. SCFTG) [2, 14].

Besonders wichtig fiir das Ubersetzen mittels synchroner Grammatikformalismen ist deren Ab-
geschlossenheit unter dem Input Product [vgl. 11] mit reguldren Baumsprachen. Fiir STAG wird
ein solches Abgeschlossenheitsresultat in [2] mit Verweis auf Theorem 7.4 aus [7] bewiesen, dessen
Beweis wiederum auf Lemma 6.1 aus [6] beruht.

Sei ¥ ein Rangalphabet. Mittels des von ¥ abgeleiteten Alphabets D(%) konnen Substitutions-
vorgange zweiter Ordnung in einem Baum iiber D(X) explizit festgehalten werden. Der Homomor-
phismus YIELD: Tp(xy — Ty fuhrt diese expliziten Substitutionen aus und liefert den entstehenden
Baum iiber X als Ergebnis. Im erwahnten Lemma 6.1 wird die Abgeschlossenheit der regularen
Baumsprachen unter Riickwartsanwendung von YIELD bewiesen. Konkret bedeutet das fiir eine re-
gulare Baumgrammatik G iiber ¥~ die Existenz einer weiteren RTG Gp, die genau die Baume iiber
D(X) erzeugt, welche unter Auswertung der expliziten Substitution durch YIELD in L(G) liegen.



Aufgabe: Da der Beweis des Lemmas in [6] auf der algebraischen Definition der Erkennbarkeit
beruht, ist er konzis und elegant. Allerdings bedarf es fiir die Implementierung in einem NLP-System
einer expliziten Konstruktion von Gp, welche nicht unmittelbar aus diesem Beweis hervorgeht. Auf-
gabe von Frau Herrmann im Rahmen ihrer Bachelorarbeit soll es daher sein, die Konstruktion von Gp
formal darzustellen und ihre Korrektheit zu beweisen. Daran anschlieBend sind folgende Teilaufgaben
zu bearbeiten:

e Es ist abzusehen, dass die konstruierte RTG Gp wesentlich mehr Zustande und Regeln als
G enthalt. Um diese Anzahlen abschatzen zu konnen, soll fiir sie eine obere asymptotische
Schranke in Abhangigkeit von G angegeben werden.

e Im am Lehrstuhl entwickelten SMT-System Vanda [1] besteht bereits eine Implementierung
endlicher Baumautomaten. Darauf aufbauend sollen die Konstruktion von Gp sowie die Funk-
tion YIELD in Vanda integriert werden.

Wiinschenswert, im Rahmen dieser Arbeit aber optional, ist die Bearbeitung folgender Fragestellun-
gen:

e In vielen Anwendungen im NLP-Bereich kommen lediglich lineare und nichtloschende CFTG
vor [vgl. z.B. 14]. Wie muss die Konstruktion abgewandelt werden, damit die von G erzeugten
expliziten Substitutionen ebenfalls nur linear und nichtléschend sind?

e In der Anwendung in der NLP konnen die von Gp zu erzeugenden Baume eventuell weiter
eingegrenzt werden. Welche Optimierungen der Konstruktion im Hinblick auf die Anzahl der
Regeln und Zustande von Gp sind vor diesem Hintergrund maoglich?

Die Arbeit muss den tblichen Standards wie folgt geniigen. Die Arbeit muss in sich abgeschlossen
sein und alle notigen Definitionen und Referenzen enthalten. Die Struktur der Arbeit muss klar
erkenntlich sein, und der Leser soll gut durch die Arbeit gefiihrt werden. Die Darstellung aller Begriffe
und Verfahren soll mathematisch formal fundiert sein. Fiir jeden wichtigen Begriff sollen Beispiele
angegeben werden, ebenso fiir die Ablaufe der beschriebenen Verfahren. Wo es angemessen ist,
sollten lllustrationen die Darstellung vervollstandigen. Schlieklich sollen alle Lemmata und Satze
moglichst Itiickenlos bewiesen werden. Die Beweise sollen leicht nachvollziehbar dokumentiert sein.
Die Implementierung soll moglichst zeit- und speichereffizient umgesetzt werden.
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1 Introduction

The topic of research in the field of natural language processing (NLP) is the machine based
processing of natural languages, i.e., languages spoken by humans. An important subfield of
NLP is machine translation (MT), which deals with translating one natural language into an-
other. There are various approaches for this task and a current trend in the field of MT is to
consider the syntactic structure of sentences to be processed, i.e., their grammatical construction
is represented by parse trees. In this context for example regular tree grammars (RTG) [GS84]
and tree adjoining grammars (TAG) [JS97], which are a restriction of context-free tree grammars
(CFTG) [RouT70], operate as formal models. We call the languages derived by RTGs recognizable
as they are recognized by tree automata [GS84]. Conversely, every language recognized by a tree
automaton can be generated by an RT'G. In contrast to RT'Gs, which only allow substitution, a
feature of CFTGs and TAGs is the adjunction, i.e., the substitution of symbols not only on leaf
nodes, but also within a tree.

For translation, these grammars are often synchronized, for instance, a synchronous tree adjoin-
ing grammar (STAG) [BNV11] consists of two TAGs which derive an input tree in the source
language and an output tree in the target language at the same time, forming a translation
model. We call the set of all pairs of input and output trees derived by an STAG its tree
transformation.

Figure 1.1
Translation of a sentence by STAG

When translating a sentence of language A into language B via STAG, the procedure roughly
is the following: In a first instance, the grammatical construction of the given sentence has to
be analyzed, the sentence is parsed. As most sentences have no unique syntactical structure,
but can be generated in several ways, there will be a number of parse trees resulting from the
parsing process. Often the parsing occurs weighted, which means probabilities are assigned to



1 Introduction

each parse tree. It would now be an option to choose the parse tree with the best probability
and look for a possible derivation in the STAG, which means to view the input components of
all tree pairs that can be generated by the STAG to find the relevant parse tree. In this case the
output component of the respective pair can be taken and by yielding the frontier, this is the
sequence of all leaf nodes, we obtain the translated sentence in language B. This even works for
a parse forest, i.e., a regular language of parse trees for the given sentence.

Of course this procedure is much more difficult than described above. We want to take a closer
look at the part of searching parse trees as input trees in the tree transformation of a STAG.

Toe) IN-XTT . Tow
()] ()]
- |
LUl Ll
> >
v STAG M
TZ > TA

Figure 1.2
Given a recognizable tree language R C Tx, we can simulate the input product of R and a STAG by an
In-XTT.

When considering not only one tree, but a regular tree language R, the aim is to find all pairs
of input and output trees derived by a given STAG G whose input components are elements of
R. This aim may be realized by the input product of R and G. This input product is another
STAG such that the tree transformation only contains tuples with trees of R as its input trees.
As shown in [Mall0] there is an alternative way to compute the input product of G and R, which
is also presented in Figure 1.2. We can represent the trees of a set Ty, in an expanded way, where
substitutions are made explicit and we define an evaluation function, we call it YIELD, that
maps these expanded trees back to Tx.. Then there exists a linear, nondeleting extended top-
down tree transducer (In-XTT) M such that we can simulate the input product of R and G
by the input product of such expanded trees of R and M. Therefore we might lift these trees
by YIELD!(R), generate the input product of YIELD!(R) and M and finally apply YIELD
again. Since the input product of a tree language and an In-XTT is only again an In-XT'T if this
tree language is recognizable, this only works, if YIELD~!(R) is again a regular tree language.
Observe, this is already a known property which is proven algebraically in Lemma 6.1 of [ES78],
but without the specification of a concrete construction.

After introducing the concepts behind the mapping YIELD, the main point of this thesis is to
constructively show the closure of regular tree languages under the application of the inverse
of YIELD by specifying a bottom-up tree automaton recognizing this resulting language. In
the following we will give a proof for the correctness of this construction, perform an asymp-
totic analysis to estimate the number of states and transitions of the automaton and show its
implementation.

10



2 Preliminaries

2.1 General Notions

This section introduces some elementary definitions and conventions.

We assume IN to be the set of natural numbers, i.e. the set of all non-negative integers in-
cluding zero, and R denotes the set of real numbers. Furthermore, by [n] we denote the set
{1,2,...,n} for every n € IN.

Given a finite, non-empty set A of numbers, max A returns the greatest element of A, i.e.
the x € A such that x > y for every y € A.

Let A be a set. The power set of A, denoted by P(A), is the set of all subsets of A. The
number of elements in A will be denoted by |A| . We define the set of words of length n € IN

over Aas A" = {ay...ay | a1,...,a, € A} and for a word w = a;...a, € A" and an index
i € [n] we set w(i) = a;. The set of words over A is defined as
A* = U A"
nelN

and for any word w € A*, 1g(w) is the length of w. The word of length 0 is denoted by € and is
called the empty word.

In the following let A, B and C' be sets.

Let f: A" - Aand g; : A™ — A, 1 <1i <n, be mappings. The composition of f and g1,..., gn,
denoted by fo(gi,...,gn), is a mapping from A™ to A defined as (fo(g1,...,9n))(T1,-..,Tm) =
flor(z1,...yxm)y oy gn(z1, ..y zm)) for all x4, ...,z € A.

Presuming a function f : A — B, for every subset C C B, we define its preimage under f

as f7H(C)={ac A| f(a) € C}.

Let f : B — C be a mapping. If A is a subset of B, then we call the mapping g : A — C, defined
by g(z) = f(x) for all z € A, the restriction of f to A. We write f|4 instead of g.

Let A’ be a subset of A. Given two mappings f : A — B and g : A’ — B, f is said to be
an extension of g, if g = fla.

Given two sets A and I, we define a family of elements in A indexed by I, as a function f
from I to A. Instead of f we write (a; | i € I), where a; = f(i) for all indices i € I.
If f maps I to elements of the power set of A, (4; |i € I) is called an indezed family of sets.

Given a mapping g : N — IN we define
O(g(n)) ={f(n) | Je>03ng Yn = ng : f(n) < c-g(n)}

and we call g an asymptotic upper bound of such an f € O(g(n)).

11
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2.2 Universal Algebra

Based on the definitions in [ES77] of many-sorted alphabets and related concepts, we recall the
following notions:

Definition 1. An alphabet 3 is a non-empty, finite set; its elements are called symbols.

Definition 2. Let A be a set and n € IN. An n-ary mapping f : A™ — A is called an operation,
where f is of rank n. If n = 0, then f is called a constant.

Definition 3. A ranked alphabet ¥ is an indexed family (¥, | n € IN) of disjoint, ranked sets,
where each symbol f € 3, is called an operator of rank n. We define the mazimum rank of X
as maxrank(X) = max{i € IN | X; # 0} if it exists.
A ranked alphabet ¥ is said to be finite if |J X, is a finite set.

nelN
Definition 4. Let S be a set whose elements are called sorts. An S-sorted alphabet 3 is an
indexed family (3, s|lw € S*,s € S) of disjoint sets. An element f of ¥, s will be called an
operator of type (w, s), with arity w, sort s and rank lg(w).

In the following, let S denote a set of sorts, and ¥ denote an S-sorted alphabet. Note that
we will use a sloppy notation by writing ¥ instead of ¥, 5, w € §*, s € S if this subscript is
clear from the context. Whenever |S|=1, we speak of ¥ as a ranked alphabet, and abbreviate
0 € Yys by 0 € Xig(w)-

To demonstrate the concept of many-sorted alphabets, we want to mention a few examples:

Example 5. We form an alphabet which encodes the operations addition (+), successor (succ)
and as a constant zero (zero) on the natural numbers (nat) and the real numbers (real).
Let S = {int,real} and let ¥ be an S-sorted alphabet. Then we have for example

Sintreal,real = {+},
Sintint,int = {+""},
Yint,int = {succ},

e real = {zero} and

Yeint = {zero™}.

Example 6. We form an alphabet as in Example 5, but we restrict the domain of operations
to the set of natural numbers, i.e. S = {int}. Then the ranked alphabet Q with

Qp = {+}>
0y = {succ} and
Qo = {zero}

can be identified with the S-sorted alphabet ¥, where

Ein‘cint,int = {+7 }
Yint,int = {succ} and

e int = {zero}.

12



2 Preliminaries 2.2 Universal Algebra

Definition 7. A X-algebra is a tuple A = (A, - 4), where A is an indexed family A = (Agls € S)
of sets called its domain, and -4 is a family -4 = (o4 | 0 € X), such that for every k € N,
(w,s) € S¥ x S and o € Yuw.s, 04 is a function of type o4 1 Ayy X ... X Ay — As. We call
these o 4,0 € 3, the fundamental operations of A.

Example 8. Consider S and ¥ as in Example 5. Then A = (A,-4) is a X-Algebra where
Aint = IN; Areal = IR, and

zeroft : IN — IN zeroy : R® - R succq: N — IN +3t N2 5 IN +4:NxR—=>R
zero'it() = 0 zerog() = 0.0  succa(n) =n+1 +8%n,m)=n+m Ha(n,m)=n+m

to give an example.

Definition 9. Given two Y-algebras A = (A, 4) and B = (B, -g), a X-homomorphism
h:A— Bisa family h = (hs | s € S) of mappings hs : As — Bs such that for every n € N,
S1y.0s8n, 8 €5, f €34, 5.5 and a; € Ag,,i € [n]:

hs(fA(ala . aan)) = fB(hs1 (al)v ceey hsn (an))

Note that we will skip the subscript of elements of the family h = (hs | s € ), if it is clear from
the context.

13
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2.3 Trees, Tree Substitution

This section introduces the notation of trees and explains closely related concepts, such as tree
languages and tree substitution. In the mathematical sense, trees are connected, acyclic graphs,
whose nodes are labeled with symbols from an alphabet. We consider directed trees, which have
a root and each node except the root has a predecessor and a sequence of successors. Based on
the notions in [ES77], [M6n99] and others, we need to expand our definition of trees for the case
of a many-sorted alphabet.

Definition 10. Let S be a set of sorts and let ¥ be an S-sorted alphabet. The family
Ty, = (Ins | s € S) consists of trees of sort s over X, where T¥, is the smallest S-family T, such
that the following holds true:

- For each sort s € S,

Yes C Ty
- Forn>1,s€ S and we S* if f € Xy s and t; € Ty, for i € [n], Ig(w)=n
ft1, ... tn) € Ts
According to the notational convention of single-sorted alphabets, we denote T 5, s € S, by T,

whenever |S| = 1. Note that we will use a sloppy notation by writing T%; instead of T, 5, s € S
if this subscript is clear from the context.

Example 11. Consider S and ¥ as in Example 5, then by Definition 10

int

zero € I real, zero € I ing

and

+int +
/N /N
succ zeront succ Z€ero
| |
zero™ succ
|
zero't

is in 1% real-

Example 12. By restricting 3 to a single sort, as in Example 6, we obtain a ranked alphabet
and the tree

+
/ \
succ +
| RN
Zero succ Zero
|
ZEro

isin Tx,.

14



2 Preliminaries 2.3 Trees, Tree Substitution

Definition 13. A tree language over X is a subset L C Tx.

Definition 14. The X-term algebra is the Y-algebra Ty, = (T, -75,) where -7, is a family
7w = (frs| f € ) such that for every k € N, (w,s) € S¥ xS, f € 8y s and t; € Ts (1), -+ tk €
Ty wk)

1 (b1, s tn) = f(t1, i tn)-

In order to perform substitutions on trees in T%;, we need additional characters that are different
from the symbols of 3. Then we can expand our definitions:

Definition 15. Let Y = (Y | s € S) be a family of disjoint sets of variables with ¥ NY = 0.
We denote the set of trees Ty by T (Y'), where X(Y) is the S-sorted alphabet with %(Y) s =
Yes UYs and X(Y)y s = Xy s for w # e,

For the case of a ranked alphabet, we define the set of variables X as a fixed enumerable set
X = {x1,x9,...} and for every k € IN we set X, = {x1,...,2}. Note that Xy = () and thus
T5(Xo) =Tx.

Example 16. Again, let ¥ be a ranked alphabet, where ¥y = {zero}, ¥; = {succ} and ¥y =
{+}. Then the tree

_|_
succ/ \ +
| N
T succ T3
:

is a tree in Tx(X3).

Given a family Y of variables and the S-sorted alphabet Tx(Y'), we obtain the X-algebra Ts(X)
in the evident way: Tyx(y) is the domain of sort s and as in Definition 14

Fraog (b1, ceostn) = F(t1, ooy t).

Definition 17. Given a family Y = (Y, | s € S) of variables, A(Y) is a free ¥-algebra with
generators Y if there is for every X-algebra B = (B, -p) and every mapping hs : Y5 — Bs, s € S,
a unique ¥-homomorphism h : A(Y') — B extending the hs.

It is well known, that this condition applies for T5(Y), for instance from [BL70]. In particular,
there is a unique homomorphism from 7y to A for each Y-algebra A, that we denote by h 4.
As a tree itself is pure syntax, we want to give a few examples to evaluate such a term by
assigning an operation over a new domain to each symbol.

Example 18. Let ¥ be the ranked alphabet as in previous examples. To evaluate a tree of Tx,
in an intuitive way, we map it from the 3-term algebra Ty, to a 3-algebra A = (A, -4), where
At = N, Area = R and

zero'f® : N® — IN zeroq : R® - R succy : IN = IN +30:N? » N +4:NxR—=R
zero'§() = 0 zeroq() = 0.0  succa(n) =n+1 +%(n,m)=n+m +a(n,m)=n+m,

15



2 Preliminaries 2.3 Trees, Tree Substitution

by the ¥-homomorphism h 4 : Ts; — A. Then we obtain for +(succ(zero™), zero) € T g:

h (+(succ(zero™), zero)) = hg (+7 (sucer, (zeroi%t: ), zerors,))
= +a(hn(sucer, (zerofy ), hi (zerors,))
= —I-A(succA(h]N(zero‘TE)) hr(zerory,))
= + 4(succ4(zero'i*()), zero4())
= +4(succ4(0),0.0)
= +4((0+1),0.0)
=(0+1)+0.0
=1.0.

Example 19. Just as well we could choose a ¥-algebra B = (B, -g), where Bjy; = N, Brea1 = R,
and

Zero t:IN 5 IN zerog : R® > R succg:IN — N +int']l\12—>]l\f +:NxR—>R
zerot() =1 zerog() = 1.0 succg(n) =n+5 +B(n,m)=n-m +s(n,m)=n-m

and with the same conditions as in Example 18 we obtain:

h (+(succ(zero™), zero)) = hg (+7. (sucer, (zeroi%t:), Z€eroT;,))

—(1+45)-1.0
= 6.0.

Definition 20. Let ¥ be a ranked alphabet. Given a X-Algebra A = (A, 4) and k > 0, we can
interpret each t € Tx(X},) as a function A¥ — A, called a derived operation, denoted by t 4, and
defined as follows: for ay,...,ar € A, ta(ay,...,ar) = a(t) where a : Tx;(Xy) — A is the unique
homomorphism with a(z;) = a; for 1 <1i < k.

Definition 21. Given a ranked alphabet ¥ and two sets X and X,, of variables, for £k > 0,
m >0, t € Tx(Xg) and tq, ..., tx, € Tx(X,,) the result of substituting t; for every occurrence of
z; in t, where i € [k], is defined as t7;(x)(t1, ..., tx) and denoted by t[t1, ..., tx].

Example 22. Consider ¥ and the tree £ as in Example 16. By substituting x; by the constant
zero, xo by the variable x; and x3 by the tree +(zero,zero), we obtain

+ +
succ succ +
‘ / \ [zero, 1, +(zero,zero)] = ‘ / \
r1 succ Zero succ +
To T zero Z€ero

where the resulting tree is in Tx(X7).

16
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2.4 Bottom-Up Tree Automata

As a type of state machine, tree automata deal with tree structures such as the trees we defined in
the previous section. There are two important types of tree automata, bottom-up and top-down,
which differ in the way they process input trees. In this section we want to define bottom-up
tree automata and related concepts.

Definition 23. A deterministic bottom-up tree automaton (det. bu-ta)is a tuple & = (Q, %, d, F),
where

- @ is a finite, non-empty set of states,
- ¥ is a ranked alphabet,

- 8= (6, | 0 €%) is a family of mappings 6, : Q¥ — Q for every o € X, k > 0, called the
transition function,

- F C Q is the set of final states.

Definition 24. Let & = (Q,%, 9, F) be a det. bu-ta. The X-algebra that is associated with </
is the Y-algebra A=(Q,A) with A = (0.4 | 0 € X) such that for every n > 0, o € X,, we have
o4 = 0g.

Thus there is a uniquely determined Y-homomorphism h 4 : Ty, — A.

Definition 25. Given a deterministic bu-ta 27 and the associated algebra A, the tree language
recognized by </ is the set

Ly ={§ €Ty | ha(§) € F}.

Example 26. Let 3 be the ranked alphabet where ¥g = {zero}, ¥; = {succ} and X3 = {+}.
Consider the automaton 7 = (Q, 3,9, F') defined by: Q ={Z,S, P, A}, F = {P} and 0,er0() =
Z,

S ifq=2

A otherwise,

P if (QLQ2) € {(57 Z)v (S7 P)}

A otherwise,

5sucC(Q) = { 5+(Q17CI2) = {

and A is the X-algebra associated with 7. Then we can evaluate a tree +(succ(zero), +(succ(zero), zero)) €
Ty, with the »-homomorphism h 4:
ha (—i— (succ(zero), +(succ(zero), zero)))

= hy (4—7—2 (sucers, (zerors, ), +75 (sucers, (zeror, ), zerors, )))

=+4 (hA (sucers, (zerory,)), ha (47, (sucer, (zeror, ), zeror, )))

=44 (succA ha(zerors,)), +a(ha(sucer, (zeror, ), zeroTE)))

=44 (succA zeroA()), +a(succa(ha(zeror,)), hA(zeroTZ)))

=+4 (succA zeroA()), +.a(succa(zero4()), zeroA())>

+ (B (Brero ) 84 (Bance (Frero () Breno )
+(5succ 5+ 6SUCC(Z) Z))
1 (S,64(S, 2))

+(5,P)

o
S o o

I
)
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Note that in the following examples we will picture this evaluation graphically by writing the
states the automaton reached, next to the labels:

+@
S

succ

|2 BN [

Zero succ Z€ero

|

zero

This corresponds to the concept of a run of the automaton on the input tree, compare to [Rab68].

In the course of this thesis we also require the concept of nondeterministic automata that
recognize trees over a many-sorted alphabet, which we will define in the following:

Definition 27. Let S be a set of sorts. A nondeterministic bu-ta is a tuple o = (Q, %, 0, F),
where

- @ is a finite, non-empty set of states
- ¥ is an S-sorted alphabet

- 8= {0, | o € X) is a family of transition relations such that for every k € IN, (w, s) € S¥x S
and 0 € ¥y 51 05 C QF x Q

- F C Q is the set of final states

As the states of &7 are linked to symbols of an S-sorted alphabet, we could also assign sorts to
the states of an automaton and define @ as the family @ = (Qs | s € S). Since, in the context
of this work, this notation is superfluous, for simplification we define instead of this the algebra
associated with & as an S-sorted algebra.

Definition 28. Let &7 = (Q, %, 4, F') be a nondeterministic bu-ta. The X-algebra that is associ-
ated with < is the S-sorted Y-algebra A = (A, A) where A = (A5 | s € S) such that A; = P(Q)
for every s € S and A = (f4 | f € X) such that for every n € N, (w,s) € S" x S, f € £, s and
Uy € Aw(l)a ., Up € Aw(n) :

faU, ... Up) ={q € Q| 31 € U1, ..., qn € Un, (q1---qn, q) € I}
Thus there is a YX-homomorphism h 4 : Ts — A.

Definition 29. Given a nondeterministic bu-ta o/ and the associated algebra A, the tree lan-
guage recognized by <f is the set

Ly ={§cTs| ha(§)NF #0}

Note, that we consider sorted trees in this definition.
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3 From YIELD to YIELD™!

The concept of adjunction or second-order substitution plays a basic role for the formalism of
context-free tree grammars. In contrast to regular tree grammars, in which symbols can only
be substituted on leaf nodes, with CFTG we can substitute symbols within a tree by a tree
context, i.e., a tree with variables. To simulate the generation of a tree by a CFTG or a TAG
by means of an XTT we have to take the adjunction into consideration.

Figure 3.1 shows a substitution on the left side, where the symbol A on the left leaf node is
substituted by o(3,a), and an adjunction on the right side, replacing the subtree A(a, ) by
the tree o(f, a), i.e., A(x1,z2) by o(x2,x1), where the symbol A is within the given tree.

SN — N\ SN — N\
6/ \a o/ \ﬂ B/ \a

Figure 3.1
Substitution and adjunction

In the next section we want to give a possibility to reproduce second-order substitution by gen-
eral substitution over an expanded alphabet. In addition, we want to introduce and exemplify
the tree homomorphism YIELD.

In the following two sections we engage with the recognizability of tree languages which result
from applying the inverse of YIELD to regular tree languages. To show their recognizability, we
construct a tree automaton which recognizes this resulting tree languages and prove its correct-
ness.

To estimate the number of states and rules in the constructed automaton, we perform an asymp-
totic analysis in the last section.

3.1 Derived Alphabet, YIELD

In order to explicitly capture second-order substitutions, which have caused the generation of a
tree £ over a ranked alphabet 3, we need an expanded representation of this tree. A solution is
an extended alphabet, such as the derived alphabet D(X) described in [ES77]. This one is many-
sorted with sorts over the natural numbers and for this reason infinite. For further consideration
we require a finite alphabet, therefore we restrict the set IN of sorts to a fixed upper value [ € IN
and obtain a new set [I] C IN of sorts, with one exception: the sort of a new symbol that is also
contained in X, is its rank in ¥ and can be greater than .

Definition 30. Given a ranked alphabet ¥ and [ € IN, the derived alphabet of ¥ with limit [,
denoted by D(X,1), is defined as the IN-sorted alphabet which is constructed as follows:

Let X/, = {f' | f € .} be a new set of symbols for each n > 0. Let, for each n, 1 < n <1
and for each 7, 1 < i < n, the ith projection symbol of rank n be a new symbol 7*. As the
(n, k)th composition symbol let ¢, be a new symbol for each 0 < n < max{maxrank(X),{} and
0 <k <l. Then
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3 From YIELD to YIELD ! 3.1 Derived Alphabet, YIELD

- D(E7l)670: 6;
- DEDen =% U{m |1 <i<n<l} forn>1;

- D(Z, Dngk..ek = {Cn i}, for 0 < n < max{maxrank(X),l}, 0 <k <[ and
~~

n times

D(X,1)y,s = 0 otherwise.

The primes on the symbols of ¥ in D(X,1) are not needed, but used to mark the difference
between these two alphabets. The reason for ranging the parameter n of composition symbols
Cn,k between 0 and max{maxrank(X),!} instead of [ is the following: Given that n would be
restricted to [, if we choose a limit [, that is smaller than the rank of a symbol ¢ € ¥ we could
not obtain trees of Tp(x ;) containing . This matter is elucidated further in Example 33.

Example 31. Let 3 be the ranked alphabet where ¥y = {a, 8} and ¥y = {o}. To give some
examples of symbols in D(3,2), we have

D(%,2)c0 = {o/, '},
D(Ea 2)6,2 = {0/, W%? 7'&'%},
D(X,2)122 = {c12} and
D(3,2)211,1 = {21}

Example 32. Consider ¥ as in Example 31, the tree

C20
C2,2 €0,0 €0,0
/ 2 \ 2
0'/ 772 771 O/ B/

is in TD(E,Q) ,0-

Example 33. Let X be the ranked alphabet as in Example 31 and [ a limit of sorts. To
comprehend the necessity of ranging the parameter n of composition symbols ¢, j between 0
and max{maxrank(X), [}, consider the tree

€20
€22 €0,0 €0,0
/ 1 \ 1 /
o’ m m o B

of Tp(s;,1),0, Where the limit [ is less than the sort of the symbol o’. We could never construe a
tree that contains o’ otherwise.

Whenever we evaluate trees of Tp(x;) and thereby interpret the symbols of ¥ as operations,
we can understand the composition symbols as substitutions and the projection symbols as
variables. As all these operations of ¥ are symbols of rank 0 in D(X,1), they can only appear on
leaf nodes in trees of Tp(x;), where a substitution can take place. Therefore, we can simulate
adjunctions on the side of 7% by the representation of substitutions in Ty ;) and a following
evaluation. An algebra for such an evaluation is given below:
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3 From YIELD to YIELD ! 3.1 Derived Alphabet, YIELD

Definition 34. Let > be a ranked alphabet and [ € IN. Based on the previous notations,
we define the D(X,1)-algebra D = (Tx(X),A), where the domain of sort n is Tx(X,) and
A = (ap | a € D(X,1)). The interpretation of the operators is as follows: For every n € NN,
feX,, let
f/D() = f(xlv "'7xn)a
for 1 <i<mn,n} € D(%,1), let
n

(" )p() = 4,

and for n,k >0, ¢p, € D(E,1), t € Tx(X,,) and ¢y, ..., t, € Tx(X}) we set

(ka)p(t, t1, ey tn) = t[tl, ey tn].

Example 35. Let ¥ be the ranked alphabet where ¥¢ = {«, 8} and 39 = {0}, and let D(X,2)
be a derived alphabet of 3. To give some examples for operations in D, we have

op = o(x1,12),
(72)p = 29 and
(02,2)D(U($1,$2)7a,5) = o(r1,22)[, B] = o (e, B).

Definition 36. Let ¥ be a ranked alphabet, [ € N, Tp(x ;) the D(X,1)-term algebra and D the
D(%,1)-algebra as in Definition 34. Thus there is a unique homomorphism from 7px ;) to D,
we will denote it by YIELD.

Example 37. Consider X as in example 35, we want to show the evaluation of some terms of
Tp(s,2) by means of the homomorphism YIELD. Therefore a symbol o’ of sort k with o € ¥ is
evaluated to an operation in Tx(X}),

YIELD(o') = YIELD(0%, . , ()) = 0p() = o(a1, 2),

a projection symbol is evaluated to a variable, for instance
YIELD(n3) = YIELD((73) 755, () = (73)D() = 22,
and a composition symbol is interpreted as a substitution, for example

YIELD(cz2(0”, 75, 75)) = YIELD((c2,2) 7555, (0”5 75, 73),
= (c22)p(YIELD(¢”), YIELD(73), YIELD(73))
= YIELD(o')[YIELD(73), YIELD(73)]
= o(x1,x2)[x2, 2]
= o(x2,x2).

Example 38. Consider ¥ as in Example 35. As can be seen in this example, we obtain by
applying YIELD to the tree § € Tp(x 2),0 below, the tree ¢ € Tx(Xp) = Ty, to the right of it.

C20
c2.2 / 1 \ 000 ﬂ» /a\
/ | \ ‘ ‘ B o
o' 5 2 o B
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3 From YIELD to YIELD ! 3.1 Derived Alphabet, YIELD

Similar to Example 37

YIELD(co2(0’, 73, 7%)) = o (29, 21),
YIELD(c22(a’)) = o and
YIELD(CZQ(,B/)) = ﬁ,

and by evaluating the root symbol we obtain

o (w2, m1)[ev, B] = (B, ).

22



3 From YIELD to YIELD ! 3.2 Construction

3.2 Construction

In order to show that tree languages, which result from applying the inverse of YIELD to
given regular tree languages, are also regular, we construct a nondeterministic bottom-up tree
automaton which recognizes this language. Therefore, we assume a deterministic bottom-up
tree automaton which recognizes the regular tree language given and, based on it, we construct
the following automaton:

Construction 39. Given a ranked alphabet X, a limit [ € IN, and a deterministic bu-ta ¢ =
(Q,%, u, F), we construct a nondeterministic bu-ta J = (Q', D(X,1),6, F’), where D(X%,1) is
the IN-sorted, derived alphabet of X. We define

Q ={lg1-qx = | 0<k <lmazq1, - qr,q € Q}

where l,q,; = max{l/, maxrank(3)} and we will abbreviate [e — ¢] by [¢],

F'={[q] | ¢ € F},

5= (6, | a € D(Z,1))

where, for every a € D(X,1)
5(1 g an X Q/

and a has rank n, as defined in the following case distinction:
1) a= o' of type (¢, k)
da = {(e,lq1ar = d]) | a1, -k, 0 € Q, 0 = pio(q1, -, 1y )}
2) a=7F of type (,k),i € [k]

b ={(&lq1-qk = @]) | @1, -y a0 € QF
3) a=cpy of type (nkk...k, k)

do = {([p1--Pn = dl[ar---ax = p1]---[q1-qk = Duly (@19 — @) | @1y ooy Qs D1, oo Py g € QF

The resulting automaton 57, we call it the derived tree automaton, encodes state transitions of
the given automaton ¢ in its states. That means each state of 7 consists of a left side of input
states and a right side with an output state, representing a state transition in ¥.

The transitions of 7 are divided into three cases, depending on the type of the symbol of the
D(X,1) that is read. For all symbols of 3, we call these state transitions operation transitions,
they were formed directly from the transitions in ¢. So called projection transitions operate
at projection symbols of D(X,1) where for each ﬂf there occurs a transition in a state, whose
left side is projected to its ith input state. Transitions at composition symbols, composition
transitions, operate on three layers of states of ¢. Every transition in 4, , takes n + 1 states,
where the concatenation of output states from state 2 to state n + 1 forms the input states of
state 1, and passes in a state consisting of the input states of state 2 to n+1 and the output state
of state 1 of the states. Thus, we may indeed construe composition transitions as composition
of state transitions.
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3 From YIELD to YIELD ! 3.2 Construction

Example 40. Assume a ranked alphabet X, where ¥y = {a, 8} and X9 = {0}, and a deter-
ministic bu-ta ¢ = (Q, %, u, F'), where Q = {A,B,C,D}, F = {D} and po() = A, pg() = B
and

D ifql :C,QQ =A

C otherwise.

to(q1, q2) = {

Then we can construct a nondeterministic bu-ta 7 = (Q', D(X%,2),0, F’). The set Q' of states
is formed by the states of G, we obtain for example

{[4],[B — C],][AC — D]} C Q'

As a direct consequence of u, we get

6o = {(€, [A])}, 6 = {(e,[B])} and
5o = {(e,[CA — D)), (e,[BA— C)),...}.

In addition, we have projection rules such as
(e,[AB — A]) € 67r%
and composition rules, as for example
([A— BJ[CD — A],[CD — B]) € 0c, ,-
The set of final states I’ contains the same elements as F' just with added brackets,
F' ={[D]}.

Example 41. Consider the ranked alphabet ¥ and the bottom-up tree automata ¢ and ¢ as
in Example 40. The automaton ¢ recognizes the tree £ = (o(o (5, @), o) with the final state D.
If we apply Construction 39 on this automaton, the resulting automaton J# recognizes a tree
¢ € YIELD!(¢) with the final state [D], this is shown in Figure 3.2.
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Q
>
=]

Q
~
=]

/)

€0,0

@ Construction

\_/

9

Q
>
=]

[CA—D]

El
g
/‘ o' €2,0 €0,0
o " [AB—C]

/‘ €22 €0,0 0,0 o
8] |
I3 a

3]
El
B

=

\ [BA—C] ﬂ [AB—B] H [AB—A] \ \ [A] \ B]
0'/ 71'% 7'&'% o/ 6/
Figure 3.2
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3.3 Proof of Recognizability

Consider ¢4 and ¢ as by Construction 39. In this section we want to show, that the following
applies for every tree £ € Tx: If the automaton ¢ recognizes £ and we construct .77 from ¢, then
every tree in YIELD!(¢) and nothing more is recognized by #. We postulate the following
lemma:

Lemma 42. For every £ € Tpis )k, | € N, and for every q,q1, ..., qr € Q), where k € IN:

[a1, - ar = a) € hu(§)  iff  q=hg(YIELD(())

where H is the algebra associated to 5, G is the algebra associated to 9 and hg is the extension
of h: X — Q with h(z;) = ¢; for every i € [k].

Proof. We show this claim by induction on § € Tp(x ).

Let £ = o’ of type (e, k).

[q1--qx — q] € hy(0”)

iff [q1-..qx — q] € hq{((f%—D@l)()) (Definition 14)
iff [q1--qx — q] € 'y () (Definition 9)
iff (€ [q1---qx — q]) € I (Definition 28)
iff q= to(q1y s Qi) (Construction 39)
iff q=0g(q1, s qx) (Definition 24)
iff q = og(hg(x1), ..., hg(zk)) (Definition of hg)
iff q=hg(or (21, ..., 7)) (Definition 9)
iff q = hg(o(x1,...,x1)) (Definition 14)
iff ¢ = hig(YIELD(c")) (Definition 36)
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Let & = 7F of type (e, k).

(q1.--qr. — q] € hy(rF)

iff [q1-.qx — q] € hH((ﬂf)TD(m)()) (Definition 14)
iff [q1.-qr — q] € (7F) () (Definition 9)
iff (e [q1---qx — q]) € Ok (Definition 28)
iff q=gq (Construction 39)
iff q = hg(x;) (Definition of hg)
iff q = hg(YIELD(7})) (Definition 36)

Let & = ¢ 1 (0,41, ..., &n) Where ¢, 1 is of type (nkk...k, k).

[Q1Qk — Q} € hH(CTL,k‘(gﬂaglv 7571))

iff [q1--ak — a] € P ((cn k) T (05 €15 -, €n)) (Definition 14)
iff [q1.-.qx = q] € (cn i) (h(&0), - P (€n)) (Definition 9)
iff [q1-qr — q) € {u € Q" | Fug € hy(&0), s tn € hpy(&n),

(gt tin, 1) € B, } (Definition 28)
iff Fug € hy (&), ooy un € hy(&n) -

(wou-. Un, [q1---q — q]) € Oc,

iff dp1,.pn €Q
[p1--pn = 4] € hu(&0),
[q1---qx — pi] € hy (&) for i € [n] (Construction 39)

iff Ap1,.epn €Q
g = hg(YIELD(&)),
pi = hg(YIELD(&;)) for i € [n] (IH)
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where we define the extended X-homomorphism E/g as extension of the mapping A’ : x1 — p;,
i€ [n].

iff dp1,.epn €Q

q = (YIELD())g(p1, s Pn),

pi = (YIELD(&;))g(q1, ..., qi) for i € [n] (Definition 20)
iff q = (YIELD(&))g((YIELD(&1))g(q1, -, i), -, (YIELD(&n))g (a1, - Gn))
iff q = ((YIELD(&))g o ((YIELD(&1))g, ..., (YIELD(£,))g))(q1, ..., qr) (Preliminaries)
iff q = (YIELD(&)[YIELD(&1), ..., YIELD(&:)])g (g1, -y qk) (|GT74] Prop. 2.4)
iff q = hg(YIELD(&)[YIELD(&), ..., YIELD(,)]) (Definition of hg)
iff q = hg(YIELD(cp (&0, &1, -, €n))) (Definition 36)

O]

Having proved this lemma, we can make a statement about the recognizability of regular tree
languages under the application of YIELD !

Theorem 43. Let ¥ be a finite ranked alphabet. If R is a recognizable tree language over X,
then, for every 1 € N, YIELD *(R) N Tp(s,,0 is recognizable.

Proof. The theorem is a direct consequence of Lemma 42. As R is a recognizable tree language,
there exists a deterministic bottom-up tree automaton ¥ = (Q, X, u, F') recognizing R and we
can construct a nondeterministic bottom-up tree automaton 5 as in Construction 39. By
Lemma 42 we know, that 2 = (Q', D(X%,1), 0, F') accepts a tree &, if and only if ¢ recognizes
YIELD(). Then

YIELD ™ (R) N Tpes )0
= YIELD ! (Ly) N Tp(sp).0
= YIELD ' ({¢£ € T | 3g € F : ¢ = hg(§)}) N Tpisay0 (Definition 25)
= {CeTpy | g€ F:q=hg(YIELD(C))} NTps )0
= {CeTpwpol3geF:q=hg(YIELD(C))}
= {CeTpspol3d € F - [q] € hy(Q)} (Lemma 42)
= {CeTpry | 3d € F i lq] € hu(Q)}y N T

= Lx NTps,0, (Definition 29)

where H is the algebra associated to .7, G is the algebra associated to ¢4 and hg is the extension
of h: X — Q with h(z;) = ¢; for every i € [k].

As both L and Tp(s )0, cf. [EST7], are recognizable, the intersection is recognizable, too (see
for instance [GS84)). O
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3.4 Asymptotic Analysis

Given a deterministic bu-ta 4 = (Q, 3, u, F'), it can be expected that the nondeterministic bu-ta
A = (Q',D(%,1),0, F') resulting from Construction 39, contains significantly more states and
transitions than ¢. In this section we will perform an asymptotic analysis of the number of
transitions and states of 77 in relation to the number of states in 4. We use m to denote the
size of the set @ and r to denote the number of transitions in p, the limit I of sorts of D(X,1)
is seen as a constant, and max{/, maxrk(X)} is denoted by lynaz-

States

As the set of states in 57 comprises the encodings of all possible state transitions on @, for
reasons of combinatorics this results in a large set Q’.

Lemma 44. The number of states of H is in O(mlmaz+tl),

Proof. For a sort k, the variables ¢;, i € [k] on the left side of a state [q1...qx — ¢] € Q" may
be occupied by each state p € Q. In addition, we have m possibilities to choose a state of @) for
the right side, which results in mFt1 states. If we sum over all k from 0 t0 lpag, We obtain:

l'max

Q=Y m" =m+m?®+ 4 mlmeeth e O(mlmerth)
k=0

Transitions

Due to the fact that we consider the expanded alphabet D(X,l) and, as seen above, the set
Q' consists of much more states than (), it can be assumed that the automaton .7 contains
more transitions than ¢. In the first instance we want to analyze the asymptotic number of
operation transitions, projection transitions and composition transitions separately in order to
subsequently determine an upper bound for the number of all transitions in 7.

Operation Transitions
As a first step, we consider operation transitions, which are derived from the transitions in ¢
and therefore have the same number.

Lemma 45. The number of operation transitions in & is in O(m™k(X)),

Proof. Let a = o' of type (e,k), o € 3. A specific transition (e, [q1...qp — ¢q]) € 04 is, by
construction, directly linked to the presence of a rule ¢ = s (qi,...,qx) in u. Therefore the
number of operation transitions corresponds exactly to the number of transitions in ¢, which
are directly associated to the number of states in ¢ by the total transition function. For
every symbol o € ¥ with rank k and for every tuple (q1,...,qx) € QF there is a ¢ € Q with
tio(q1, .., qi) = g, this results in |p,| = m* and we obtain:

{0y |c € X} =7r= Z o | = Z m7k() e O(mmaxrk(z))

oeY oceY

O]

Note that in our implementation of the automaton ¢ the total transition function is not used,
but only the transitions which lead to the recognition of a tree are stored. Hence there is
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no relationship between the number of transitions and the number of states in ¢4, r can be
significantly smaller than in the formula mentioned above and we can say that the number of
the operation transitions of .7 is in O(r).

Projection Transitions
In addition to the transitions that can be derived by u, we have a sizable number of projection
transitions.

Lemma 46. The number of projection transitions in & is in O(m?).

Proof. Let a =¥ of type (e, k). For fixed k and i, the variables ¢;, j € [k], in a transition
(¢,[q1...qp — @i]) € 6, may be occupied by each state ¢ € @, which results in mF rules. If we
just hold k, each of these transitions in 6, can be projected onto k positions, we thus have m” -k
possible transitions, and for k from 1 to {:

l
|{e\e€(5k7r e DX, 1)} = Zm k=m+2-m?+..+1-m'eO@m))
k=1

Composition Transitions

The highest increase of transitions by constructing the automaton .77 is induced by the compo-
sition transitions.

Lemma 47. The number of composition transitions in & is in O(mlmaztitl),

Proof. Let a = ¢y, of type (nk...k, k). For fixed k and m, in a transition ([p1...pn — ¢]{q1...qx —
pi)--[q1---qk = Pnl,[q1---qk — q]) € dq, both the variables p;, i € [n], and g;, j € [k], range over
the set of states Q). The same applies for the position of ¢, which results in m™-m”*-m transitions.
If we sum over all n from 0 to I, and k from 0 to I, we obtain:

l"LCL.’t

el e€de, s cnp € DX, 1)} = ZZm -mP-m
n=0 k=0

€ O(m~+m? + ... 4 mlmaatitl
— O(mlmaz+l+1>

where line two holds, as the coefficients can be neglected. O

Having considered this three cases of transitions that are present in §, we can postulate the
following lemma:

Lemma 48. The number of transitions of H is in O(mlmaz+i+l),

Proof. As a result of Lemma 45 to 47 we obtain:

> 1l € O(m™kE)y L O(ml) + O(mlbmastHLy = O(mlmastiH1)
a€D(3,1)

since lypar + 1+ 1> 1 and e + 1+ 1 > maxrk(X). d

To exemplify the result of the analysis with concrete numbers, we want to give two scenarios in
the following.
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3 From YIELD to YIELD ! 3.4 Asymptotic Analysis

Example 49. Given a ranked alphabet ¥ with 3¢ = {«, 8} and ¥2 = {0}, and a deterministic
bu-ta 4 = (Q1, 2, u1, F1), where |Q1]| = 4, denoted by m, and maxrk(X) = 2, we want to calcu-
late the number of states and transitions in the nondeterministic bu-ta 74 = (Q}, D(X,2), 61, F})
resulting from Construction 39. The number of states in .74 amounts to

lmax 2

’Q/1| _ Z mk+1 — Z4k+1 — 84.
k=0

k=0
The number of operation transitions is
{6 o €S} =m0 =3 4rk@) = 18,
o€eY oeY

we have

2
{ele€ o, € D(E,2)} Zm k= Z4k-k:36

projection transitions and

lmu.z

{e|e €dc, . cnn €D(E,2)} = ZZm -mF.m = 224" 4k 4 = 1764

n=0 k=0 n=0 k=0

composition transitions.

Example 50. Consider ¥ with ¥y = {a, 3} and X5 = {0}, and a deterministic bu-ta % =
(Q2, %, po, F3), where the number of states m = 10, and the constructed nondeterministic bu-ta
o = (Q4, D(X,5), 62, F5). Now we have

Q] =1111110,
{6, | o € X} =100002,
{e|ec 5ﬂf,7rf € D(%,5)}| =543210 and
{e|e €6, cnn € D(S,5)}| =2147483647.

The plot in Figure 3.3 shows an upper bound for the number of transitions of .7 in dependence
on the number of states in ¢, where the limit [ and the maximum rank of X is 5.

9><1012

Number of transitions of 3¢

. L L
0 2 1 6 8 10 12 el 16

Number of states of ¢

Figure 3.3
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3 From YIELD to YIELD ! 3.4 Asymptotic Analysis

As can be seen from the analysis and these two examples, a small set of given states may already
result in a very large number of states and transitions in the constructed automaton. Thereby
the maximum rank of the given alphabet ¥ and the chosen limit of sorts in D(3,[) have a
significant influence. Especially the composition transitions represent a very high percentage
of all transitions, and because of the frequent occurrence of composition symbols in trees of
T'p(s,1), this fact carries weight. Therefore, in the context of concrete applications, for example
in language processing, useful restrictions in the construction need to be made. However, we
will postpone the investigation of such restrictions until further works.
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4 Implementation

In this chapter we want to detail our implementation for the main points of this thesis. We
will introduce structures to represent trees over a derived alphabet and show how the mapping
YIELD is implemented. In a second part we give an implementation of derived tree automata
(DTA) as in Construction 39 and explain their construction from given bottom-up tree automata.
The implementation is realized in Haskell and is integrated in the machine translation toolkit
Vanda [BDO"12] from which some modules are used.

4.1 Implementation of YIELD

Data Structures

In order to represent trees over a derived alphabet, we define an algebraic data type for the
symbols of D(X,1). Intuitively, we divide the symbols, as in the definition of D(X,1), into
operations of ¥ with label value and sort (in the following we call them operation symbols),
projection symbols and composition symbols.

data Symbol s = Op s Int
| Pjc Int Int
| Cmp Int Int

deriving (Eq, Ord, Show)

Having defined this data type for symbols, we use the module Data.Tree to build trees over
these symbols.

Since YIELD is a mapping from Tp(s;) to Tx(X) we define an additional data type for trees of
Tx(X).

data VTree 1 = VNode { vlLabel :: 1
, vSubForest :: [VTree 1]
+
| Var Int

Such a VTree consists of nodes similar to the nodes of Data.Tree and of variables, represented
by an integer.

The YIELD Mapping

The idea of our implementation of the YIELD mapping is to map in the first instance a given
tree to a term of VTree in order to subsequently transfer this term into a tree of type Data.Tree.
In order to do this, we require a type safe tree as input, i.e. a tree from type Tree (Symbol s)
which represents a term of Tp(x ;). In addition, we assume a term of sort 0 to ensure that the
tree resulting from the first step is free of variables. Note that on other inputs of this type,
yield is not correct.
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4 Implementation 4.1 Implementation of YIELD

The function yield’ takes a tree with labels of the data type Symbol and performs a pattern
matching on the label of the root node. Whereas nodes with operation symbols or projection
symbols as labels are mapped to a tree of VTree by the function yield’’, a node with a
composition symbol is processed by substituting the result of applying yield’ to the tail of the
list of successors in the result of applying yield’ to the first successor of the node by means of
the function sub.
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4 Implementation 4.2 Implementation of a Derived Tree Automaton

4.2 Implementation of a Derived Tree Automaton

In this section we want to give an implementation of a bottom-up tree automaton, the derived
tree automaton (DTA) as in Construction 39, which recognizes trees over a derived alphabet.
In the first instance, we elaborate on the data structures for states and for the automaton we
want to form, in order to subsequently explain the construction of this automaton.

Data Structures

Recalling the states of a derived tree automaton, consisting of a list of input states of a given
automaton, in the following we will call it input list, and an output state, we define an algebraic
data type for these states.

data State g = State
{ fromS :: [q]
, toS 58 @
} deriving (0rd, Eq)

In Vanda, implementations of automata are based on hypergraphs, to find in the module
Data.Hypergraph. These consist of a set of nodes and a set of hyperedges. Every hyperedge
connects a node, called its head node, to an ordered sequence of nodes, the tail nodes, and has a
label, a weight and an identifier. The transitions of our automata are stored in such hyperedges
where the nodes are the states and the label is a symbol of the given alphabet. The derived
tree automaton we construct contains such a hypergraph with states of the data type State and
labels of the data type Symbol, as defined in the previous section, together with a list of final
states.

data DTA g 1 w i = DTA
{ finalS :: [State ql
, toHypergraph :: Hypergraph (State q) (Symbol 1) w i
} deriving Show

Construction

Our aim is to build a derived tree automaton from a given automaton, this is implemented in
the function construct. As there are various implementations of tree automata in Vanda, we
start from a hypergraph and a list of final states and as a third argument construct takes a
tuple (Int,Int) consisting of the maximum rank of symbols the given automaton handles, and
a limit of sorts. Since we consider unweighted automata and we need no additional identifier for
our construction, we use the unit type, i.e. the singleton type () with the empty tuple as its
only value.

construct
0rd g
=> Hypergraph g 1 w i -> [q] -> (Int,Int) -> DTA g 1 O QO
construct hg final (maxn, maxk) =
DTA (map (State []) final) (hypergraph mkH)
where mkH = construct’ (edges hg) (vertices hg) maxn maxk

To obtain the DTA, in line 5 the final states are mapped to the data type State and the
hyperedges and states of the hypergraph are forwarded to the function construct’, which
returns a list of hyperedges. In this function, the construction of these hyperedges is split into
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4 Implementation 4.2 Implementation of a Derived Tree Automaton

the construction of operation transitions in line 8, projection transitions in line 9 and composition
transitions in line 10.

construct’

:: [Hyperedge q 1 w il

-> [q]

-> Int

-> Int

-> [Hyperedge (State g) (Symbol 1) () (O]
construct’ he s n k =

map opTrans he ++

cmpTrans n k list s ++

(concat $ pjcTrans k 1list)

where
list = fromState (max n k) s

Operation transitions are formed directly from the given hyperedges by generating a new state
from the head and the tail of a hyperedge as head, an empty tail and an operation symbol as
label.

opTrans
Hyperedge q 1 w i -> Hyperedge (State q) (Symbol 1) (O O
opTrans = \e -> e{eHead = State (eTail e) (eHead e)

, eTail = []
, eLabel = 0Op (eLabel e) (length $ eTail e)
, eWeight = ()
, eld = O

For the construction of projection transitions and composition transitions we need lists of input
lists, which are generated by the function fromState. This function is supplied as arguments
the maximum of the maximum rank and of the limit of sorts, as well as a list of all states of the
given hypergraph.

fromState :: Int -> [a]l -> [[[all]
fromState 0 _ = []
fromState k a = (sequence $ replicate k a) : fromState (k-1) a

These lists of input lists are generated by applying the prelude function sequence to a repli-
cation of the state list. This function forms in the context of a given list of lists the Cartesian
product of these lists, replicate k a generates a list containing the list a k£ times. This results
in the set of all sequences of input lists, sorted in descending order of their length, which is
needed to have access to elements of a specific length by the operator (:).

The function pjcTrans takes a limit of sorts and the list of all possible combinations described
above and returns lists of hyperedges, representing projection transitions. In line 5 the combi-
nations of input lists of length k are extracted and forwarded to the function pjcState, which
then again applies the function pjcState’ to each list of input states together with the fixed k.

pjcTrans
Int -> [[[a]]] -> [[Hyperedge (State a) (Symbol 1) () (1]]
pjcTrans 0 _ = []
pjcTrans _ []1 = []
pjcTrans k (x:xs) = pjcState k x ++ pjcTrans (k-1) xs
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4 Implementation 4.2 Implementation of a Derived Tree Automaton

pjcState

Int -> [[a]] -> [[Hyperedge (State a) (Symbol 1) () (1]
pjcState _ [1 = []
pjcState k (a:as) = pjcState’ k a (a, 1) : pjcState k as

pjcState’
Int

-> [a]

-> ([a]l, Int)

-> [Hyperedge (State a) (Symbol 1) () O]
pjcState’ _ _ ([1,_) = []
pjcState’ k x ((a:as), ii) =

hyperedge (State x a) [l (Pjc k ii) O O

pjcState’ k x (as, ii+1)

The function pjcState’ takes a sort k, one combination of input states and a tuple of input
states and an integer, which is thought as a kind of running variable for the projection, and
returns all projection transitions for a projection symbol of sort k and the given input states.
A similar approach to split the list generated by the function fromState we use for composition
transitions, however, a bit more complex. As we need a state of input length n and states of
input length £ for each composition symbol ¢, 1, we have to combine each list of input states of
length n with each list of input states of length k, and this for each n, k less than or equal to
the limits the function cmpTrans takes. This combination is realized by a list comprehension in
line 8. We need a case distinction for the length of n and k, as the list of input lists contains
elements of the length max(maxn, maxk). For example, for the case maxn < maxk the extraction
of input states from the list of all input states must end at position (maxk - maxn), the elements
in front of this position have a length greater than maxn.

cmpTrans
:: Int
-> Int
-> [[[a]]]
-> [a]
-> [Hyperedge (State a) (Symbol 1) () (O]
cmpTrans maxn maxk list old
= concat [ cmpTrans’ (maxn-n) (maxk-k) (nList n) (kList k) old
| n <- [0..(maxn -1)], k <- [0..(maxk -1)]

]
where
nList n = if maxk > maxn then list !! (n+(maxk-maxn))
else list !'! n;
kList k = if maxn > maxk then list !! (k+(maxn-maxk))
else 1list !! k

The function cmpTrans’ takes as arguments a value n, a value k, a list of all input lists with
length n, a list of all input lists with length k& and a list of all possible output states, it returns
a list of hyperedges. In line 9 this function splits single elements from the first list and forwards
them to the function cmpTrans’ ’, which segments the second list of input lists.
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4 Implementation 4.2 Implementation of a Derived Tree Automaton

Having now two concrete input lists with their lengths n and k as first arguments, the function
nkEdges generates a composition transition of type (n, k) by a list comprehension in line 9 and
by means of the function statelList for each output state.
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5 Conclusion

In this bachelor thesis we have shown that the application of the inverse of YIELD to a recogniz-
able tree language R again results in a recognizable tree language. Starting from a deterministic
bottom-up tree automaton ¢ recognizing R, we supplied the construction of a nondeterministic
bottom-up tree automaton .77 , which encodes state transitions of ¢ in its states. Subsequent
we proved its correctness, to show that . recognizes every tree in YIELD ~1(¢) if and only if ¥
recognizes &, and as a result of this, YIELD_I(R) is recognizable for every regular tree language
R.

As it can be expected, that this constructed automaton .7 contains significantly more states
and transitions than ¢, we performed an asymptotic analysis of the number of transitions and
states of 7 in relation to the number of state in ¢ in a following step. From this follows, that
useful restrictions in the construction need to be made for concrete applications.

In the last chapter we gave an implementation for the mapping YIELD and for such a derived
tree automaton 77, as well as its construction from a given tree automaton ¥.
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